Answer the following question in the space provided. There is no need to justify your answers. This quiz is worth 5 points.

Evaluate the triple integral
$$\int_{0}^{6} \int_{0}^{4-2y} \int_{0}^{4-2y} \int_{y}^{4-2y-x} \int_{y}^{4-2y-x} \int_{y}^{4-2y-x} \int_{y}^{4-2y-x} \int_{0}^{4-2y} \int_{y}^{4-2y-x} \int_{0}^{4-2y-x} \int$$

Answer the following question in the space provided. There is no need to justify your answers. This quiz is worth 5 points.

Evaluate the integral $\iint_R (x^2 + y^2) dA$ in polar coordinates where $R = \{(x, y): x^2 + y^2 \le y > 0\}$

$$9, y \ge 0\}.$$

$$2$$

$$3$$

$$3$$

$$= \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

$$\iint_{R} (x^2 + y^2) dA = \iint_{0}^{3} \sqrt{2} r dr d\theta$$

$$=\int_{0}^{3} \int_{0}^{3} dv d\theta = \int_{0}^{\pi} \left(\frac{1}{4} v^{4} \right)^{3} d\theta$$

$$=\int_{0}^{\pi} \int_{0}^{3} dv d\theta = \int_{0}^{\pi} \left(\frac{1}{4} v^{4} \right)^{3} d\theta$$

MATH 213 - QUIZ 11 - 17 APRIL 2012

Answer the following question in the space provided. There is no need to justify your answers. This quiz is worth 5 points.

Evaluate the integral $\iint_R 2xy \, dA$ in polar coordinates where $R = \{(r, \theta): 0 \le r \le 3, 0 \le \theta \le \pi/2\}$. (Hint: Remember the double angle formula $2\sin(x)\cos(x) = \sin(2x)$.)

$$\int_{R}^{3} 2xy dA = \int_{0}^{12} \int_{0}^{3} 2r \cos \theta \cdot r \sin \theta r$$

$$R = \int_{0}^{12} \int_{0}^{3} r^{3} 2\sin \theta \cos \theta dr d\theta$$

$$= \int_{0}^{12} \int_{0}^{3} r^{3} \sin(2\theta) dr d\theta = \int_{0}^{12} \left(\frac{1}{4}r^{4}\right)^{3} \sin(2\theta) d\theta$$

$$= \int_{0}^{12} \frac{81}{4} \sin 2\theta d\theta = -\frac{81}{8} \cos 2\theta \left[\frac{12}{8} - \frac{81}{8} - \left(-\frac{81}{8}\right)\right]$$

$$= \frac{81}{4} \iint_{R}^{2} \sin 2\theta d\theta = -\frac{81}{8} \cos 2\theta \left[\frac{12}{8} - \frac{81}{8} - \left(-\frac{81}{8}\right)\right]$$