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Abstract. In this paper, we introduce and study polyharmonic functions on trees. We prove that the
discrete version of the classical Riquier problem can be solved on trees. Next, we show that the
discrete version of a characterization of harmonic functions due to Globevnik and Rudin holds for bi-
harmonic functions on trees. Furthermore, on a homogeneous tree we characterize the polyharmonic
functions in terms of integrals with respect to finitely–additive measures (distributions) of certain
functions depending on the Poisson kernel. We define polymartingales on a homogeneous tree and
show that the discrete version of a characterization of polyharmonic functions due to Almansi holds
for polymartingales. We then show that on homogeneous trees there are 1-1 correspondences among
the space of nth-order polyharmonic functions, the space of nth-order polymartingales, and the space
of n-tuples of distributions. Finally, we study the boundary behavior of polyharmonic functions on
homogeneous trees whose associated distributions satisfy various growth conditions.

1. Introduction. Polyharmonic functions on a domain in R
N are solutions

to the differential equation ∆n = 0, for some n ∈ N, where ∆ is the Laplace
operator. These functions have been studied extensively by Almansi in [1] and
[2]. The biharmonic case—n = 2—arises naturally in connection with problems
in the theory of elasticity (cf. [25], [22]) and in radar imaging (cf. [3]). There is a
vast literature on polyharmonic functions. For basic references, see [25] and [4].

In recent years there has been considerable attention given to discretizations of
many classical problems in harmonic analysis and geometry. The groundwork for
the study of functions on trees was laid out by Cartier in [7]. Recent developments
of the study of harmonic analysis, functional analysis and potential theory on
trees include, among many other works, [17], [21], [27], [14], [5], [11], [10],
[12], [13], [9], [15], [19]. Discretizations of harmonic and biharmonic functions
on certain graphs with the purpose of solving differential equations on fractals
such as the Sierpinski gasket are beginning to appear in the literature (cf. for
example, [20], [16]).

In this article, we define and study polyharmonic functions on trees. We use
[7] as a general reference on trees.

A tree is a locally finite connected graph with no loops, which, as a set, is
identified with the collection of its vertices. A graph contained in a tree is called
a subtree. Two vertices v and w of a tree are called neighbors if there is an edge
connecting them, in which case we use the notation v ∼ w. A path is a finite

Manuscript received February 15, 2001.
American Journal of Mathematics 124 (2002), 999–1043.

999

jgh




1000 J. M. COHEN, F. COLONNA, K. GOWRISANKARAN, AND D. SINGMAN

or infinite sequence of vertices [v0, v1, . . .] such that vk ∼ vk+1 and vk−1 �= vk+1

for all k. If u and v are any vertices, we denote by [u, v] the unique path joining
them.

Fixing e as a root of the tree, the predecessor u− of a vertex u, with u �= e,
is the next to the last vertex of the path from e to u. An ancestor of u is any
vertex in the path from e to u−. By convention, we set e− = e. We call children
of a vertex v the vertices u such that u− = v.

A tree T may be endowed with a metric d as follows. If u, v are vertices,
d(u, v) is the number of edges in the unique path from u to v. Given a root e,
the length of a vertex v is defined as |v| = d(e, v).

Given a tree T , let p be a nearest-neighbor transition probability on the
vertices of T , that is, p(v, u) > 0, if v and u are neighbors, p(v, u) = 0, if v and
u are not neighbors. It is convenient to set p(v, v) = −1, so that for each vertex
v, we have

∑
u

p(v, u) = 0.

As is customary, a function on a tree T will mean a function on its set of
vertices. The Laplacian of a function f : T → C is defined as

∆f (v) =
∑
u∈T

p(v, u)f (u) for all nonterminal vertices v ∈ T ,

where by terminal we mean a vertex which has only one neighbor. A function f
on T is said to be harmonic if its Laplacian is identically zero.

The boundary Ω of T is the set of equivalence classes of infinite paths under
the relation � defined by the shift, [v0, v1, . . .] � [v1, v2, . . .], together with the
set of terminal vertices. For any vertex u, we denote by [u,ω) the (unique) path
starting at u in the class ω. Then Ω can be identified with the set of paths starting
at u. Furthermore, Ω is a compact space under the topology generated by the sets

Iu
v = {ω ∈ Ω: v ∈ [u,ω)}.

A distribution is a finitely additive complex measure on finite unions of the
sets Iu

v .
Each ω ∈ Ω induces an orientation on the edges of T: [u, v] is positively ori-

ented if v ∈ [u,ω). For ω ∈ Ω, and u, v ∈ T , define the horocycle index kω(u, v) as
the number of positively oriented edges minus the number of negatively oriented
edges in the path from u to v.

By a homogeneous tree of degree q + 1 (with q ≥ 2) we mean a tree T whose
vertices have q + 1 neighbors and whose associated nearest-neighbor transition
probability is p(v, u) = 1

q+1 if v and u are neighbors.
For a homogeneous tree of degree q + 1, the Poisson kernel (with respect to

the vertex u) is then given by

Pω(u, v) = qkω(u,v),
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since it satisfies the following properties analogous to those that hold in the
classical case [27]:

(i) For fixed u ∈ T and ω ∈ Ω, v �→ Pω(u, v) is a harmonic function on T
(the value at any vertex is the average of the values at its neighbors).

(ii) If µ is a distribution, then the function defined by the Poisson integral
with respect to u

f (v) =
∫

Ω
Pω(u, v) dµ(ω)

is well defined and harmonic on T . Conversely, fixing u ∈ T , every harmonic
function f on T has such an integral representation for some unique distribution µ.

A Poisson kernel can be defined also for nonhomogeneous trees, and (i) and
(ii) hold in general. Some of the results of this paper hold only for homogeneous
trees. Whenever we use the terminology “general tree” in a definition or result,
we emphasize that homogeneity is not required.

Definition 1.1. Let T be a general tree. For n ∈ N, a function f : T → C is
polyharmonic of order n at v ∈ T if ∆nf (v) = 0, where ∆n is the n-fold composition
of ∆. A polyharmonic function of order n on T is a function which is polyharmonic
of order n at every vertex of T . Thus, a polyharmonic function of order one is
harmonic. A polyharmonic function of order 2 is called biharmonic. We shall
also call a polyharmonic function of order n, n-polyharmonic.

We now outline the main results of the paper. In Section 2, we consider
the discrete Riquier problem of determining a polyharmonic function f of order
n on a finite complete connected subtree of a general tree (see Definition 2.1)
with prescribed values f , ∆f , ∆2f , . . . , ∆n−1f on the boundary of the subtree. In
Theorem 2.1 we give the formula for the solution in the biharmonic case in
terms of the transition probabilities. We then provide explicit formulas for the
case when the subtree is a disk or a tube.

In Section 3 (Theorem 3.1), we prove the following result which was inspired
by a classical theorem for harmonic functions due to Globevnik and Rudin (cf.
[18]): Given a function f defined on a general tree T and a fixed vertex e, f is
biharmonic on T if it has the property that for every tube (see Definition 2.2)
whose interior contains e, the solution to the Riquier problem with boundary
values f and ∆f agrees with f at e. The methods used in proving this theorem
yield a very simple proof, which we include, of the analogous characterization
of harmonic functions on trees proved originally in [5].

In Sections 4, 5 and 6, we restrict our attention to homogeneous trees with a
fixed root e.

In Section 4 (Theorem 4.1), we give an integral representation formula in the
spirit of a formula due to Almansi in the classical case, for all polyharmonic func-
tions. Specifically, to every n-polyharmonic function f there correspond unique



1002 J. M. COHEN, F. COLONNA, K. GOWRISANKARAN, AND D. SINGMAN

distributions ν0, . . . , νn−1 such that f =
n−1∑
j=0

kjPνj, where

kjPνj(v) =
∫

Ω
kω(e, v)jPω(e, v) dνj(ω).

In Section 5, we define polymartingales on a homogeneous tree and in Theo-
rem 5.1 we prove the discrete version of Almansi’s Theorem for polymartingales,
which is the precise counterpart of the classical Almansi formula for polyhar-
monic functions. This suggests that in many cases it is more natural to study poly-
martingales than polyharmonic functions on homogeneous trees. We then show
that there are one-to-one correspondences among the space of n-polyharmonic
functions, the space of n-polymartingales, and the space of n-tuples of distri-
butions, thus extending similar correspondences among the spaces of harmonic
functions, martingales, and distributions given in [27].

In Section 6, we study the boundary behavior of polyharmonic functions.
Specifically, in Theorem 6.1 we show that given a positive measure ν on the
Borel sets of Ω, the function v �→ knPν(v)/|v|n has a nontangential limit at µe-
a.e. boundary point of Ω, where µe denotes the natural probability measure on
Ω with respect to e. We also show that in the special case where ν is absolutely
continuous with respect to µe and the associated density function is continuous,
the above limit is unrestricted.

Given 0 < β ≤ 1 and τ ≥ 1, we recall the definitions of β-dimensional
Hausdorff measure on Ω and of τ -tangential approach regions introduced in
[19]. We then consider n-polyharmonic functions whose representing distributions
satisfy certain growth conditions depending on β and τ . In Theorem 6.2, we show
that for appropriate values of β and τ , the function v �→ f (v)/|v|n−1 has a limit at
every boundary point with the exception of a subset of β-dimensional Hausdorff
measure zero, if approach is restricted to the τ -tangential region. In Theorem 6.3,
we show that the exceptional sets and approach regions in Theorem 6.2 are the
best possible.

Sections 4, 5, and 6 can be read independently of the other sections.

Acknowledgment. The authors wish to thank Ibtesam Bajunaid for bringing
the topic of biharmonic functions to their attention.

2. The Riquier problem on trees. The classical Riquier problem consists
of determining a polyharmonic function f of order n on a domain D ⊂ R

d, with
prescribed values on ∂D of the functions f , ∆f , ∆2f , . . . , ∆n−1f . For the case n = 2
the problem was considered by Mathieu [23], and in general by Riquier [26].

In this section we solve the discrete counterpart of the classical Riquier prob-
lem for biharmonic functions on general trees. It is straightforward to generalize
statements and results to polyharmonic functions of higher order.
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Definition 2.1. Given a finite subtree S of T , we define the interior of S as

the set
◦
S consisting of all vertices v ∈ S such that every vertex of T which is a

neighbor of v belongs to S. The boundary of S in T is defined as the set ∂S of
all vertices v ∈ S such that exactly one neighbor of v is in S. We say that S is a

complete subtree of T if S =
◦
S∪∂S.

Given S a complete subtree of T , if f is a function defined on
◦
S and g is a

function defined on ∂S, then ∆( f ∪ g) is well defined on
◦
S, where

( f ∪ g)(v) =


f (v) if v ∈

◦
S

g(v) if v ∈ ∂S.

We say that f is harmonic on S with boundary values g, and use the notation

f | ∂S = g, if ∆( f ∪ g) = 0 on
◦
S.

Similarly, if f is defined on
◦
S and g1 and g2 are functions defined on ∂S, then

∆[∆( f ∪g1)∪g2] is well defined on
◦
S. If this is identically zero on

◦
S, we say that

f is biharmonic on S with boundary values g1 and g2 and we use the notations
f | ∂S = g1 and ∆f | ∂S = g2.

DISCRETE RIQUIER PROBLEM. Let T be a tree, and let S be a finite complete
connected subtree of T. Given two functions g1 and g2 on ∂S, find a function f on

S biharmonic on
◦
S such that f | ∂S = g1 and ∆f | ∂S = g2.

For S a finite complete connected subtree of T , it is possible to solve the
discrete Dirichlet problem (cf. [5]): given a function g on ∂S, there exists a
function f harmonic on S such that f | ∂S = g. Although we will not use it

directly, it is worth mentioning how the construction works: for v ∈
◦
S and

u ∈ ∂S, let PS(v, u) be the probability that a path starting at v reaches u before
reaching any other point of ∂S. The function PS is called the Poisson kernel with
respect to S. Then the solution to the Dirichlet problem is given by

f (v) =
∑

u∈∂S

PS(v, u)g(u).

The solution is necessarily unique. Indeed, since the value at each point is the
average of the values at its neighbors, the maximum and minimum cannot be
reached at an interior point unless the function is constant. Thus the only solution
to the Dirichlet problem with boundary values zero is necessarily the trivial
function.

The uniqueness of the solution to the Dirichlet problem easily implies the
uniqueness of the solution to the Riquier problem.
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Let S be a finite complete connected subtree of a tree T not necessarily
homogeneous. Let m be the cardinality of S and let s be the number of its interior
vertices. Label the interior vertices of S vj, 1 ≤ j ≤ s, and the vertices of ∂S vk,
s + 1 ≤ k ≤ m. Let P be the s × s matrix with entries p(vi, vj) for 1 ≤ i, j ≤ s,
and let Q be the s × (m − s) matrix with entries p(vi, vk) for 1 ≤ i ≤ s and
s + 1 ≤ j ≤ m. Given a function f on the interior of S and a function g on the
boundary of S, let f and g be the column vectors with entries f (vj), 1 ≤ j ≤ m,
and g(vk), s + 1 ≤ k ≤ m, respectively. Then h = f ∪ g is defined on S, and its
Laplacian is defined on the interior of S and is given by

∆h = Pf + Qg.

In particular, we see that the solution to the Dirichlet problem for g is given
by a function f such that 0 = Pf + Qg. By the uniqueness of the solution, P must
be invertible, and so the solution to the Dirichlet problem is given by

f = −P−1Qg.

THEOREM 2.1. The solution to the Riquier problem with boundary values g1

and g2 exists and is given by

f = −P−1Qg1 − (P−1)2Qg2.

Proof. Let h be the solution to the Dirichlet problem with boundary values g2,
that is, h = −P−1Qg2, and let

f = −P−2Qg2 − P−1Qg1.

Then

∆( f ∪ g1) = Pf + Qg1 = −P−1Qg2 − Qg1 + Qg1 = h

and so ∆f is the required harmonic function with boundary values g2.

We next derive the explicit formulas for the matrices P and Q in the homo-
geneous case when S is either a disk or a tube.

Example 2.1. Let T be a homogeneous tree of degree q + 1. For n ∈ N and
v ∈ T , let Bn(v) = {u ∈ T: d(u, v) ≤ n}, the disk centered at v of radius n. Let t
and s be the number of boundary vertices and the number of interior vertices in
Bn(v), respectively. Thus

t = tn = (q + 1)qn−1, s = sn =
qn + qn−1 − 2

q − 1
.
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Order the vertices in Bn(v) according to increasing length and by labeling the
descendants of each vertex sequentially and consistently throughout the process.
Then the s × s matrix P is symmetric, all the diagonal entries are −1, the top
sn−1 rows contain q + 1 terms 1

q+1 , while the remaining rows contain a single

entry 1
q+1 and all other entries (except for the diagonal entry) are zero. The

s × t matrix Q consists of sn−1 rows of zeros followed by tn−1 rows in echelon
form each of which consists of a block of q entries 1

q+1 and all other entries
zero.

Specifically, for the case q = 2 and n = 2 the matrices P and Q are given by

P =




−1 1
3

1
3

1
3

1
3 −1 0 0
1
3 0 −1 0
1
3 0 0 −1




and

Q =




0 0 0 0 0 0
1
3

1
3 0 0 0 0

0 0 1
3

1
3 0 0

0 0 0 0 1
3

1
3


 .

Hence, the matrices that yield the explicit solution of the Riquier problem are

−P−1Q =
1
18




3 3 3 3 3 3

7 7 1 1 1 1

1 1 7 7 1 1

1 1 1 1 7 7




and

(P−1)2Q =
1

18




9 9 9 9 9 9

10 10 4 4 4 4

4 4 10 10 4 4

4 4 4 4 10 10


 .

Definition 2.2. A tube is a complete finite subtree whose interior is a path.



1006 J. M. COHEN, F. COLONNA, K. GOWRISANKARAN, AND D. SINGMAN

Example 2.2. Let T be a homogeneous tree of degree q + 1, and let S be a
tube in T whose interior is the path [v1, . . . , vk]. Then P is the symmetric k × k
matrix

P =




−1 1
q+1 0 0 · · · 0

1
q+1 −1 1

q+1 0 · · · 0

0 1
q+1 −1 1

q+1 · · · 0

...
...

...
. . .

...
...

0 · · · 0 1
q+1 −1 1

q+1

0 · · · 0 0 1
q+1 −1




while Q is the k × (kq − k + 2) matrix in echelon form whose first and last row
consist of a block of q entries 1

q+1 and all other entries zero and the intermediate

rows consist of a block of q − 1 entries 1
q+1 and all other entries zero.

This matrix P is a type of symmetric matrix that arises in the context of
solving a second order difference equation with a given boundary condition.
The inverse of P can be found by means of the discrete sine transform (cf. [6],
Section 7.1): P−1 = [un,m], where

un,m =
2

k + 1

k∑
j=1

sin
(
πnj
k+1

)
sin
(
πmj
k+1

)
2

q+1 cos
(

πj
k+1

)
− 1

.

3. Globevnik-Rudin characterization of biharmonic functions. Let T be
a general tree, and let S = T [v1, . . . , vk] be a tube in T (see Definition 2.2) whose
interior is the path [v1, . . . , vk]. Let f be a function defined on T , and let fS be
the solution to the Dirichlet problem on S with boundary values f on ∂S, that is,

∆fS = 0 in
◦
S and fS | ∂S = f | ∂S. Similarly, let us define f S as the solution to the

Riquier problem on S with boundary functions f and ∆f on ∂S.
In [5], the authors prove the following discrete version of Globevnik–Rudin

characterization of harmonic functions (Theorem 2 of [18]).

THEOREM 4.6 (of [5]). Fix a vertex e ∈ T and let f be a function on T. If for all
tubes S whose interior contains e we have fS(e) = f (e), then f is harmonic on T.

We shall obtain a similar characterization of biharmonic functions. We shall
also present a much simpler proof of Theorem 4.6 of [5] which was derived in
our search for a proof of our theorem for the biharmonic case.

THEOREM 3.1. Let e be a fixed vertex of a general tree T and let f be a function
on T. If for all tubes S whose interior contains e we have f S(e) = f (e), then f is
biharmonic on T.
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First we describe the method and the notation that we shall use to prove our
result.

Let T be a tree and let e be a fixed vertex of T . Let [e1, e2, . . .) be an
infinite path with e1 = e. For k a positive integer, let Tk be the tube T [e1, . . . , ek]
and let {ui} be the collection of all neighbors of the vertices ej other than the
ej themselves, so that ∂Tk is the union of a subset of {ui} with {ek+1}. Let
p be a nearest-neighbor transition probability on T and set p( j, l) = p(ej, ul),
pj = p(ej, ej−1), and qj = p(ej−1, ej), and p1 = q1 = 0.

Let f be a function on T . Then

∆f (ej) =
∑

l

p( j, l)f (ul) + pjf (ej−1) + qj+1f (ej+1) − f (ej).(1)

Let fk = fTk , the solution to the Dirichlet problem on Tk with boundary values
f | ∂Tk. Denote by Dk

j f the difference fk(ej) − f (ej) and denote by Dk
j ∆f the

difference ∆fk(ej) − ∆f (ej).
Using (1) and the fact that f and fk agree on {uj} ∪ {ek+1}, we obtain

Dk
j ∆f = pjD

k
j−1f + qj+1Dk

j+1f − Dk
j f , j = 1, . . . , k,(2)

and Dk
0f = Dk

k+1f = 0 (where we regard e0 to be one of the vertices uj). In addition,
we define Dk

−1f = Dk
k+2f = 0.

We now give a new proof of the discrete Globevnik-Rudin characterization
of harmonic functions.

Proof of Theorem 4.6 of [5]. Using the above notation, let Tk be any tube
starting at e = e1. The hypothesis fS(e) = f (e) means that Dk

1f = 0 for all k ∈ N,
where Dk

j f = fk(ej) − f (ej), and Dk
j ∆f = ∆fk(ej) − ∆f (ej). Since fk is harmonic, for

all j ≤ k, Dk
j ∆f = −∆f (ej). We shall prove that ∆f (ej) = 0 for all j ∈ N, and thus

f is harmonic on T . From (2) we get

(h1) Dk
1∆f = q2Dk

2f

(h2) Dk
2∆f = q3Dk

3f − Dk
2f

(h3) Dk
3∆f = p3Dk

2f + q4Dk
4f − Dk

3f

(h4) Dk
4∆f = p4Dk

3f + q5Dk
5f − Dk

4f

...
...

(hk−1) Dk
k−1∆f = pk−1Dk

k−2f + qkDk
kf − Dk

k−1f

(hk) Dk
k∆f = pkDk

k−1f − Dk
kf .

For k = 1, (h1) yields D1
1∆f = 0, since D1

2f = 0. Thus ∆f (e1) = 0, and so
Dk

1∆f = 0 for all k ∈ N. For k = 2, (h1) becomes 0 = q2D2
2f and (h2) becomes
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D2
2∆f = −D2

2f . Thus D2
2∆f = 0, whence ∆f (e2) = 0. So Dk

2∆f = 0 for all k ∈ N.
Assume inductively that ∆f (ej) = 0 for all j < k, so that Dk

j ∆f = 0 for j < k.
Then the left-hand sides of equations (h1) through (hk−1) vanish. Solving these
equations starting from the first, we obtain Dk

j f = 0 for all j = 1, . . . , k. Plugging
this into (hk) yields Dk

k∆f = pkDk
k−1f − Dk

kf = 0, whence ∆f (ek) = 0, proving the
result.

Let us now set up the above procedure for the biharmonic case.

Proof of Theorem 3.1. Let f k = f Tk , the solution to the Riquier problem
on Tk with boundary values f | ∂Tk and ∆f | ∂Tk. We redefine Dk

j f to be the
difference f k(ej) − f (ej), Dk

j ∆f to be the difference ∆f k(ej) − ∆f (ej), and Dk
j ∆2f

to be the difference ∆2f k(ej) − ∆2f (ej). Since f k is biharmonic, for all j ≤ k,
Dk

j ∆2f = −∆2f (ej).
By the definition of f k, f and f k, and similarly, ∆f and ∆f k, agree on {uj} ∪

{ek+1}. Thus, we obtain Dk
0f = Dk

k+1f = Dk
0∆f = Dk

k+1∆f = 0 (where we regard e0

to be one of the vertices uj). In addition, we define Dk
−1f = Dk

k+2f = 0.
By a repeated application of (2) we obtain

Dk
j ∆2f = pjD

k
j−1∆f + qj+1Dk

j+1∆f − Dk
j ∆f

= pj(pj−1Dk
j−2f + qjD

k
j f − Dk

j−1f )

+ qj+1(pj+1Dk
j f + qj+2Dk

j+2f − Dk
j+1f )

− (pjD
k
j−1f + qj+1Dk

j+1f − Dk
j f )

= pj−1pjD
k
j−2f − 2pjD

k
j−1f + (pjqj + pj+1qj+1 + 1)Dk

j f

− 2qj+1Dk
j+1f + qj+1qj+2Dk

j+2f , for 1 ≤ j ≤ k − 1.

Since Dk
k+1∆f = Dk

k+1f = 0, for j = k we obtain

Dk
k∆2f = pkDk

k−1∆f + qk+1Dk
k+1∆f − Dk

k∆f

= pk(pk−1Dk
k−2f + qkDk

kf − Dk
k−1f )

− (pkDk
k−1f + qk+1Dk

k+1f − Dk
kf )

= pk−1pkDk
k−2f − 2pkDk

k−1f + (pkqk + 1)Dk
kf .

The hypothesis of Theorem 3.1 is that Dk
1f = 0 for all k ∈ N. Thus we have

(b1) Dk
1∆2f = −2q2Dk

2f + q2q3Dk
3f

(b2) Dk
2∆2f = (p2q2 + p3q3 + 1)Dk

2f − 2q3Dk
3f + q3q4Dk

4f

(b3) Dk
3∆2f = −2p3Dk

2f + (p3q3 + p4q4 + 1)Dk
3f − 2q4Dk

4f + q4q5Dk
5f
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(b4) Dk
4∆2f = p3p4Dk

2f − 2p4Dk
3f + (p4q4 + p5q5 + 1)Dk

4f − 2q5Dk
5f

+ q5q6Dk
6f

...
...

(bk−1) Dk
k−1∆2f = pk−2pk−1Dk

k−3f − 2pk−1Dk
k−2f

+ (pk−1qk−1 + pkqk + 1)Dk
k−1f − 2qkDk

kf

(bk) Dk
k∆2f = pk−1pkDk

k−2f − 2pkDk
k−1f + (pkqk + 1)Dk

kf .

For k = 1, (b1) yields D1
1∆2f = 0, so that ∆2f (e1) = 0, and so Dk

1∆2f = 0 for
all k ∈ N. For k = 2, (b1) becomes 0 = −2q2D2

2f and (b2) becomes D2
2∆2f =

(p2q2 + 1)D2
2f . Thus D2

2∆2f = 0, whence ∆2f (e2) = 0 and so Dk
2∆2f = 0 for all

k ∈ N. For k = 3, equations (b1), (b2), (b3) yield

0 = −2q2D3
2f + q2q3D3

3f

0 = (p2q2 + p3q3 + 1)D3
2f − 2q3D3

3f

D3
3∆2f = −2p3D3

2f + (p3q3 + 1)D3
3f .

But the determinant of the coefficients of D3
2f and D3

3f in the top two equations
is q2q3(3 − p2q2 − p3q3) > 0. So D3

2f = D3
3f = 0, and thus D3

3∆2f = 0.
Thus the general problem is to show that the determinant of the coefficients

of Dk
2f , Dk

3f , . . . , Dk
kf in (b1), . . . , (bk−1) is nonzero, whence by substituting into

equation (bk), we get Dk
k∆2f = 0. Thus ∆2f (ek) = 0, and hence Dl

k∆2f = 0 for all
l ∈ N, showing by induction that f is biharmonic on T .

For all k ∈ N, k ≥ 2, consider the linear system consisting of the equations
(b1), . . . , (bk−1) in the variables Dk

2f , Dk
3f , . . . , Dk

kf , and let Ak−1 be the determi-
nant of its (k − 1) × (k − 1) coefficient matrix. The proof will be complete if we
show that Ak �= 0 for all k ≥ 1.

We claim that {Ak}∞k=1 is a sequence of polynomials in the variables p2, q2, p3,
q3, . . . , pk+1, qk+1 satisfying the recurrence relation

Ak+1 = −2qk+2Ak − qk+1qk+2(pk+1qk+1 + pk+2qk+2 + 1)Ak−1(3)

− 2qkpk+1q2
k+1qk+2Ak−2 − qk−1pkq2

kpk+1q2
k+1qk+2Ak−3,

for k ≥ 4, with the initial conditions

A1 = −2q2,

A2 = q2q3(3 − p2q2 − p3q3),

A3 = q2q3q4[ − 4 + 2(p2q2 + p3q3 + p4q4)], and

A4 = q2q3q4q5[5 − 3(p2q2 + p3q3 + p4q4 + p5q5)

+ p2q2p4q4 + p2q2p5q5 + p3q3p5q5].
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Since the proof is analogous, for simplicity we verify the recurrence relation only
in the homogeneous case, when all values of pj, qj are equal to p = 1

q+1 .

LEMMA 3.1. The sequence {Ak(p)} of polynomials in p satisfies the recurrence
relation

Ak+1(p) = −2pAk(p) − (2p4 + p2)Ak−1(p) − 2p5Ak−2(p) − p8Ak−3(p),

for all k ≥ 4, with the initial conditions A1(p) = −2p, A2(p) = 3p2 − 2p4, A3(p) =
−4p3 + 6p5, and A4(p) = 5p4 − 12p6 + 3p8.

Proof. First observe that Ak is the determinant of the k × k matrix for which
the main diagonal, the diagonal above it, and the three diagonals below it consist
of identical entries, −2p, p2, 2p2 + 1, −2p, and p2, respectively, and all other
entries are 0:




−2p p2 0 · · · 0

2p2 + 1 −2p p2 0 · · · 0

−2p 2p2 + 1 −2p p2 0 · · · 0

p2 −2p 2p2 + 1 −2p p2 0 · · · 0

0 p2 −2p 2p2 + 1 −2p p2 0 · · · 0

...
. . .

...

0 · · · 0 p2 −2p 2p2 + 1 −2p p2 0

0 · · · 0 p2 −2p 2p2 + 1 −2p p2

0 · · · 0 p2 −2p 2p2 + 1 −2p




.

This type of matrix is known as a Toeplitz matrix. It is straightforward to compute
the values of Ak for k = 1, 2, 3, 4. Expanding the determinant across the last
column, we get Ak+1 = −2pAk − p2Fk, where

Fk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2p p2 0 · · · 0

2p2 + 1 −2p p2 0 · · · 0

−2p 2p2 + 1 −2p p2 0 · · · 0

p2 −2p 2p2 + 1 −2p p2 0 · · · 0

...
. . .

...

0 · · · 0 p2 −2p 2p2 + 1 −2p p2

0 · · · 0 p2 −2p 2p2 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Expanding this determinant across the last column we obtain Fk = (2p2 + 1)
Ak−1 − p2Gk−1, where

Gk−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2p p2 0 · · · 0

2p2 + 1 −2p p2 0 · · · 0

−2p 2p2 + 1 −2p p2 0 · · · 0

p2 −2p 2p2 + 1 −2p p2 0 · · · 0

...
. . .

...

0 · · · 0 p2 −2p 2p2 + 1 −2p p2

0 · · · 0 0 p2 −2p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Repeating the expansion across the last column two more times we see that
Gk−1 = −2pAk−2 − p4Ak−3, which, together with the above relations, yields the
result.

Observe that the recurrence relation (3) can be expressed entirely in terms of
the products pjqj by defining

Bk = ( − 1)k Ak
k+1∏
j=2

qj

,

yielding

Bk+1 = 2Bk − (pk+1qk+1 + pk+2qk+2 + 1)Bk−1(4)

+ 2pk+1qk+1Bk−2 − pkqkpk+1qk+1Bk−3,

for k ≥ 4, with the initial conditions

B1 = 2, B2 = 3 − p2q2 − p3q3, B3 = 4 − 2(p2q2 + p3q3 + p4q4),(5)

B4 = 5 − 3(p2q2 + p3q3 + p4q4 + p5q5) + p2q2p4q4 + p2q2p5q5 + p3q3p5q5.

Note that since for all j, 0 < pj, qj < 1, we have pjqj +pj+1qj+1 < pj +qj+1 ≤ 1.
So, for example, one sees immediately that B2 and B3 are always positive.

In Theorem 3.2 we shall prove that Bk > 0 for all k ∈ N, and thus each
Ak �= 0. This completes the proof of Theorem 3.1.

We have postponed Theorem 3.2 because it is long and requires the use of
two lemmas.
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For all j ∈ N, let pj, qj ∈ [0, 1] be such that pj +qj+1 ≤ 1, and set sj = pjqj. Let
s = (s1, s2, . . .). Define a sequence {Bn(s)}∞n=−∞ of polynomials in the variables
s1, s2, . . . as follows:

Bn(s) =

{
0 if n < 0

1 if n = 0,

and for n > 0

Bn(s) = 2Bn−1(s) − (sn−1 + sn + 1)Bn−2(s)(6)

+ 2sn−1Bn−3(s) − sn−2sn−1Bn−4(s).

Thus B1(s) = 2, B2(s) = 3 − (s1 + s2), B3(s) = 4 − 2(s1 + s2 + s3), and B4(s) =
5 − 3(s1 + s2 + s3 + s4) + s1s3 + s1s4 + s2s4. Notice that Bn(s) depends only on
s1, . . . , sn.

Definition 3.1. We shall call s an interior point if all values of pj and qj are
in the interval (0, 1), a boundary point, otherwise.

Warning. Notice that our definition of interior point does not require pj+qj+1 <
1. Also, for algebraic convenience the indices have been reindexed from the way
they were used in Theorem 3.1, as can be seen by comparing B1(s), . . . , B4(s)
just defined to B1, . . . , B4 in (5).

THEOREM 3.2. For all s = (s1, s2, . . .) and for all integers n, Bn(s) ≥ 0, and
Bn(s) > 0 if s is an interior point and n is nonnegative.

For the proof we need the following notation and two lemmas.

Notation 3.1. For n ≥ 3 and s = (s1, . . . , sn), let

s(k) = (s1, . . . , sk−2, 0, sk+2, . . . , sn),

if n ≥ 5 and k ∈ {3, . . . , n − 2},

s(1) = (s3, . . . , sn),

s(2) =

{
0 if n = 3

(0, s4, . . . , sn) if n ≥ 4,

s(n−1) =

{
0 if n = 3

(s1, . . . , sn−3, 0) if n ≥ 4,

s(n) = (s1, . . . , sn−2).

For n ≤ 2, let s(k) = 0 for any integer k.



POLYHARMONIC FUNCTIONS ON TREES 1013

LEMMA 3.2. For all k ∈ {1, . . . , n}, ∂Bn(s)
∂sk

= −Bn−2(s(k)).

Proof. It is easy to check that the result holds for n = 1, 2, 3. Assume n ≥ 4
and that

∂Bj(s)
∂sk

= −Bj−2(s(k)) for all j ∈ {1, . . . , n − 1} and k ∈ {1, . . . , j}.

Then, using (6), we obtain ∂Bn(s)
∂sn

= −Bn−2(s) = −Bn−2(s(n)), because none of the
other terms in the right-hand side of the recurrence relation depends on sn. Next,
note that using (6) and the induction hypothesis, we have

∂Bn(s)
∂sn−1

= 2
∂Bn−1(s)
∂sn−1

− Bn−2(s) + 2Bn−3(s) − sn−2Bn−4(s)

= −Bn−2(s) − sn−2Bn−4(s).

On the other hand, by our inductive hypothesis, we have

∂

∂sn−2
(Bn−2(s) + sn−2Bn−4(s)) = −Bn−4(s) + Bn−4(s) = 0.

Thus Bn−2(s) + sn−2Bn−4(s) is independent of sn−2 and so, after replacing sn−2

by 0, we get

Bn−2(s) + sn−2Bn−4(s) = Bn−2(s(n−1)).

Hence ∂Bn(s)
∂sn−1

= −Bn−2(s(n−1)).
Next, again using (6), we obtain

∂Bn(s)
∂sn−2

= 2
∂Bn−1(s)
∂sn−2

− (sn−1 + sn + 1)
∂Bn−2(s)
∂sn−2

− sn−1Bn−4(s)

= −2Bn−3(s(n−2)) + (sn−1 + sn + 1)Bn−4(s(n−2)) − sn−1Bn−4(s)

= −2Bn−3(s(n−2)) + (sn + 1)Bn−4(s),

since Bn−4(s(n−2)) = Bn−4(s). On the other hand, using (6), we have

Bn−2(s(n−2)) = Bn−2(s1, . . . , sn−4, 0, sn)

= 2Bn−3(s1, . . . , sn−4, 0) − (sn + 1)Bn−4(s1, . . . , sn−4)

= 2Bn−3(s(n−2)) − (sn + 1)Bn−4(s),

proving that ∂Bn(s)
∂sn−2

= −Bn−2(s(n−2)).



1014 J. M. COHEN, F. COLONNA, K. GOWRISANKARAN, AND D. SINGMAN

For k < n − 2, using (6) and the inductive hypothesis, we have

∂Bn(s)
∂sk

= −2Bn−3(s(k)) + (sn−1 + sn + 1)Bn−4(s(k))(7)

− 2sn−1Bn−5(s(k)) + sn−2sn−1Bn−6(s(k)).

Also,

Bn−2(s(k)) = Bn−2(s1, . . . , sk−2, 0, sk+2, . . . , sn)

= 2Bn−3(s(k)) − (sn−1 + sn + 1)Bn−4(s(k))

+ 2sn−1Bn−5(s(k)) − sn−2sn−1Bn−6(s(k)),

which, together with (7), yields ∂Bn(s)
∂sk

= −Bn−2(s(k)). This completes the proof.

Definition 3.2. We will call s = (s1, . . . , sn) a vertex if each sj is 0 or 1.

Observe that sj = 1 implies pj = 1, so that qj+1 = 0, whence sj+1 = 0.

Notation 3.2. For a vertex s = (s1, . . . , sn), set |s| =
n∑

j=0
sj ∈ {0, 1, . . . , n}.

LEMMA 3.3. If s = (s1, . . . , sn) is a vertex, then

Bn(s) =




n + 1 if |s| = 0

2 if |s| = 1

0 if |s| ≥ 2.

Proof. By inspection, we see that the result is true for n = 1, 2, 3, 4. So assume
the formula for Bk(s) holds for all k < n, where n ≥ 5. We now compute Bn(s)
for a vertex s.

Case 1. |s| = 0. Then

Bn(s) = 2Bn−1(s) − Bn−2(s) = 2n − (n − 1) = n + 1.

Case 2. |s| = 1. If sn = 1, then sj = 0 for all j < n. Thus

Bn(s) = 2Bn−1(s) − 2Bn−2(s) = 2n − 2(n − 1) = 2.

If sn−1 = 1, then sj = 0 for j �= n − 1. So

Bn(s) = 2Bn−1(s) − 2Bn−2(s) + 2Bn−3(s) = 4 − 2(n − 1) + 2(n − 2) = 2.
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If sj = 1 for some j < n − 1, then

Bn(s) = 2Bn−1(s) − Bn−2(s) = 4 − 2 = 2.

Case 3. |s| = 2. If sn = 1, then sn−1 must be 0, by definition of vertex. So

Bn(s) = 2Bn−1(s) − 2Bn−2(s) = 4 − 4 = 0.

If sn−1 = 1 and sn = sn−2 = 0, then

Bn(s) = 2Bn−1(s) − 2Bn−2(s) + 2Bn−3(s) = 0 − 4 + 4 = 0.

If sn = sn−1 = 0, then by induction Bn−1(s) = Bn−2(s) = 0, and thus Bn(s) = 0.

Case 4. |s| > 2. Then
n−2∑
j=1

sj ≥ 2, so that Bn−1(s) = Bn−2(s) = 0. Hence

Bn(s) = 2sn−1Bn−3(s) − sn−2sn−1Bn−4(s).(8)

If sn−1 = 0, then (8) implies that Bn(s) = 0. If sn−1 = 1, then by definition of

vertex, sn = sn−2 = 0 and so
n−3∑
j=1

sj ≥ 2. Thus Bn−3(s) = 0, by induction. Again,

(8) implies that Bn(s) = 0, completing the proof.

Proof of Theorem 3.2. From the initial conditions defining Bn, it is clear that
for n = 0, 1, Bn(s) > 0. Arguing by induction on n, let us assume Bk(s) ≥ 0 for
all k < n, where n ≥ 2. Then by Lemma 3.2, ∂Bn(s)

∂sj
≤ 0, for all j ≤ n. Thus,

the minimum value of Bn(s) will occur when sj = pjqj is as large as possible.
Since qj ≤ 1 − pj−1, we can assume that qj = 1 − pj−1. So from now on we take
sj = pj(1 − pj−1). Since the only si that involve pj are sj and sj+1, we get

∂Bn(s)
∂pj

=
∂Bn(s)
∂sj

∂sj

∂pj
+
∂Bn(s)
∂sj+1

∂sj+1

∂pj

= −Bn−2(s( j))(1 − pj−1) + Bn−2(s( j+1))pj+1

by Lemma 3.2. Since s( j) and s( j+1) do not depend on sj, it follows that ∂Bn(s)
∂pj

is

constant with respect to pj. Thus, Bn(s) reaches its minimum at pj = 0 or pj = 1.
By our assumption that sj = pj(1− pj−1), we deduce that the corresponding point
s = (s1, . . . , sn) is a vertex. Hence, Bn(s) reaches its minimum at vertices s. By
Lemma 3.3, we obtain Bn(s) ≥ 0.

We now need to prove that if s is an interior point, then Bn(s) > 0. Assume
by induction that Bk(s) > 0 for k < n, where n ≥ 2. Since by Lemma 3.2
and the inductive hypothesis ∂Bn(s)

∂sn
= −Bn−2(s(n)) = −Bn−2(s1, . . . , sn−2) < 0,



1016 J. M. COHEN, F. COLONNA, K. GOWRISANKARAN, AND D. SINGMAN

the function Bn is strictly decreasing in the last variable. If Bn(s) were 0, then
Bn(s1, . . . , sn−1, tn) < 0, for any tn > sn, and in particular, for some other interior
point, yielding a contradiction. Thus, Bn(s) > 0, completing the proof.

Remark 3.1. The analogue of Theorem 3.1 for triharmonic functions also
holds. We were able to follow the analogous procedure developed in this section
to arrive at the following sixth order linear homogeneous recurrence relation

Bk+1 = 3Bk − (pkqk + pk+1qk+1 + pk+2qk+2 + 3)Bk−1

+ (3pkqk + 3pk+1qk+1 + 1)Bk−2

− pkqk(pk−1qk−1 + pkqk + pk+1qk+1 + 3)Bk−3

+ 3pk−1qk−1pkqkBk−4 − pk−2qk−2pk−1qk−1pkqkBk−5,

where

Bk = ( − 1)k Ak∏k
j=1 qjqj+1

,

having denoted by Ak the determinant of the matrix consisting of the coefficients
of Dl

jf (1 ≤ j, l ≤ k). It turns out that Lemma 3.2 also holds for this sequence
{Bn}, and hence we can use an inductive argument to show that Bn > 0 for all
positive integers n. We omit the proofs of these results, since the methods are
analogous to those developed for the biharmonic case, but the complexity of com-
putations is much greater. We suspect that the Globevnik-Rudin characterization
of n-polyharmonic functions holds for any order n.

4. Characterization of polyharmonic functions on a homogeneous tree.
The problem of characterizing polyharmonic functions on a domain in R

d was
studied by Almansi in [2]. He proved the following result.

THEOREM. (Almansi) If f is polyharmonic of order n in a domain D ⊂ R
d

which is starlike with respect to 0, then there exist unique harmonic functions
h0, . . . , hn−1 on D, such that

f (x) =
n−1∑
k=0

‖x‖2khk(x) for all x ∈ D.

For a proof see [2] or [4], p. 4.
In this section we give an integral representation of polyharmonic functions

in the spirit of Almansi’s Theorem in the case of a homogeneous tree.

Notation 4.1. Fix a vertex e as the root of a tree T and use the notations kω(v)
and Pω(v) for kω(e, v) and Pω(e, v), respectively. Let < be the partial ordering
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on T ∪ Ω given by v < u if v ∈ [e, u−] or v < ω if ω ∈ Iv , where

Iv = Ie
v = {ω ∈ Ω: v ∈ [e,ω)}.

Then for v ∈ T and λ ∈ T∪Ω, let v∧λ be inf{v,λ}, the vertex u of largest length
such that u ≤ v and u ≤ λ. Observe that for all ω ∈ Ω, kω(v) = 2|v ∧ ω| − |v|.

Definition 4.1. Let T be a homogeneous tree of degree q + 1. Let µn (n
nonnegative integer) be the operator that averages the values of the function at
the vertices at distance n. Thus, if f is a function on T , then

µnf (v) =
1
cn

∑
d(w,v)=n

f (w) where cn =

{
1 if n = 0

(q + 1)qn−1 if n ≥ 1.

So, for example, ∆ = µ1 − 1T , where 1T is the identity operator.

LEMMA 4.1. For a fixed ω ∈ Ω, we have
(a) ∆kω is the constant 1−q

q+1 ;

(b) For all m ∈ N there exist constants a(m)
0 , . . . , a(m)

m−1 such that

∆(km
ωPω) =

m−1∑
j=0

a(m)
j kj

ωPω.

Consequently, kω and km
ωPω are polyharmonic functions. In fact, ∆m+1km

ωPω = 0.

Proof. Let v ∈ T and set kω(v) = n ∈ Z. Then

∆kω(v) = µ1kω(v) − kω(v) =
q(n − 1) + n + 1

q + 1
− n =

1 − q
q + 1

,

proving (a). Moreover

∆(km
ωPω)(v) = µ1(km

ωPω)(v) − kω(v)mPω(v)

=
q(n − 1)mqn−1 + (n + 1)mqn+1

q + 1
− nmqn

=
qn

q + 1
[(n − 1)m + (n + 1)mq − nm(q + 1)]

=
qn

q + 1

m−1∑
j=0

{(
m

j

)
[( − 1)m−j + q]nj

}

=
m−1∑
j=0

(
m

j

)[
( − 1)m−j + q

q + 1

]
kj
ω(v)Pω(v),
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completing the proof of (b). From (a) it follows that ∆2kω = 0, so kω is biharmonic.
For m = 0, ∆m+1km

ωPω = ∆Pω = 0. Let m > 0 and assume inductively that
∆j+1kj

ωPω = 0 for j < m. Then as a consequence of (b), we see that

∆m+1(km
ωPω) =

m−1∑
j=0

a(m)
j ∆m(kj

ωPω) = 0,

where

a(m)
m−1 =

(
m

m − 1

)(
q − 1
q + 1

)
= m

(
q − 1
q + 1

)
.

Hence,

∆m(km
ωPω) = m!

(
q − 1
q + 1

)m

Pω.(9)

Since Pω is harmonic, ∆t(km
ωPω) = 0 for all t > m.

Using a simple inductive argument we deduce:

LEMMA 4.2. Fix ω ∈ Ω. Then for all nonnegative integers m there exist con-
stants αj,m, with 1 ≤ j ≤ m + 1 such that

km
ωPω = ∆


m+1∑

j=1

αj,mkj
ωPω


 .

We are now ready to characterize polyharmonic functions:

THEOREM 4.1. Let T be a homogeneous tree of degree q+1. A function f on T is
polyharmonic of order n if and only if there exist distributions νm (m = 0, . . . , n−1,
n ∈ N) on Ω such that

f =
n−1∑
m=0

∫
Ω

km
ωPω dνm(ω).(10)

Furthermore, the representation (10) is unique.

OBSERVATION 4.1. Let v be any vertex of length N ≥ 1, and label the vertices on
the path [e, v] as v0, . . . , vN , where v0 = e, vN = v. The integrals in (10) can be easily
calculated by partitioning Ω into the sets IvN , IvN−1

−IvN , IvN−2
−IvN−1

, . . . , Iv0 −Iv1 ,
because forω in these sets the value of kω(v) is N, N−2, N−4, . . . ,−N, respectively,
and Pω = qkω . That is,

kω(v) =

{
2j − N for ω ∈ Ivj − Ivj+1

, 0 ≤ j ≤ N − 1,

N for ω ∈ IvN .
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Thus, (10) becomes

f (v) =
n−1∑
m=0




N−1∑
j=0

(2j − N)mq2j−Nνm(Ivj − Ivj+1
) + NmqNνm(IvN )


 ,

where vN = v and Iv0 = Ω.

In particular, if f is a biharmonic function, then its integral representation, to
be used in Section 5, is given by

f (v) =
N−1∑
j=0

q2j−Nν0(Ivj − Ivj+1
) + qNν0(IvN )(11)

+
N−1∑
j=0

(2j − N)q2j−Nν1(Ivj − Ivj+1
) + NqNν1(IvN ),

for |v| = N with [e, v] = [v0, . . . , vN]. This reduces to the first two summands if
f is harmonic.

Notation 4.2. We denote by Pν the integral
∫

Ω Pω dν(ω) and by kPν the
integral

∫
Ω kωPω dν(ω). More generally, if K is a function on Ω × T and ν is a

distribution on Ω, we define the function Kν on T by

Kν(v) =
∫

Ω
K(ω, v) dν(ω).

We proceed with the proof of Theorem 4.1.

Proof. It is clear that the function on the right-hand side of (10) is polyhar-
monic of order n, since

∆n

(
n−1∑
m=0

∫
Ω

km
ωPω dνm(ω)

)
=

n−1∑
m=0

∫
Ω

∆n(km
ωPω) dνm(ω) = 0,

by Lemma 4.1. Conversely, assume ∆nf = 0. We prove the existence of the
distributions νm satisfying (10) by induction on n. For n = 1, f is harmonic, so
there exists a distribution ν0 on Ω such that

f =
∫

Ω
Pω dν0(ω),

proving the result. Next, assume the integral representation (2) holds for functions
g such that ∆kg = 0, where k = 1, . . . , n − 1 for some n ≥ 2. Then ∆n−1(∆f ) = 0,
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so by induction and Lemma 4.2 we have

∆f =
n−2∑
m=0

∫
Ω

km
ωPω dνm(ω)

=
n−2∑
m=0

∫
Ω

∆


m+1∑

j=1

αj,mkj
ωPω


 dνm(ω)

= ∆


n−1∑

j=1

∫
Ω

kj
ωPω dρj(ω)


 ,

where the distributions ρj are defined as

ρj =
n−2∑

m=j−1

αj,mνm.

Hence the function

f −
n−1∑
j=1

∫
Ω

kj
ωPω dρj(ω)

is harmonic, and thus it can be represented as
∫

Ω Pω dρ0(ω) for some distribution
ρ0, completing the proof of the existence of the distributions in (10).

To prove uniqueness, we show that the distributions νm in (10) can be cal-
culated in terms of any given polyharmonic function f . We recall from [13] that
a distribution ν is a finitely additive function on the measurable subsets of Ω,
which is determined by its values on the basic measurable sets Iv , for each v ∈ T .

If f is a harmonic function, so that f =
∫

Ω Pω dν(ω), then the values of ν(Iv)
can be calculated as follows:

ν(Iv) =
q

(q − 1)c|v|

(
f (v) − 1

q
f−(v)

)
(12)

where f− is the function defined by f−(v) = f (v−) (cf. [13]).
Thus for a polyharmonic function of order 1 (i.e., a harmonic function), the

integral representation (10) is unique.
Next, assume that for any polyharmonic function of order n the representation

(10) is uniquely determined in terms of the values of the function, and let

f =
n∑

m=0

∫
Ω

km
ωPω dνm(ω)
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be a polyharmonic function of order n + 1. Using (9), we see that

∆nf = n!
(

q − 1
q + 1

)n ∫
Ω

Pω dνn(ω),

which is harmonic. So the values of νn(Iv) (v ∈ T) can be calculated explicitly
as follows:

νn(Iv) =
1
n!

(
q + 1
q − 1

)n q
(q − 1)c|v|

(
∆nf (v) − 1

q
(∆nf )−(v)

)
.

Since

∆n
(

f −
∫

Ω
kn
ωPω dνn(ω)

)
= ∆nf −

∫
Ω

∆n(kn
ωPω) dνn(ω) = 0,

the function

f −
∫

Ω
kn
ωPω dνn(ω) =

n−1∑
m=0

∫
Ω

km
ωPω dνm(ω)

is polyharmonic of order n, so by the inductive hypothesis, the remaining distri-
butions νm (0 ≤ m ≤ n − 1) are uniquely determined.

5. Polymartingales. In this section, we introduce and study polymartin-
gales on a homogeneous tree.

Definition 5.1. A function ϕ on a homogeneous tree T of degree q + 1 is a
martingale if it satisfies the condition that the average value of ϕ on the children
of any vertex v is equal to its value at v, that is, letting

Mϕ(v) =




1
q

∑
u−=v

ϕ(u) − ϕ(v) if v �= e

1
q+1

∑
u∼e

ϕ(u) − ϕ(e) if v = e,

then ϕ is a martingale if and only if Mϕ = 0.

We recall from [27] (see §3), that there are one-to-one correspondences among
the space of harmonic functions {f} on a homogeneous tree T , the space of
martingales {ϕ} on T and the space of distributions {ν} on the boundary of T ,
given by

ϕ(v) =




q
q−1

(
f (v) − 1

q f (v−)
)

, for v �= e

f (e) for v = e
(13)
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f (v) =




q−1
q

|v|∑
j=1

qj−|v|ϕ(vj) + q−|v|ϕ(e) for v �= e

ϕ(e) for v = e

ν(Iv) =
ϕ(v)
c|v|

,

f = Pν,

where vj (j = 1, . . . , |v|) is the ancestor of v of length j. We recall that c0 = 1 and
cn = (q + 1)qn−1 for n ≥ 1.

Notice that formula (12) is the same as the above without explicit reference
to ϕ. In this section, we introduce the concept of polymartingale of order n by
replacing M with Mn, for n ≥ 2, and give 1-1 correspondences among the space
of n-polyharmonic functions {f}, the space {ϕ} of polymartingales of order n and
the space of n-tuples of distributions {ν0, . . . , νn−1}. The equivalence between
the first and the third spaces was described in Theorem 4.1.

Definition 5.2. A function ϕ on T is a polymartingale of order n or an n-
polymartingale if Mnϕ is identically 0. A second-order martingale is also called
a bimartingale.

For some questions, polymartingales are more natural than polyharmonic
functions. The tree version of Almansi’s Theorem for polyharmonic functions
(Theorem 4.1) is not as similar to the original as is the following, which is one
of the main results of this section.

THEOREM 5.1. If ϕ is a polymartingale of order n, then there exist unique

martingalesϕ0,ϕ1, . . . ,ϕn−1 such thatϕ =
n−1∑
k=0

hkϕk, where h is the length function.

That is, for all v ∈ T,

ϕ(v) =
n−1∑
k=0

|v|kϕk(v).

Conversely, ifϕ0, . . . ,ϕn−1 are martingales, thenϕ =
n−1∑
k=0

hkϕk is a polymartin-

gale of order n.

For the proof we need the following lemma.

LEMMA 5.1. For any nonnegative integer k and for any martingale ϕ,

Mhkϕ =
k−1∑
j=0

(
k

j

)
hjϕ.
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Proof. For v �= e we have

Mhkϕ(v) =
1
q

∑
w−=v

hkϕ(w) − hkϕ(v)

= (|v| + 1)k 1
q

∑
w−=v

ϕ(w) − |v|kϕ(v)

= (|v| + 1)k(Mϕ(v) + ϕ(v)) − |v|kϕ(v)

=
k−1∑
j=0

(
k
j

)
|v|jϕ(v) =


k−1∑

j=0

(
k
)

hjϕ


 (v)

For v = e, simply replace q with q + 1 and the same proof holds.

Consider the n × n matrix whose (i, j)-entry is

(
i

j − 1

)
for j ≤ i and zero

otherwise. Note that this matrix is lower triangular with nonzero diagonal en-
tries and hence invertible. Let (bn,1, . . . , bn,n) be the bottom row of the inverse.

Reindexing the formula in Lemma 5.1 it follows that hn−1ϕ = M
n∑

j=1
bn,jhjϕ or

hkϕ = M
k+1∑
j=1

bk+1,jh
jϕ,(14)

for any nonnegative integer k.
We are now ready to prove Theorem 5.1.

Proof. We use induction on n. The result is a tautology for n = 1. Assume
that the result holds for some n ≥ 1, and let ϕ be a polymartingale of order n + 1.
Then Mϕ is a polymartingale of order n so there exist martingales ϕ̃0, . . . , ϕ̃n−1

such that Mϕ =
n−1∑
k=0

hkϕ̃k. By (14), we have

hkϕ̃k = M
k+1∑
j=1

bk+1,jh
jϕ̃k.

Thus M

(
ϕ−

n−1∑
k=0

k+1∑
j=1

bk+1,jhjϕ̃k

)
= 0. Let

ϕ0 = ϕ−
n−1∑
k=0

k+1∑
j=1

bk+1,jh
jϕ̃k and

ϕj =
n−1∑

k=j−1

bk+1,jϕ̃k for j = 1, . . . , n.
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Then ϕ0, . . . ,ϕn are martingales and ϕ =
n∑

j=0
hjϕj. To prove the uniqueness, ob-

serve that if
n∑

j=0
hjϕj is zero, then so is Mn−1

n∑
j=0

hjϕj, which is a nonzero multiple

of ϕn. So ϕn = 0. By induction,
n−1∑
j=0

hjϕj = 0 implies ϕj = 0 for all j.

We now generalize (13) to the biharmonic case. Later we shall do the same
for the polyharmonic case.

THEOREM 5.2. There exist 1-1 correspondences among the space of biharmonic
functions {f}, the space of bimartingales {ϕ} and the space of pairs of distributions
{ν0, ν1} given by

ϕ = Af , f = Pν0 + kPν1, and(15)

ν0(Iv) =
1

c|v|

[
ϕ(v) −

(
2

q2 − 1
+ |v|

)
Mϕ(v)

]
, ν1(Iv) =

Mϕ(v)
c|v|

,

where

Af (v) =




q+1
(q−1)2 (∆f )−(v) + q

q−1

(
f (v) − 1

q f−(v)
)

if |v| ≥ 1

2
(q−1)2 ∆f (e) + f (e) if v = e.

(16)

For the proof we need the following:

LEMMA 5.2. The operator A satisfies the following properties:
(a) If f is biharmonic, then

MAf =
q + 1
q − 1

A∆f .

(b) For each ω ∈ Ω, APω = Qω, where Qω(v) =

{
c|v| if ω ∈ Iv

0 if ω /∈ Iv .

(c) For each ω ∈ Ω, A(kωPω) =
(

h + 2
q2−1

)
Qω.

Proof. For any function g on T and for |v| ≥ 1, we have

Mg(v) =
q + 1

q
∆g(v) +

1
q

(g(v) − g−(v))(17)

and

Mg−(v) = g(v) − g−(v).(18)
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Since f is biharmonic, ∆f is harmonic and so

A∆f (v) =
q

q − 1

(
∆f (v) − 1

q
(∆f )−(v)

)
.

Now for |v| ≥ 1, using (16), (18) and (17), we obtain

MAf (v) =
q + 1

(q − 1)2 M(∆f )−(v) +
q

q − 1

(
Mf (v) − 1

q
Mf−(v)

)

=
q + 1

(q − 1)2 (∆f (v) − (∆f )−(v))

+
q

q − 1

(
q + 1

q
∆f (v) +

1
q

( f (v) − f−(v)) − 1
q

( f (v) − f−(v))
)

=
q(q + 1)
(q − 1)2 ∆f (v) − q + 1

(q − 1)2 (∆f )−(v) =
q + 1
q − 1

A∆f (v).

Moreover

MAf (e) =
1

q + 1

∑
|v|=1

Af (v) − Af (e)

=
1

q + 1

∑
|v|=1

[
q + 1

(q − 1)2 ∆f (e) +
q

q − 1

(
f (v) − 1

q
f (e)
)]

− 2
(q − 1)2 ∆f (e) − f (e)

=
q + 1

(q − 1)2 ∆f (e) +
q

q − 1
µ1f (e) − 1

q − 1
f (e)

− 2
(q − 1)2 ∆f (e) − f (e) =

q + 1
q − 1

∆f (e)

=
q + 1
q − 1

A∆f (e).

Hence, for any biharmonic function f , MAf = q+1
q−1 A∆f , proving (a).

To prove (b) observe that APω(e) = 1 = Qω(e). For |v| = n ≥ 1,

APω(v) =
q

q − 1

(
Pω(v) − 1

q
Pω(v−)

)
,

since ∆Pω = 0. For ω /∈ Iv , Pω(v−) = qPω(v) so APω(v) = 0 = Qω(v). For ω ∈ Iv ,

APω(v) =
q

q − 1

(
qn − 1

q
qn−1

)
= cn = Qω(v).
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Next notice that by (9),

A(kωPω)(e) =
2

(q − 1)2

q − 1
q + 1

Pω(e) + 0 · Pω(e)

=
2

q2 − 1
=
(

h(e) +
2

q2 − 1

)
Qω(e).

For |v| = n > 0, we have

A(kωPω)(v) =
q + 1

(q − 1)2

q − 1
q + 1

Pω(v−)(19)

+
q

q − 1

(
kω(v)Pω(v) − 1

q
kω(v−)Pω(v−)

)
.

For ω /∈ Iv , letting kω(v) = k, the right hand side of (19) becomes

1
q − 1

qk+1 +
q

q − 1

(
kqk − 1

q
(k + 1)qk+1

)
= 0 = Qω(v).

For ω ∈ Iv , the right-hand side of (19) becomes

1
q − 1

qn−1 +
q

q − 1

(
nqn − 1

q
(n − 1)qn−1

)
=
(

n +
2

q2 − 1

)
cn

=
(

h(v) +
2

q2 − 1

)
Qω(v),

completing the proof of (c).

Proof of Theorem 5.2. Using part (a) of Lemma 5.2, we get that if f is
biharmonic, then

M2Af =
q + 1
q − 1

MA∆f =
(

q + 1
q − 1

)2

A∆2f = 0,

proving that Af is a bimartingale.
Next, assume that ϕ is a bimartingale. Define ν0, ν1 as in (15). Since Mϕ is

a martingale and by Lemma 5.1 applied to Mϕ with k = 1, the function ϕ−hMϕ
is also, by (13) it follows that ν0 and ν1 are distributions. Define f = Pν0 + kPν1,
a biharmonic function. Then by Lemma 5.2 (b) and (c), recalling Notation 4.2,
we have

Af = APν0 + AkPν1 = Qν0 +
(

h +
2

q2 − 1

)
Mϕ

= ϕ−
(

2
q2 − 1

+ h
)

Mϕ +
(

h +
2

q2 − 1

)
Mϕ = ϕ.
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Thus A is onto. To prove that A is 1-1, write f = Pν0 + kPν1 so that

Af = Qν0 +
(

h +
2

q2 − 1

)
Qν1 = Q

(
ν0 +

2
q2 − 1

ν1

)
+ hQν1.

But by the uniqueness result in Theorem 5.1, if Af = 0 then ν1 = 0 and
ν0 + 2

q2−1ν1 = 0. Thus ν0 is also 0, whence f is identically 0.

COROLLARY 5.1. Given a bimartingale ϕ, then

A−1ϕ(e) = ϕ(e) − 2
q2 − 1

Mϕ(e), and(20)

A−1ϕ(v) =
q − 1

q

n∑
j=1

q−(n−j)ϕ(vj) + q−nϕ(e)

− q − 1
qn+1

n∑
j=1

(n − j)qjMϕ(vj) −
2 + n(q2 − 1)

qn(q2 − 1)
Mϕ(e),

for |v| = n ≥ 1, where [e, v] = [v0, . . . , vn].

In the special case when f is a harmonic function and ϕ is a martingale,
formulas (16) and (20) reduce to those found in [27].

In order to prove the corollary, we shall use a general result on integration.

LEMMA 5.3. Assume that for ω ∈ Ω, Kω is a kernel satisfying the condition
that Kω(v) only depends on kω(v) for each v ∈ T. Set Kω(v) = αk for kω(v) = k. If

f = Kν =
∫

Ω
Kω dν(ω),

then f (e) = α0ν(Ω) and, for |v| = n ≥ 1,

f (v) = α−nν(Ω) +
n∑

j=1

(α2j−n − α2j−n−2)ν(Ivj).

Proof. For a fixed vertex v of length n

kω(v) =

{
n if ω ∈ Iv

2j − n if ω ∈ Ivj − Ivj+1
.
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Then

f (v) =
n−1∑
j=0

α2j−nν(Ivj − Ivj+1
) + αnν(Ivn)

=
n−1∑
j=0

α2j−nν(Ivj) −
n∑

j=1

α2j−n−2ν(Ivj) + αnν(Ivn)

= α−nν(Iv0 ) +
n−1∑
j=1

(α2j−n − α2j−n−2)ν(Ivj) + (αn − αn−2)ν(Ivn),

proving the lemma.

OBSERVATION 5.1. Let f =
∫

Ω Kω dν(ω), where

Kω(v) =

{
α|v| for ω ∈ Iv

0 for ω /∈ Iv .

It is immediate that f (v) = α|v|ν(Iv), for all v ∈ T.

Proof of Corollary 5.1. Corresponding to the bimartingale ϕ, let ν0 and ν1 be
the distributions defined in (15) and set f = A−1ϕ. Then f = Pν0 + kPν1 so that

f (e) = ν0(Ω) = ϕ(e) − 2
q2 − 1

Mϕ(e)

and by Lemma 5.3 applied to the kernels Pω and kωPω, for v ∈ T with |v| = n ≥ 1,

f (v) = q−nν0(Ω) +
n∑

j=1

(q2j−n − q2j−n−2)ν0(Ivj)

+ ( − n)q−nν1(Ω) +
n∑

j=1

[(2j − n)q2j−n − (2j − n − 2)q2j−n−2]ν1(Ivj)

= q−nν0(Ω) +
q2 − 1

q2

n∑
j=1

q2j−nν0(Ivj) − nq−nν1(Ω)

+
n∑

j=1

[(2j − n)q2j−n − (2j − n − 2)q2j−n−2]ν1(Ivj) = q−nϕ(e)

− 2q−n

q2 − 1
Mϕ(e) +

q − 1
q

n∑
j=1

qj−n
[
ϕ(vj) −

(
j +

2
q2 − 1

)
Mϕ(vj)

]
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− nq−nMϕ(e) +
q

q + 1

n∑
j=1

[(2j − n)qj−n − (2j − n − 2)qj−n−2]Mϕ(vj)

=
q − 1

q

n∑
j=1

q−(n−j)ϕ(vj) + q−nϕ(e)

− q − 1
qn+1

n∑
j=1

(n − j)qjMϕ(vj) −
2 + n(q2 − 1)

qn(q2 − 1)
Mϕ(e).

The correspondence f �→ Af is not the only one between the space of bihar-
monic functions and the space of bimartingales. For example, given α,β ∈ C,
α �= 0, the map f �→ αAf +βA∆f is also an isomorphism between these spaces. We
shall now describe another isomorphism which turns out to be useful in allowing
us to generalize Theorem 5.2 to n-polyharmonic functions and n-polymartingales.

First recall the elementary harmonic functions Pω for any ω ∈ Ω, where
Pω(v) = qkω(v). Then the elementary martingales are given by Qω = APω. Let us
recall that any martingale ϕ yields the distribution ν, where ν(Iv) = ϕ(v)

c|v|
. Thus

we have the integral representation ϕ = Qν, since by Observation 5.1

∫
Ω

Qω(v) dν(ω) =
∫

Iv

c|v| dν(ω) = c|v|ν(Iv) = ϕ(v).

We call Q the martingale kernel. It follows from (13) that ν �→ Qν is a 1-1
correspondence between distributions and martingales.

Using Theorem 4.1, let f =
n−1∑
m=0

kmPνm be an n-polyharmonic function. Define

Bf =
n−1∑
m=0

hmQνm.

Then Bf is an n-polymartingale and conversely, any n-polymartingale is of this
form, by identifying ϕm in Theorem 5.1 with Qνm.

THEOREM 5.3. B is a 1-1 correspondence between the space of n-polyharmonic
functions and the space of n-polymartingales.

Notice that if f = Pν is any harmonic function, then Bf = Qν = Af , so
that B also generalizes the 1-1 correspondence between harmonic functions and
martingales given in [27].

Let us look at the special case of n = 2. For f biharmonic, f = Pν0 + kPν1,
and Bf = Qν0 + hQν1 is a bimartingale. For any bimartingale ϕ, let us find
explicitly the distributions ν0 and ν1 such that ϕ = Qν0 + hQν1. Since Mϕ is
a martingale, we may let ν1(Iv) = Mϕ(v)

c|v|
, a distribution. Thus Qν1 = Mϕ. The
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function ψ = ϕ− hQν1 is a martingale because

Mψ = Mϕ− MhQν1 = Mϕ− Qν1 = 0,

by Lemma 5.1. So, we may define the distribution ν0 by

ν0(Iv) =
ψ(v)
c|v|

=
ϕ(v) − |v|Mϕ(v)

c|v|
.

That is, Qν0 = ϕ− hMϕ.
This description of Bf �→ (ν0, ν1) is much simpler than that given earlier of

Af �→ (ν0, ν1). On the other hand, we do not get as simple a description of Bf as
a function of v. One advantage of this method, however, is that this operator is
defined for polyharmonic functions of all orders.

THEOREM 5.4. (a) If f is a biharmonic function on T, then

Bf (v) =




q2+1
(q−1)3 ∆f (v−) − 2q

(q−1)3 ∆f (v) + q
q−1

(
f (v) − 1

q f (v−)
)

if v �= e,

f (e) if v = e.

(b) If ϕ is a bimartingale and v is a vertex of length n, then

B−1ϕ(v) =




ϕ(e)−nMϕ(e)
qn + (q−1)

qn+1

n∑
j=1

qj
[
ϕ(vj) +

(
j − n + 2

q2−1

)
Mϕ(vj)

]
if n > 0

ϕ(e) if n = 0.

Proof. Assume f = Pν0 + kPν1 so that Bf = Qν0 + hQν1. Using (b) and (c) of
Lemma 5.2, we obtain

Af = Qν0 +
(

h +
2

q2 − 1

)
Qν1.

Thus Bf = Af − 2
q2−1 Qν1. But ∆f = q−1

q+1 Pν1, so that A∆f = q−1
q+1 Qν1. Hence

2
q2 − 1

Qν1 =
2(q + 1)

(q2 − 1)(q − 1)
A∆f =

2
(q − 1)2 A∆f .
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So Bf = Af − 2
(q−1)2 A∆f . Consequently, for v �= e

Bf (v) =
q + 1

(q − 1)2 ∆f (v−) +
q

q − 1

(
f (v) − 1

q
f (v−)

)

− 2q
(q − 1)3

(
∆f (v) − 1

q
∆f (v−)

)
=
(

q + 1
(q − 1)2 +

2
(q − 1)3

)
∆f (v−)

− 2q
(q − 1)3 ∆f (v) +

q
q − 1

(
f (v) − 1

q
f (v−)

)
,

proving (a) for v �= e. Furthermore

Bf (e) = Af (e) − 2
(q − 1)2 A∆f (e) = f (e),

completing the proof of (a).
Next, let ϕ = Qν0 + hQν1, and set f = B−1ϕ = Pν0 + kPν1. It is clear that

f (e) = ϕ(e). By Lemma 5.3, for |v| = n > 0 we have

f (v) = q−nν0(Ω) +
n∑

j=1

q2j−n−2(q2 − 1)ν0(Ivj) − nq−nν1(Ω)

+
n∑

j=1

[(2j − n)q2j−n − (2j − n − 2)q2j−n−2]ν1(Ivj) = q−nϕ(e)

+ (q2 − 1)
n∑

j=1

q2j−n−2 (ϕ(vj) − jMϕ(vj))
cj

− nq−nMϕ(e)

+
n∑

j=1

(2j − n − 2)q2j−n−2(q2 − 1)
Mϕ(vj)

cj
+

n∑
j=1

2q2j−n Mϕ(vj)
cj

= q−nϕ(e) + (q − 1)
n∑

j=1

qj−n−1(ϕ(vj) − jMϕ(vj)) − nq−nMϕ(e)

+ (q − 1)
n∑

j=1

[
(2j − n − 2)qj−n−1 +

2
q2 − 1

qj−n+1
]

Mϕ(vj)

= q−n(ϕ(e) − nMϕ(e)) + (q − 1)
n∑

j=1

qj−n−1[ϕ(vj)

+
(

j − n +
2

q2 − 1

)
Mϕ(vj)],

proving (b).
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6. Boundary behavior of polyharmonic functions. Let T be a homoge-
neous tree of degree q + 1. We recall that µe denotes the probability measure
corresponding to the constant harmonic function 1 and the constant martingale
1. Thus µe(Iv) = 1

c|v|
, for each v ∈ T . We claim that for all vertices v,

kPµe(v) = |v| − 2q(1 − q−|v|)
q2 − 1

.(21)

To see this, let f (v) = |v| − 2q(1−q−|v|)
q2−1 . Then ∆f is the constant q−1

q+1 , so f is
biharmonic. A straightforward calculation shows that Bf = h. On the other hand,
h = hQµe = BkPµe. Since B is 1-1, f = kPµe.

It follows that the function v �→ kPµe

h (v) tends uniformly to 1 as v approaches
any boundary point. This suggests that for a distribution ν on Ω it is the boundary
behavior of kPν

h that should be studied. More generally, we shall discuss the
boundary behavior of knPν

hn , for any nonnegative integer n with the aim of studying
the boundary behavior of f

hn−1 for an n-polyharmonic function f .
We first observe that we cannot expect favorable boundary behavior results

for knPν
hn if we do not assume some restriction on ν. Indeed, we now construct a

distribution ν such that lim sup
j→∞

|knPν(ωj)|
jn = ∞ for every ω ∈ Ω and for any n ≥ 0,

where [ω0,ω1,ω2, . . .) is the path starting at e in the class ω.

Example 6.1. We define a distribution ν by describing its value at each Iv

inductively on |v|. Let ν(Ie) = 0. Then, given the value of ν(Iv) with v = w−,
define ν(Iw) as follows:

(1) if ν(Iv) = 0, then ν(Iw) = 1 for q−1 of the children w of v and ν(Iw) = 1−q
for the remaining child w of v;

(2) if ν(Iv) = 1, then ν(Iw) = 0 for q− 1 of the children w of v and ν(Iw) = 1
for the remaining child w of v;

(3) if ν(Iv) = 1 − q, then ν(Iw) = 0 for q − 1 of the children w of v and
ν(Iw) = 1 − q for the remaining child w of v.

Note that for every ω ∈ Ω, either ν(Iωj) = 1 or ν(Iωj) = 1 − q for infinitely
many j. Also for any v �= e, |ν(Iv) − ν(Iv−)| ≤ q − 1. Thus, denoting [e, v] by
[v0, v1, . . . , vm], we have

∣∣∣∣∣∣
m−1∑
j=0

q2j−m(ν(Ivj) − ν(Ivj+1
))

∣∣∣∣∣∣ ≤ (q − 1)q−m q2m − 1
q2 − 1

≤ qm

q + 1
.
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It follows from (11) that for any v ∈ T for which ν(Iv) equals 1 or 1 − q,

|Pν(v)| ≥ q|v||ν(Iv)| − q|v|

q + 1
.

Therefore lim sup
j→∞

|Pν(ωj)| = ∞ for every ω ∈ Ω. A similar analysis shows that

the same conclusion holds for
knPν(ωj)

jn for n ∈ N.
In light of Example 6.1, we are going to restrict ourselves to distributions

satisfying certain growth conditions.

Definition 6.1. Let ω ∈ Ω. We call a subset S of T an approach region to ω
if for every n ∈ N there exists s ∈ S such that ωn ≤ s.

Definition 6.2. A subset S of T is said to be starlike with respect to u ∈ T if
for all v ∈ S, the path [u, v] is contained in S.

Examples of approach regions which are starlike with respect to e are given
by the sets defined in the following.

Definition 6.3. Let ω ∈ Ω, τ ≥ 1 and 0 ≤ a ≤ ∞. Define the approach
region of ω by

Sτ ,a(ω) = {v ∈ T: |v| ≤ τ |v ∧ ω| + a}.

Note that Sτ ,∞(ω) = T for any τ . If a is finite, we call S1,a the nontangential
approach region to ω of aperture a. If τ > 1, we call Sτ ,a(ω) the tangential
approach region to ω of aperture a and tangency τ . We denote by Sτ (ω) the
approach region Sτ ,0(ω).

Remark 6.1. We can define a distance ρ on T by

ρ(u, v) =

{
q−|u∧v|, for u �= v

0 for u = v
.

The completion of T with respect to ρ is exactly T ∪Ω. Observe that the ρ-balls
in Ω are exactly the sets Iv , for v ∈ T , and Iv has ρ-radius q−|v|. For τ > 1,
Sτ ,a(ω) is tangential in the sense that there exists a constant c (c = qa) such that
for any v ∈ Sτ ,a(ω),

ρ(v,ω)τ ≤ cρ(v, Ω).

This is the precise analogue of the classical tangential approach region to a
boundary point in the upper half plane, where ρ represents Euclidean distance.
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Definition 6.4. Let S be an approach region of ω ∈ Ω. Let [e,ω) = [ω0,ω1, . . .)
as above. A function f : T → C is said to have S-limit L at ω if for all ε > 0 there
exists m ∈ N such that | f (v) − L| < ε for all v ∈ S with v ≥ ωm. We denote this
limit by lim

S,ω
f . If lim

T ,ω
f exists we say that f has an unrestricted limit at ω. If for

some τ ≥ 1, lim
S,ω

f exists for S = Sτ ,a(ω) for all a < ∞ (necessarily independent

of a), then we call this limit the τ -limit of f at ω and we denote it by τ -lim
ω

f .

1-limits are also referred to as nontangential limits.

The following proposition will allow us to deduce boundary behavior results
for n-polyharmonic functions from boundary behavior results for martingales.

PROPOSITION 6.1. Let µ be a distribution on Ω and let S be an approach region
to ω ∈ Ω which is starlike with respect to e. Suppose that Qµ has S-limit L at ω.
Then knPµ

hn also has S-limit L at ω for each nonnegative integer n.

Proof. Fix n ≥ 0 and let 0 < ε < 1/3. Since Qµ has S-limit L at ω, there
exists N ∈ N such that |c|v|µ(Iv) − L| < ε for all v ∈ S, with v ≥ ωN . Let

M = max{|L| + ε, cj|µ(Iωj)|, j = 1, . . . , N}.

For m > N
1−ε , let Jm = �m(1 − ε)� so that Jm ≥ N. Fix v ≥ ωN . Setting [e, v] =

[vo, . . . , vm] as usual, let Ij denote Ivj , which is Iωj for j ≤ N. By Lemma 5.3, we
have

knPµ
hn (v) = ( − 1)nq−mµ(Ω) +

m∑
j=1

q2j−m

mn

[
(2j − m)n − (2j − m − 2)n

q2

]
µ(Ij)

= ( − 1)nq−mµ(Ω) +
m∑

j=1

q2j−m q2 − 1
q2

(
2j − m

m

)n

µ(Ij)

−
n−1∑
k=0

(
n

k

)
m∑

j=1

q2j−m (2j − m)k( − 2)n−k

mnq2 µ(Ij)

= ( − 1)nq−mµ(Ω) +
Jm−1∑

j=1

q − 1
q

qj−m
(

2j − m
m

)n

cjµ(Ij)

+
m∑

j=Jm

q − 1
q

qj−m
(

2j − m
m

)n

cjµ(Ij)

−
n−1∑
k=0

(
n

k

)
( − 2)n−k

m∑
j=1

qj−m (2j − m)k

mnq(q + 1)
cjµ(Ij)

= I +
q − 1

q
II + III −

n−1∑
k=0

(
n

k

)
( − 2)n−k

q(q + 1)
IVk.
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We shall show that I, II, and each IVk approach 0 and III approaches L as m → ∞.
It is clear that I goes to 0. Using the three facts that |cjµ(Ij)| ≤ M for all j,
m∑

j=1
qj−m < q

q−1 and
∣∣∣ (2j−m)k

mn

∣∣∣ ≤ mk−n for j = 1, . . . , m, it follows that for each

k = 0, . . . , n − 1,

|IVk| <
q

q − 1
mk−nM <

2M
m

and thus IVk → 0 as m → ∞. Moreover

|II| ≤
Jm−1∑

j=1

qj−mM <
qJm−m

q − 1
M.

Observing that Jm − m ≤ −mε, we see that II → 0 as m → ∞. Next we look at
III − L.

|III − L| ≤
m∑

j=Jm

q − 1
q

qj−m
∣∣∣∣2j − m

m

∣∣∣∣n |cjµ(Ij) − L|

+ |L|
m∑

j=Jm

q − 1
q

qj−m
∣∣∣∣
(

2j − m
m

)n

− 1
∣∣∣∣ + |L|

∣∣∣∣∣∣
m∑

j=Jm

q − 1
q

qj−m − 1

∣∣∣∣∣∣
≤

m∑
j=0

q − 1
q

qj−mε + |L|
m∑

j=Jm

q − 1
q

qj−m
[
1 −

(
2j − m

m

)n]
+

|L|
qmε

.

Notice that since Jm ≤ j ≤ m, 2j − m ≥ 2Jm − m ≥ m − 2mε− 2, so

2j − m
m

≥ 1 − 2ε− 2
m

≥ 1 − 3ε

for m large. Thus

1 −
(

2j − m
m

)n

< 1 − (1 − 3ε)n ≤ 3nε.

Hence |III − L| ≤ ε + |L|3nε + |L|q−mε. Thus

lim
m→∞

|III − L| ≤ ε(1 + 3n|L|).

But this is true for all ε ∈ (0, 1/3), and thus III → L as m → ∞.

Let µ be a complex Borel measure on Ω and let ϕ = Qµ be the corresponding
martingale. It is known that ϕ has a nontangential limit at µe-a.e. boundary point.
Suppose in addition that µ is µe-absolutely continuous with density function g.
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It is also known that if g is continuous at ω ∈ Ω, then ϕ has an unrestricted
limit at ω. For a discussion of these results see [27]. Combining these facts with
Proposition 6.1 we deduce:

THEOREM 6.1. Let f be n-polyharmonic on T. Let ν0, . . . , νn−1 be the corre-
sponding distributions of Theorem 4.1.

(a) If ν0, . . . , νn−1 are complex Borel measures, then f
hn−1 has a nontangential

limit at µe-a.e. boundary point of Ω.
(b) Suppose that ν0, . . . , νn−1 are µe-absolutely continuous measures whose

density functions are continuous at ω ∈ Ω, then f
hn−1 has an unrestricted limit at ω.

We now consider boundary behavior results of n-polyharmonic functions
which include both nontangential and tangential approach regions as well as
exceptional sets which are thinner than those of µe-measure zero. In order to
describe these exceptional sets, we recall the definition of the Hausdorff measures.

Definition 6.5. Let E be a subset of Ω. Let 0 < β ≤ 1. We define

Hβ(E) = sup
δ>0

inf
A⊂T

{∑
v∈A

ρ(v, Ω)β: E ⊂
⋃
v∈A

Iv , ρ(A, Ω) < δ

}
.

We call Hβ(E) the β-dimensional Hausdorff measure of E. We say that a property
holds β-a.e. if it holds for all ω except for those in a subset of Ω having Hβ

measure 0.

The following two lemmas, the second of which is of Frostman type, were
proved in [19].

LEMMA 6.1. A Borel subset of Ω has Hβ measure 0 if and only if every compact
subset of it has Hβ measure 0.

LEMMA 6.2. Let K be a compact subset of Ω having positive Hβ measure. Then
there exists a measure ν on Ω supported on K such that 0 < ν(K) < ∞ and for
every v ∈ T, ν(Iv) ≤ q−β|v|.

The following space of functions is fundamental in our study of boundary
behavior.

Definition 6.6. For α ≥ 0, let Aα be the space consisting of all complex-
valued functions f on T satisfying the condition

∑
v∈T

| f (v)|q−(1−α)|v| <∞.

Throughout the remainder of this section we fix once and for all constants α
and τ where 0 ≤ α < 1 and 1 ≤ τ ≤ 1/(1 − α).
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The letter c will be used to represent a constant value which, though possibly
different with each occurrence, does not depend on the parameters of interest.

The following lemma will be used to derive a general boundary behavior
result.

LEMMA 6.3. Let f ∈ Aα. Fix a ∈ [0,∞) and define F: Ω → [0,∞], by

F(ω) =
∑

v∈Sτ ,a(ω)

| f (v)|.

Then F(ω) is finite τ (1 − α)-a.e.

Proof. Without loss of generality, we may assume that f is a nonnegative
(real-valued) function. Define the sequence {Fn}∞n=0 of functions on Ω by

Fn(ω) =
∑
v≥ωn

|v|≤nτ+a

f (v).

Note that F(ω) ≤
∞∑

n=0
Fn(ω) for all ω ∈ Ω. Moreover, each Fn is locally con-

stant hence continuous. Thus
∞∑

n=0
Fn(ω) is Borel measurable. We shall prove that

∞∑
n=0

Fn(ω) is finite τ (1 − α)-a.e. Arguing by contradiction, assume that the set

{
ω ∈ Ω:

∞∑
n=0

Fn(ω) = ∞
}

has positive Hβ measure. Then by Lemma 6.1, there is a compact subset K of
positive Hβ measure. So by Lemma 6.2, we can find a Borel measure ν that is
supported on K and satisfies the condition

ν(Iv) ≤ q−(1−α)τ |v| for all v ∈ T .

We then get a contradiction if we show that

∫
Ω

∞∑
n=0

Fn(ω) dν(ω) <∞.

Since each Fn is nonnegative, we can interchange the order of integration
and summation and obtain

∫
Ω

∞∑
n=0

Fn(ω) dν(ω) =
∞∑

n=0

∫
Ω

Fn(ω) dν(ω)

=
∞∑

n=0

∑
|w|=n

∫
Iw

Fn(ω) dν(ω)



1038 J. M. COHEN, F. COLONNA, K. GOWRISANKARAN, AND D. SINGMAN

≤
∞∑

n=0

∑
|w|=n

∑
v≥w

|v|≤nτ+a

f (v)q−τ (1−α)n

=
∑
w∈T

∑
v≥w

|v|≤τ |w|+a

f (v)q−(1−α)τ |w|

=
∑
v∈T

f (v)
∑
w≤v

|w|≥(|v|−a)/τ

q−(1−α)τ |w|

≤
∑
v∈T

f (v)
∑

n≥(|v|−a)/τ

q−(1−α)τn

≤ c
∑
v∈T

f (v)q−(1−α)τ |v|/τ

= c
∑
v∈T

f (v)q−(1−α)|v|,

which is finite. This completes the proof.

Definition 6.7. Let ϕ be a complex-valued function on T . Define

Dϕ(v) =

{
ϕ(v) − ϕ(v−) for v �= e
0 for v = e.

We call Dϕ(v) the inner normal derivative of ϕ at v if v �= e.

COROLLARY 6.1. Let ϕ be any function on T such that Dϕ ∈ Aα. Then ϕ has
τ -limits τ (1 − α)-a.e.

Proof. Fix a ≥ 0. Then by Lemma 6.3, we have∑
v∈Sτ ,a(ω)

|Dϕ(v)| <∞

τ (1 − α)-a.e. Let ω be any point for which this sum is finite. Let ε > 0 and
choose a positive integer N so that∑

v∈Sτ ,a(ω),|v|≥N

|Dϕ(v)| < ε.

Let u1, u2 be any two vertices in Sτ ,a(ω) of length greater than or equal to τN +a.
This implies that [u1, u2]⊂{v ∈ Sτ ,a(ω): |v| ≥N}. Let [u1, u2] = [v0, v1, . . . , vn].
Then

|ϕ(u1) − ϕ(u2)| ≤
n∑

i=1

|Dϕ(vi)|

≤
∑

v∈Sτ ,a(ω)
|v|≥N

|Dϕ(v)|

< ε.
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Thus if {uj} is any sequence approaching ω in Sτ ,a(ω), then {ϕ(uj)} is a Cauchy
sequence. Thus lim

j→∞
ϕ(uj) exists and is finite.

PROPOSITION 6.2. Let ν be a distribution on Ω. Let f = Pν be the corresponding
harmonic function on T and let ϕ = Qν be the corresponding martingale. Then the
following conditions are equivalent:

(a)
∑
v �=e

∣∣∣ν(Iv) − 1
qν(Iv−)

∣∣∣ qα|v| <∞;

(b) Df ∈ Aα;
(c) Dϕ ∈ Aα.

Proof. First observe that (a) is equivalent to (c) since ϕ(v) = c|v|ν(Iv) for all
v ∈ T , so that

∑
v �=e

|Dϕ(v)|q−(1−α)|v| =
∑
v �=e

|c|v|ν(Iv) − c|v|−1ν(Iv−)|q−(1−α)|v|

=
q + 1

q

∑
v �=e

∣∣∣∣ν(Iv) − 1
q
ν(Iv−)

∣∣∣∣ qα|v|.

Using (13) we deduce

ν(Iv) − 1
q
ν(Iv−) =

q2

q2 − 1

Df (v) − 1
q Df (v−)

q|v|
, v− �= e,

showing that (b) implies (a).
To complete the proof we show that (c) implies (b). Let v ∈ T be such that

|v| = n ≥ 1. Again using (13) we derive the relation

Df (v) =
q − 1

q

n∑
j=1

q−(n−j)Dϕ(vj).

Thus

∑
v∈T

|Df (v)|q−(1−α)|v| =
∞∑

n=1

∑
|v|=n

|Df (v)|q−(1−α)n

≤
∞∑

n=1

∑
|v|=n

n∑
j=1

q−(n−j)|Dϕ(vj)|q−(1−α)n

=
∞∑
j=1

∑
|v|=j

∞∑
n=j

|Dϕ(v)|q−(1−α)n



1040 J. M. COHEN, F. COLONNA, K. GOWRISANKARAN, AND D. SINGMAN

=
∞∑
j=1

∑
|v|=j

|Dϕ(v)| q−(1−α)j

1 − q−(1−α)

=
∑
v �=e

|Dϕ(v)| q−(1−α)|v|

1 − q−(1−α) ,

completing the proof.

Definition 6.8. Let Bα be the space of distributions ν on Ω satisfying the
condition ∑

v �=e

∣∣∣∣ν(Iv) − 1
q
ν(Iv−)

∣∣∣∣ qα|v| <∞.

Let Hn
α be the space of n-polyharmonic functions such that the corresponding

distributions of Theorem 4.1 are in Bα.

Remark 6.2. The space Bα is precisely the Besov–Lipschitz space Bα
1,1 defined

in [13]. In light of Proposition 6.2, this Besov–Lipschitz space can be identified
with the space of all harmonic functions in H1

α, or equivalently, the space of
martingales whose inner normal derivative is in Aα.

We now deduce our main boundary behavior result for n-polyharmonic func-
tions.

THEOREM 6.2. Let 0 ≤ α < 1, 1 ≤ τ ≤ 1/(1−α). Let f be n-polyharmonic on
T and let ν0, . . . , νn−1 be the corresponding distributions of Theorem 4.1. Suppose
f ∈ Hn

α. Then f
hn−1 has τ -limits τ (1 − α)-a.e. and these limits are equal to the

τ -limits of Pνn−1.

Proof. Using Proposition 6.2, we may apply Corollary 6.1 to each martingale
ϕj = Qνj. The conclusion now follows easily from Proposition 6.1.

Remark 6.3. Let ν be a distribution in Bα and let f be the corresponding
harmonic function Pν. Despite the fact that kPν

h has τ -limits τ (1 − α)-a.e., it is
not in general true that the inner normal derivative of kPν

h is in Aα. Indeed, from
(21) for |v| ≥ 2 we obtain

∣∣∣∣D
(

kPµe(v)
|v|

)∣∣∣∣ =
2q

q2 − 1

∣∣∣∣∣1 − q−n − nq−n(q − 1)
n(n − 1)

∣∣∣∣∣ .
Thus

∑
v,v− �=e

∣∣∣∣D
(

kPµe(v)
|v|

)∣∣∣∣ q−(1−α)|v| =
∞∑

n=2

2qαn

n(n − 1)

∣∣∣∣∣1 − q−n

q − 1
− nq−n

∣∣∣∣∣
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which is divergent. Thus, there appears to be no simpler description of the
space Hn

α.

We now show that the exceptional set and the size of the approach region in
Theorem 6.2 are the best possible.

THEOREM 6.3. (a) Let 0 ≤ α < 1 and 1 ≤ τ ≤ 1/(1 − α). Let E be a subset of
Ω such that Hτ (1−α)(E) = 0. Then there is a harmonic function f ∈ H1

α such that
for all ω ∈ E, lim sup

Sτ (ω)
f = ∞.

(b) Let 0 ≤ α < 1 and τ > 1/(1 − α). Then there is a harmonic function
f ∈ H1

α such that lim sup
Sτ (ω)

f = ∞ for all ω ∈ Ω.

Proof. (a) For each positive integer i there exists a sequence of vertices {vij}j

such that |vij| > i, E ⊂
⋃

j

Ivij and
∑

j

q−τ (1−α)|vij| < 2−i. For each vertex vij we

associate a vertex uij ≥ vij such that |uij| = �τ |vij|�. Let Mij = iq−τ |vij|. Let νij be
the positive distributions defined as follows: for each v ∈ T

νij(Iv) =




0 if Iv ∩ Iuij = ∅

q|uij|−|v|Mij if v ≥ uij

Mij if v < uij.

From the definitions we see that
∑
i,j
νi,j(Iv) converges for all vertices v. So, letting

ν =
∑

i,j νij, it follows that ν is a positive distribution. Let f = Pν, a harmonic
function. Note that

∑
|v|≥1

∣∣∣∣νij(Iv) − 1
q
νij(Iv−)

∣∣∣∣ qα|v| ≤ c Mij

|uij|∑
n=0

qαn ≤ c Mijq
α|uij|.

Thus

∑
|v|≥1

∣∣∣∣ν(Iv) − 1
q
ν(Iv−)

∣∣∣∣ qα|v| ≤ c
∑
i,j

Mijq
α|uij| ≤ c

∑
i,j

Mijq
ατ |vij|

= c
∑
i,j

i q−(1−α)τ |vij| < c
∑

i

i
2i <∞,

so by Proposition 6.2,
∑

v∈T |Df (v)|q−(1−α)|v| is finite. Also

f (uij) = Pν(uij) ≥ q|uij|νij(Iuij) ≥
1
q

qτ |vij|Mij =
1
q

i.
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Since for any ω ∈ E there are integers i and j with i arbitrarily large such that
uij ∈ Sτ (1−α)(ω), we are done.

(b) Choose ε such that 0 < ε < τ (1 − α) − 1. Define

Mij = q−(ατ+1+ε)i for each j = 1, . . . , (q + 1)qi−1.

Let {vij}j be the collection of all the vertices of length i. Let uij be any vertex
of length �τ i� such that uij ≥ vij. Define νij, ν and f as in the proof of part (a).
Then

∑
|v|≥1

∣∣∣∣ν(Iv) − 1
q
ν(Iv−)

∣∣∣∣ qα|v| ≤ c
∞∑
i=0

q−(ατ+1+ε)iqαiτqi = c
∞∑
i=0

q−εi

which is finite, and

Pν(uij) ≥ q−(ατ+1+ε)iq|uij| ≥ c q−(ατ+1+ε)iqτ i

= c qi(τ−ατ−1−ε) = c qi(τ (1−α)−1−ε) → ∞ as i → ∞.
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