
1.6 The Nested Intervals Theorem

We’ve seen several applications of the interval halving method.
Starting with a closed interval I1 = [a1, b1], the method produces a sequence of closed intervals
In = [an, bn], such that for each n ≥ 1, In is either the left half or the right half of In−1. If we randomly
pick a point xn ∈ In for each n, then the resulting sequence is necessarily a Cauchy sequence.
Thus by the completeness axiom of R, the sequence {xn}∞n=1 converges to some real number x .

Exercise.

Prove that x ∈
∞⋂

n=1
In.
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If you look at the proof of the interval halving method, you will see that for the proof to work, it isn’t
important that each interval is chosen as the right or left half of the preceding interval.
All that matters is that

i. They are all closed intervals;
ii. The intervals are nested, i.e. I1 ⊇ I2 ⊇ I3 ⊇ . . .
iii. The length of the intervals converges to 0, i.e. bn − an → 0.

This is essentially what the Nested Intervals Theorem says.

Theorem (Nested Intervals Theorem)
Let In = [an, bn] be a sequence of closed intervals satisfying each of the following conditions:

(i) I1 ⊇ I2 ⊇ I3 ⊇ . . . ,
(ii) bn − an → 0 as n→∞.

Then
∞⋂

n=1
In consists of exactly one real number x . Moreover both sequences an and bn converge to x .

So the theorem says that if the intervals are closed and satisfy (i) and (ii), then the intersection of all of
the intervals cannot be empty, and in fact there is exactly one real number x which lies in all of them.
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Theorem (Nested Intervals Theorem)
Let In = [an, bn] be a sequence of closed intervals satisfying each of the following conditions:

(i) I1 ⊇ I2 ⊇ I3 ⊇ . . . ,
(ii) bn − an → 0 as n→∞.

Then
∞⋂

n=1
In consists of exactly one real number x . Moreover both sequences an and bn converge to x .

Comments on the proof of the Nested Intervals Theorem
There are four things to prove:

(i) The sequence an converges to some number x .
(ii) The sequence bn also converges and its limit is x .
(iii) The number x lies in In for every n.
(iv) There cannot be more than one real number that lies in every one of the sets In.
(i) Do you see why an is a Cauchy sequence?
(ii) Do you see how to use results from section 1.4 to deduce this one?
(iii) This is very much like the exercise we did on the first slide.
(iv) Say (in order to obtain a contradiction) that x and y lie in In for every n, where x 6= y . Using the
assumption x 6= y , do you see how to produce a useful positive real number from x and y? Do you see
how to use that positive real number to obtain a contradiction?
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Theorem (Nested Intervals Theorem)
Let In = [an, bn] be a sequence of closed intervals satisfying each of the following conditions:

(i) I1 ⊇ I2 ⊇ I3 ⊇ . . . ,
(ii) bn − an → 0 as n→∞.

Then
∞⋂

n=1
In consists of exactly one real number x . Moreover both sequences an and bn converge to x .

Exercise.
Use the comments to write the proof of the Nested Intervals Theorem.
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Exercise
a) The theorem is false if we replace the condition that the intervals In be closed by the condition that they

be open. Show a counterexample which shows that the intersection can be chosen to be empty.
b) The theorem is false if we omit the condition that bn − an → 0. Give a counterexample.
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Definition
Let S be a subset of R. The set S is said to be dense in R if for every real number x there exists a
sequence sk consisting entirely of elements of S such that sk → x .

Theorem. Q is dense in R.

We will give two proofs of this. The first proof uses the interval halving method, and the second proof
is more direct.

Comments on our first proof of the exercise
Let x be a real number.

We must prove that there is a sequence in Q which converges to x .
If x ∈ Q, why does the result easily follow?
So assume that x /∈ Q.
Explain why there is an interval I1 = [a1, b1] such that x ∈ I1 and both a1 and b1 are rational.
If we apply the interval halving method beginning with the interval I1, why is it true that all the
subsequent intervals In = [an, bn] have endpoints that are rational?
Relative to the given x , how should the intervals in the interval halving method be selected?

6 / 10



Theorem. Q is dense in R.

Exercise.
Write a proof of the theorem using the comments above.
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Before we give a second proof of the exercise, we first prove a theorem which establishes an equivalent
formulation that a set S is dense in R.

Theorem
Let S be a subset of R. Then S is dense in R if and only if every open interval contains a point of S.

Comments on the proof of the theorem
You have to prove two things here:

(i) Assuming that S is dense in R, you have to prove that any open interval contains at least one point of S.
(ii) Assuming that S has the property that every open interval contains at least one point of S, you have to

prove that S is dense in R.
(i) Give yourself an open interval I. Let x be any point of I. Assuming that x /∈ S, how can you use
the density of S to deduce there are lots of points of S in I?
(ii) Let x be any point of R. Assuming that x /∈ S, how can you use the fact that every open interval
contains a point of S to deduce that there is a sequence of points of S converging to S?

Exercise.
Use the above comments to write a proof of this theorem.
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Now let’s return to the exercise and give a second proof using this alternate formulation of density.

Theorem. Q is dense in R.

Comments on the second proof of the exercise.
For this proof we have to show that every open interval (a, b) contains a rational number m/n.
The m and the n have a different role to play. Think of n as determining a “grid size” 1/n, so that the
various multiples of m/n allow us to partition R into closely spaced rationals (the spacing determined
by how large is n).
The closer is a and b, the more challenging it is to find a rational in between, and so the smaller the
required grid size.
A measure of the closeness of a and b is the quantity ε := b − a.
This suggests that the grid size should be less than ε, so we’d like to choose n ∈ N such that
0 < 1/n < ε. How do we know we can do that?
Notice that since 0 < 1/n < b − a then nb − na > 1.
Since the spacing between nb and na is more than 1, what does that allow us to do?

Exercise.
Use the above comments to write a second proof that Q is dense in R.
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Comments on the construction of R from Q

So every real number can be obtained as a limit of a sequence of rational numbers.
This suggests a way to prove the existence of a set having all of the desired properties of the real
numbers.
The advantage of working with Cauchy sequences is that it gives a condition of convergence of a
sequence without specifying what the sequence converges to.
And one can formulate what is a Cauchy sequence of rationals without any mention of real numbers.
Consider the set consisting of Cauchy sequences of rationals.
We define a relation on the set as follows: we say that the Cauchy sequence xn is related to the Cauchy
sequence yn provided |xn − yn| → 0. It’s not hard to prove that this is in fact an equivalence relation.
By the Equivalence Class Theorem, this partitions the set of Cauchy sequences of rationals into
disjoint equivalence classes.
One then defines R to be the set of distinct equivalence classes, i.e. a real number is defined to be an
equivalence class. One can place a structure on this set and prove it has all the properties that R is
supposed to have.
This process of producing R from equivalence classes of Cauchy sequences in Q is known as “the
completion of Q”.
It can be done in greater generality. Given any set X on which there is enough structure to talk about
“Cauchy sequences”, but which has the property that not all Cauchy sequences converge, one can
“complete X” to obtain a bigger set X such that all Cauchy sequence in X do converge. This set X is
obtained as equivalence classes of Cauchy sequences in X .
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