MATH 213 - 5 MAY 2004 - FINAL EXAM

Answer each of the following questions. Show all work, as partial credit may be given. This exam will be counted out of a total of 120 points.

1. (10 pts.) Two resistors have resistances R_1 and R_2 respectively. When connected in parallel, the total resistance is given by $R = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1}$. If R_1 is given as 300 ohms with a maximum error of 15 ohms and R_2 is given as 600 ohms with a maximum error of 6 ohms, use differentials to estimate the maximum error in the computed resistance R.

2. Suppose that a projectile is fired from the ground with an initial speed of 300 feet per second at an angle of elevation of 60 degrees.

- (a) (8 pts.) Find the initial velocity, \mathbf{v}_0 of the projectile.
- (b) (6 pts.) Find an expression for $\mathbf{r}(t)$, the position of the particle t seconds after it has been fired. (Hint: $\mathbf{r}(t) = -16 t^2 \mathbf{j} + \mathbf{v}_0 t + \mathbf{r}_0$, where \mathbf{v}_0 is the initial velocity, and \mathbf{r}_0 the initial position of the projectile.)
- (c) (6 pts.) At what time t does the projectile strike the ground? How far away from its initial position does it strike the ground?
- 3. (8 pts. each) Let $f(x, y) = x^2 + 2y^2 + x^2y + 4$.
 - (a) Find all critical points of f. (Hint: There are three.)
 - (b) Determine whether each of the critical points you found in part (a) is local maximum, local minimum, or saddle point.

4. Consider the integral $\iint_D (x^2 + xy) dA$ where D is the region in the x-y plane bounded by the curves $y = x^2$ and y = 4.

- (a) (8 pts.) Write the given integral as an iterated integral in two different ways. Do not evaluate.
- (b) (6 pts.) Evaluate one of the iterated integrals you found in part (a).

5. (12 pts.) Compute the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where \mathbf{F} is the vector field $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j} - z^2 \mathbf{k}$, and C is the line segment from the point (0, 2, 1) to the point (4, 2, 5).

6. (12 pts.) Set up but do not evaluate the line integral $\int_C x y^2 z^3 ds$ where C is the curve given by $\mathbf{r}(t) = 2 \cos(t) \mathbf{i} + 2 \sin(t) \mathbf{j} + t^2 \mathbf{k}, 0 \le t \le 2\pi$.

- 7. (a) (12 pts.) Let $\mathbf{F} = (8xy + y)\mathbf{i} + (4x^2 + x + 2y)\mathbf{j}$. Find f(x, y) so that $\mathbf{F} = \nabla f$.
 - (b) (8 pts.) Let $\mathbf{F} = (x y^3 + z^2) \mathbf{i} + (x^2 + y^2 + z^2) \mathbf{j} + (x y z) \mathbf{k}$. Compute curl(\mathbf{F}). is \mathbf{F} conservative? Why or why not? (Hint: For any f, curl(∇f) = 0.)
 - (c) (8 pts.) Find $\operatorname{div}(\mathbf{F})$ where \mathbf{F} is the vector field given in part (b).

8. (12 pts.) Use Green's theorem to evaluate the line integral $\int_C xy^2 dx + 2x^2y dy$ where C consists of line segments from (-1, 0) to (1, 0), from (1, 0) to (0, 1) and from (0, 1) to (-1, 0).