MATH 108 - 8 DECEMBER 1998 - EXAM 3

Answer each of the following questions. Show all work, as partial credit may be given.

1. It is estimated that the population in a certain community t years from now will be $P(t)=-t^{3}+9 t^{2}+500$ hundred people.
(a) (10 pts.) Find the maximum population over the next 10 years (i.e., for $0 \leq t \leq 10$).
(b) (10 pts.) Find the minimum population over the next 10 years (i.e., for $0 \leq t \leq 10$).
2. (12 pts.) A store will sell 1,000 half-gallon containers of ice cream over the course of a year. Suppose that the cost of storing one half-gallon container of ice cream is 6 dollars per year, and that the ordering cost per shipment is 30 dollars. How large should each shipment be in order to keep total cost at a minimum? (Assume that the ice cream is sold at a constant rate throughout the year and that each shipment arrives just as the previous shipment is used up.)
3. (12 pts.) Tests of a certain artifact reveal that 40% of the original $\mathrm{C}-14$ is still present. Assuming that the amount of $\mathrm{C}-14$ remaining after t years is given by the formula $Q(t)=$ $Q_{0} e^{-.000121 t}$, approximately how old is the artifact?
4. It is estimated that the population of prarie dogs in a field t months from now will be $f(t)=\frac{6}{1+9 e^{-.5 x}}$ hundred prarie dogs.
(a) (8 pts.) What is the population of prarie dogs 6 months from now?
(b) (8 pts .) At what rate is the population increasing 6 months from now?
(c) (8 pts .) When is the population equal to 300 dogs?
5. Evaluate the derivative of the following functions.
(a) (8 pts.) $f(x)=x^{2} e^{x^{2}}$
(b) $(8 \mathrm{pts}.) \ln \left(\frac{x-1}{x+1}\right)$
(c) $(8 \mathrm{pts}.)\left(1+e^{-4 x}\right)^{3}$
6. (12 pts.) How quickly will money double if it is invested at 8% interest compounded semiannually (twice a year)? How quickly will money double if it is invested at 8% interest compounded continuously? (Hint: The formula for the balance after t years if P dollars is invested at an interest rate of r compounded k times per year is $B(t)=\left(1+\frac{r}{k}\right)^{k t}$. If the interest is compounded continuously, the formula is $B(t)=P e^{r t}$.)
