Answer each of the following questions. Show all work, as partial credit may be given. This exam will be counted out of a total of 50 points.

1. (8 pts.) Let \(\mathbf{r}(t) = (\sin(2t), \cos(2t), 2t), \ t \geq 0 \). Compute the unit tangent vector, \(\mathbf{T}(t) \), and the curvature, \(\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} \), for the curve \(\mathbf{r}(t) \).

2. (8 pts.) Find \(f_{yzy} \) when \(f(x, y, z) = y^2z^2 + x^3y + \frac{xy}{z} \).

3. (4 pts. each) Let \(f(x, y) = x^2y^2 - 2x^3y + 2x \).
 (a) Find \(\nabla f \).
 (b) Find the directional derivative of \(f \) at the point \((1, 2)\) and in the direction \(\mathbf{v} = \mathbf{i} + 3\mathbf{j} \).
 (c) Find the maximum rate of change of \(f \) at the point \((1, 2)\), and the direction in which \(f \) changes most rapidly at the point \((1, 2)\). (Note: Direction should be in the form of a unit vector.)
 (d) Find the linearization of the function \(f(x, y) \) at the point \((1, 2)\).
 (e) Use differentials to estimate the change in \(f \) when the point \((1, 2)\) moves to the point \((1.1, 2.3)\).

4. (8 pts.) Find all critical points of the function \(f(x, y) = x^4 + 2y^2 - 4xy \) and use the Second Derivative Test to identify each as a local maximum, local minimum, or saddle point. (Hint: There are three critical points.)

5. (8 pts.) Use Lagrange multipliers to find the maximum and minimum values of \(f(x, y) = y^2 - 4x^2 \) subject to the constraint \(x^2 + 2y^2 = 4 \).