Answer each of the following questions. Show all work, as partial credit may be given. This exam will be counted out of a total of 75 points.

1. (5 pts. each) Let \(\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}, \ \mathbf{b} = 3\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}. \)

(a) Find the cosine of the angle between \(\mathbf{a} \) and \(\mathbf{b}. \)

(b) Write \(\mathbf{a} \) as the product of its magnitude and its direction.

(c) Find \(\mathbf{a} \times \mathbf{b}. \)

(d) Find the sine of the angle between \(\mathbf{a} \) and \(\mathbf{b}. \)

(e) Find \(\text{proj}_\mathbf{a}(\mathbf{b}). \)

(f) Write \(\mathbf{b} \) as the sum of a vector parallel to \(\mathbf{a} \) and a vector perpendicular to \(\mathbf{a}. \)

(g) Find a vector function \(\mathbf{r}(t) \) whose graph is the line with direction \(\mathbf{a} \) and containing the point \((6, 5, -1)\).

2. (8 pts. each) Let \(\mathbf{r}(t) = \langle 3 \sin t, 5 \cos t, 4 \sin t \rangle \) be the position of an object at time \(t \)

(a) Find the velocity, speed and acceleration of the object.

(b) Prove that the trajectory of the object lies on a sphere in \(\mathbb{R}^3. \)

3. (8 pts. each) Consider the vector–valued function \(\mathbf{r}(t) = t \mathbf{i} + (1/3)t^{3/2} \mathbf{j} + t \mathbf{k}. \)

(a) Find \(\mathbf{T}(t) \), the unit tangent vector of \(\mathbf{r}(t). \)

(b) Find the arclength of the above curve for \(0 \leq t \leq 4. \)

4. (8 pts.) Suppose that the acceleration of a projectile is given by \(\mathbf{a}(t) = \mathbf{r}''(t) = \mathbf{j} - 32\mathbf{k}, \)
and that its initial position is \(\mathbf{r}(0) = \mathbf{0} \) and its initial velocity is \(\mathbf{r}'(0) = 100(1/2 \mathbf{i} + \sqrt{3}/2 \mathbf{k}). \)
Find an expression for the position \(\mathbf{r}(t) \) of the projectile at time \(t. \)