MATH 213 – 9 MAY 2006 – FINAL EXAM

Answer each of the following questions. Show all work, as partial credit may be given. This exam will be counted out of a total of 100 points.

- 1. (4 pts. each) Consider the function $f(x, y) = x^2y^3 + 2x^4y$.
 - (a) Find $\nabla f(x, y)$.
 - (b) Find the direction of greatest increase of f at the point (1,2) and find the rate of change of f in that direction.
 - (c) Find the rate of change of f at the point (1, 2) in the direction $\mathbf{i} 3\mathbf{j}$.
 - (d) Find the differential df of the function f(x, y).
 - (e) Find the linearization of f(x, y) at the point (1, 2).
 - (f) Find the equation of the tangent plane to the surface z = f(x, y) at the point (1, 2, 12).
- 2. (8 pts. each) Consider the function $f(x, y) = 2x^3 + y^3 3x^2 12x 3y$.
 - (a) Find all critical points of f(x, y). (Hint: There are four.)
 - (b) Identify each of the critical points you found in part (a) as a local maximum, local minimum, or saddle point.
- 3. (6 pts. each) Consider the iterated double integral $\int_0^1 \int_0^{y^2} 4xy \, dx \, dy$.
 - (a) Evaluate the double integral given above.
 - (b) Write an iterated double integral in the order dy dx equivalent to the above integral. DO NOT EVALUATE.
 - (c) Find the Jacobian of the transformation $x = u^2$, y = v.
 - (d) Use the transformation $x = u^2$, y = v to transform the double integral given at the beginning of this problem into an iterated integral in the variables u and v. DO NOT EVALUATE. (Hint: You may assume that u > 0 and v > 0.)

- 4. (8 pts. each)
 - (a) Calculate $\int_C \nabla f \cdot d\mathbf{r}$ where $f(x, y) = xy + x^2$ and where C is the graph of the function $y = x^3 + x$ from (-2, -10) to (1, 2). (Hint: Stop and think! This is easier than it looks.)
 - (b) Show that the vector field $\mathbf{F}(x, y) = (x^2 + y^2)\mathbf{i} + (2xy + 3y^2)\mathbf{j}$ is conservative by finding a function f(x, y) such that $\mathbf{F}(x, y) = \nabla f(x, y)$.

5. (8 pts. each) Consider the planar vector field given by $\mathbf{F} = xy\mathbf{i} + \frac{1}{3}x^3\mathbf{j}$ and the closed curve *C* consisting of the graph of $y = x^2$ from (0,0) to (1,1) and the graph of y = x from (1,1) to (0,0). Use Green's Theorem to find

(a) the counterclockwise circulation of **F** around C, that is, $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ and

- (b) the outward flux of **F** through *C*, that is, $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$.
- 6. (4 pts. each) Let $\mathbf{F}(x, y) = (xz + y^2)\mathbf{i} + 2xyz\mathbf{j} + z^3\mathbf{k}$.
 - (a) Find div(**F**). (Hint: div(**F**) = $\nabla \cdot \mathbf{F}$)
 - (b) Find curl(\mathbf{F}). (Hint: curl(\mathbf{F}) = $\nabla \times \mathbf{F}$)
 - (c) Find $\operatorname{div}(\operatorname{curl}(\mathbf{F}))$. (Hint: Stop and think! This is easier than it looks.)