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A two-dimensional volatile liquid droplet on a uniformly heated horizontal surface is considered. 
Lubrication theory is used to describe the effects of capillarity, thermocapillarity, vapor recoil, 
viscous spreading, contact-angle hysteresis, and mass loss on the behavior of the droplet. A new 
contact-line condition based on mass balance is formulated and used, which represents a 
leading-order superposition of spreading and evaporative effects. Evolution equations for steady and 
unsteady droplet profiles are found and solved for small and large capillary numbers. In the steady 
evaporation case, the steady contact angle, which represents a balance between viscous spreading 
effects and evaporative effects, is larger than the advancing contact angle. This new angle is also 
observed over much of the droplet lifetime during unsteady evaporation. Further, in the unsteady 
case, effects which tend to decrease (increase) the contact angle promote (delay) evaporation. In the 
“large” capillary number limit, matched asymptotics are used to describe the droplet profile; away 
from the contact line the shape is determined by initial conditions and bulk mass loss, while near the 
contact-line surface curvature and slip are important. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Many processing systems involve trijunctions where 
phase transformations occur. Czochralski, and other 
meniscus-defined, crystal growth configurations are ex- 
amples. They also appear in enclosed configurations such as 
directional solidification. An important instance of trijunction 
behavior involves a contact line across which evaporation/ 
condensation occurs. For example, the behavior of the me- 
niscus is critical in the heat transfer properties of a heat pipe, 
where a liquid layer is used to remove heat from a hot sur- 
face. 

Theoretical and experimental work related to evapora- 
tion at contact lines has focused on microscopic details of the 
region. Renk and Wayner studied experimentally’ and 
analytically’ a steady evaporating meniscus in which 
capillary-induced flow toward the meniscus balanced the liq- 
uid lost due to evaporation. They found that the evaporating- 
meniscus profile was a function of the evaporative heat flux. 
Moosman and Homsy3 followed with a more detailed analy- 
sis of the same configuration in which they included the 
effects of the meniscus extending to an adsorbed liquid layer. 
They reported an increase in the apparent contact angle when 
evaporation is present. Sujanani and Wayner4 studied experi- 
mentally a similar configuration and observed an increase in 
the contact angle on microscopic scales when evaporation is 
present. Ripple’ analyzed the motion of a meniscus on a 
heated surface on microscopic scales, where the contact-line 
region extends to a monolayer away from the bulk &rid. He 
described the effects of evaporation, thermocapillarity, and 
intermolecular forces on the meniscus. He found that the 
microscopic contact angle could be calculated and that it 
increased with increasing evaporation rate. Wayner6 ana- 
lyzed the motion of a meniscus due to an evaporation/ 
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condensation process wherein liquid evaporates from the 
thicker portion of the layer and condenses on a microscopic 
film ahead of the meniscus. He correlated an increase in the 
macroscopic contact angle with contact-line motion due to 
this evaporation/condensation process. 

Although the modeling of evaporation on microscopic 
scales has led to information on macroscopic contact angles, 
the precise description is still unclear. The aim of the present 
work is to describe the evaporation process macroscopically. 

There have been macroscopic descriptions of nonvolatile 
liquid droplets. Ehrhard and Davis7 analyzed the behavior of 
a nonisothermal liquid droplet on a uniformly heated hori- 
zontal surface and described the effects of capiIlarity, ther- 
mocapillarity, gravity, and viscous spreading on the dynam- 
ics of the droplet. They found that thermocapillarity retards 
(promotes) spreading when the substrate is heated (cooled). 
Ehrhards performed experiments on both isothermal and 
nonisothermal droplets and found good agreement with the 
theoretical predictions of Ehrhard and Davis.7 

In the present work, we consider a two-dimensional 
volatile liquid droplet on a uniformly heated horizontal sur- 
face. We use lubrication theory to describe the effects of 
capillarity, thermocapillarity, viscous spreading, and mass 
loss on the behavior of the droplet. The evaporation model 
and the small-slope analysis is analogous to that of Burel- 
bath, Bankoff, and Davis9 for continuous films; however, in 
the present case there is a contact-line region which requires 
additional attention. The current work extends that of 
Ehrhard and Davis7 to the competition between the effects of 
evaporation and the tendency of the drop to spread or recede. 
In Sec. II we discuss the one-sided model for the evaporation 
of a two-dimensional volatile liquid droplet on a uniformly 
heated plate. In Sec. III we formulate a new contact-line 
condition, based on a mass balance at the contact line, which 
represents a first step in understanding how viscous spread- 
ing and evaporation affect contact-line dynamics. In Sec. IV 
we obtain an evolution equation for the two-dimensional 
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HEATED PLATE a(t) 

FIG. 1. The two-dimensional evaporating droplet. The contact-line location 
is given by x=a(t), the contact angle by 0(t), and the liquid-vapor inter- 
face location by z=h(x,t). The bottom plate, at z=O, is uniformly heated 
and there is a resulting evaporative mass flux, J(x,t). 

droplet profile based on a lubrication approximation. In Sec. 
V we consider a steady droplet profile obtained by balancing 
evaporative mass loss with an influx of mass through a 
source in the base. This leads to a steady contact angle, rep- 
resenting a balance of viscous spreading effects and evapo- 
rative effects, which is JiJf2’erent from the steady contact 
angle achieved when no evaporation is present. In Sec. VI 
we consider the unsteady droplet dynamics in several limits 
and discuss results for water and ethanol drops. Here we find 
that several cases lead to a constant contact angle, which is 
the same steady contact angle as described above, over much 
of the droplet lifetime. Finally, in Sec. VII we summarize the 
results. 

II. FORMULATION: ONE-SIDED MODEL 

We consider a two-dimensional droplet of a volatile liq- 
uid on a uniformly heated horizontal surface as shown in Fig. 
1. The liquid-vapor interface is given by z= h(x,t), with 
contact lines x = t a (t), and contact angle O(t) . There is an 
evaporative mass flux, J(x,t), through the liquid-vapor in- 
terface, to be determined. In general the dynamics of the 
liquid and vapor phases are coupled. However, we shall 
adapt the one-sided model of evaporation by Burelbach, 
Bankoff, and Davis’ given for a continuous film, which ef- 
fectively decouples the dynamics of the liquid from the dy- 
namics of the vapor. The basis for this model is the assump- 
tion that the density, viscosity, and thermal conductivity in 
the vapor phase are negligible compared with that in the 
liquid phase. The exception to this is that the vapor density is 
retained when multiplied by the vapor velocity, which may 
be large. This is analogous to a Boussinesq approximation in 
buoyancy-driven convection where density variations are ne- 
glected except when multiplied by gravity. This one-sided 
model allows for the determination of the liquid-vapor in- 
terface position without the necessity of computing the ther- 
mal and flow fields in the vapor phase. We shall only high- 
light the details of this model which are modified in the 
present analysis and those which are important in the under- 
standing of the physical mechanisms to be studied. 

The flow is assumed to be incompressible, and governed 
by the Navier-Stokes equations. The temperature is gov- 
erned by the thermal diffusion equation. In order to take into 
account the presence of the contact line, the one-sided model 
here is modified by the inclusion of slip, measured by a 

constant slip coefficient, p* (e.g., Dussan V.,” Davis,” and 
Ehrhard and Davis7). We shall neglect the effects of van der 
Waals attractions and gravity. The boundary conditions on 
the liquid-vapor interface are the mass balance, energy bal- 
ance, the normal- and shear-stress balances, and a constitu- 
tive law relating temperature and mass flux. 

We assume that the surface tension, a, is linearly related 
to the local interface temperature, TI, by 

CT= go- y(Tr- T.4, (1) 

where a, is the reference value of surface tension, y is a 
positive constant, and Ts is the saturation temperature. This 
gives rise to thermocapillary effects through the balance of 
shear stress with surface tension gradients along the liquid- 
vapor interface. Surface tension variations in the normal- 
stress boundary condition are taken to be higher-order effects 
(small capillary number) and are not included in this analy- 
sis. 

The normal-stress boundary condition represents a bal- 
ance of the constant value of surface tension times curvature 
with a pressure jump across the interface plus an additional 
normal force associated with the vaporizing particles. This 
additional force appears in the normal-stress boundary con- 
dition as a product of mass flux times the jump in the normal 
velocities between the liquid and the vapor phases. Since 
mass is conserved at the evaporating interface, the slowly 
moving liquid particles are accelerated dramatically upon 
evaporation owing to the highly disparate densities between 
the vapor and the liquid. As a result of the vapor velocity 
being much larger than the liquid velocity, the additional 
normal force is, to leading order, just the product of the mass 
tlux times the vapor velocity. This normal force can be 
thought of as an additional pressure acting down on the 
liquid-vapor interface. This normal force, or pressure, ex- 
erted on the liquid-vapor interface by these escaping par- 
ticles is called vapor recoil (see also Palmer” and Burelbach, 
Bankoff, and Davis’). 

The final boundary condition that we shall highlight here 
involves a linearized constitutive equation, which relates the 
mass tlux, J, to the local interface temperature. Following 
Burelbach, Bankoff, and Davis’ we take this to be 

K”J=TI-Ts, (2) 

where the constant K” measures the degree of nonequilib- 
rium at the evaporating interface and is related to material 
properties. The derivation of this equation is based on kinetic 
theory (e.g., see Wayner13 and Careyr4). When K”-+O, cor- 
responding to a highly volatile droplet, the interface tempera- 
ture approaches the saturation temperature nonuniformly; 
there is a rapid relaxation of the temperature near the contact 
line. The case K” = 0 gives infinite heat tlux at the contact 
line. The limit K” 4~ corresponds to a nonvolatile droplet 
where there is zero mass flux, J = 0. 

Ill. CONTACT-LINE DYNAMICS 

Since both the contact line and the liquid-vapor inter- 
face are free boundaries, additional information is needed in 
order to determine the contact-line position. Empirical stud- 
ies (see Dussan V.r’) on the spreading behavior of nonvola- 
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tile liquid droplets have led to the use of a constitutive rela- 
tion between fluid velocity at the contact line, ucL, and the 
contact angle given by 

%L= vf( e>, 

where f(e) is an increasing function of 6 given by 

(34 

i 

(S- e,y for 00,) 

s(e)= 0 for I&< i3< 0, , t3b) 
(e-ham for e<eR, 

where ~7 and m are empirically determined constants (in gen- 
eral the value of 17 may differ for 6J> 0, and for 8< 8, ; 
however, for simplicity, we take here a single value). Here 
HA is the advancing contact angle and t?a is the receding 
contact angle. Contact-angle hysteresis is present when 
ti4 # BR . Then, when 0 E [ 6, , S,], the contact line is static. 
The value, m=3, for the mobility exponent is in agreement 
with experimental results by Schwartz and Tejada,r5 
Hoffman,16 and Ehrhard.8 

When evaporation is present, the mass balance at the 
contact line is 

da J(a) 
dt= - pL sin 0(t) +ucL* (4) 

This new condition shows that the speed of the contact line is 
not, equal to the &rid velocity there; the difference being 
related to the mass loss. When there is no evaporation, J= 0, 
this equation reduces to the nonvolatile result where the 
speed of the contact line is equal to the fluid velocity. This 
condition also shows that even when the fluid is at rest, 
ucL=O, the contact line still can move as a result of mass 
loss. 

Since the contact-line speed, daldt, and the fluid veloc- 
ity, ucL, are distinct, previous data on ucL vs 6 do not applv 
here and there are no data known to the authors that repre- 
sent ucL when phase transformation is present. Thus, we 
must pose a constitutive relation that is plausible and reduces 
to known cases in special limits. We take this to be of the 
same form as in the nonvolatile case and write ucL= 77f( 0). 
We combine this with Eq. (4) to give 

da J(a) -=- 
dt pL sin 0(t) + rlf(N. 

When evaporation is absent, Eq. (5) reduces to the nonvola- 
tile case. The assumed form can be thought of as a leading- 
order superposition of the effects of (weak) mass loss and the 
effects of (weak) viscous spreading acting to determine the 
contact-line motion. 

We can further understand the form (5) by writing 6, as a 
function of daldt and J(a), viz., 

(@- 8M)m=F z,J(a) , 
i i 

where BrM represents either 6)A or 0, depending on the sign 
of daldt. If both jdaldtl and jJ(a)l were small, then 
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(O-O,)m- Pd,/dt(O,O)+J(a)F,(,)(O,O) (7) 

and the partial derivatives can be identified as 

F da/dt(0,0)= )7--l, FJ(,j(O,Oj=Cvp~ sin b)-' (8) 

with 77 and m given by their nonevaporative values. Thus, we 
shall suppose that even when evaporation is present, m = 3. 

On a microscopic scale there have been suggestions that 
6, depends on the mass flux (e.g., Sujanani and Wayne? and 
%pple5). Our suggestion is that this dependence of the con- 
tact angle on mass flux is also the case on the micron scale 
where effective slip occurs. We emphasize that, analogous to 
the nonvolatile case, the precise form of ucL when evapora- 
tion is present must be determined empirically. An aim of the 
present work is to investigate a leading-order description of 
contact line behavior that can be tested experimentally. 

IV. EVOLUTION EQUATION 

We shall analyze this model using a lubrication approxi- 
mation which is applicable for thin droplets. We adopt the 
following scales. The horizontal and vertical scales are the 
initial droplet radius, a, and height, ho= aoBo/2, where 6, is 
the initial contact angle. The volume is scaled on 2aoho. The 
contact angle, 0, scales on the aspect ratio, E= ho/an. Stan- 
dard lubrication scales are chosen for the velocities and pres- 
sure in which the pressure gradient balances the viscous term 
in the horizontal component of the Navier-Stokes equations. 
The temperature relative to the saturation temperature scales 
on the difference, AT= TH-- T, , between the imposed plate 
temperature and the saturation temperature. The mass thrx 
scale is chosen from the energy balance on the interface to 
balance latent heat of vaporization with heat flux, and is 
given by kATlh&., where k is the thermal conductivity in 
the liquid and L is the latent heat. There is an evaporative 
time scale, t,=p,,h$/(kAT) and also a viscous time scale 
t,=h$u, where pL is the density of the liquid, and u is the 
kinematic viscosity of the liquid. We shall introduce a di- 
mensionless time, 7, based on the slow viscous time scale, 
tvle, which leads to quasisteady temperature and velocity 
fields. 

We use a standard approach (.e.g., see Greenspan,17 
Hocking,r8 Haley and Miksis,” and Ehrhard and Davis7) to 
derive an evolution equation for the droplet protile where the 
temperature, fluid velocities, and mass flux, can be written 
down in terms of h and its derivatives. Details of this calcu- 
lation can be found in Anderson.“’ The evolution equation 
for the two-dimensional droplet profile, h, is 

h,+ &+$[?‘h++fh)h,, 

- h(/3+ $z_h)h, 2b2 h”(jI+ $h)h, 
+MK (K+h)’ + 7 (K+h13 1 = 0. (9) 

The nondimensional parameters which arise here are 
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TABLE I. Nondimensional parameters for water and ethanol; c =capillary absence of gravity, can be recovered from ours by taking 
number, i? =evaporation number, $=Marangoni number, p=density ratio, E= 0, K= l/B, where B is their Biot number, and then res- 
K=nonequilibrium parameter. caling. 

Water Ethanol The other unknowns in the problem are related to h as 
follows. The mass flux is given by 

C-’ (Iz&m)Z 6.8X106 1.0x106 
E.(l/E) 1.ox1o-2 4.9x10-3 
it? (I+m).5 2.1x10” 4.5x105 
jw2) 6.3X 1O-4 2.ox1o-3 
K (/2&m)-’ %3x10-6 3.1x10-6 

1 kAT g=-- 
E PLVL 

(evaporation number) 7 

P 
p = x (slip coefficient), (lob) 

i~=$z (density ratio), 

&J-!IJ& (capillary number), 

YATho 
1c;r’ET 

PLV 
(Marangoni number), 

(104 

K=K* -!!- (nonequilibrium parameter). 
W 

Note that the barred quantities have been scaled on the aspect 
ratio, similar to that done by Burelbach, Bankoff, and Davis,’ 
and all the parameters listed in Eq. (10) are assumed to be 
O(1) in the limit e-+0. 

The first and second terms in Eq. (9) are the unsteady 
and mass-loss terms. Note that E is the ratio of the slow 
viscous time scale to the evaporative time scale and mea- 
sures the strength of evaporation. The term multiplied by. 
e-l is the curvature term, and the last two terms correspond 
to thermocapillarity and vapor recoil, respectively. Table I 
shows typical values for the nondimensional parameters for 
water and ethanol (based on the physical constants listed in 
Burelbach, Bankoff, and Davis’). 

Special cases of Eq. (9) have been derived by several 
authors. Greenspanr7 considered isothermal spreading of a 
two-dimensional or axisymmetric droplet and derived an 
evolution equation which included unsteady and capillary 
effects, using a slip coefficient p- l/h, and a contact angle 
linearly dependent on contact-line speed. Hockingzl derived 
the analogous evolution equation, using a constant slip coef- 
ficient and a constant contact angle, describing the effects of 
capillarity and gravity on the motion of a two-dimensional 
droplet on an inclined plane and later” derived a similar 
equation for an axisymmetric drop for a horizontal surface. 
Burelbach, Bankoff, and Davis’ derived an evolution equa- 
tion including the effects shown in Eq. (9) plus an additional 
term due to van der Waals attractions. They considered con- 
tinuous thin films without contact lines so that slip was not 
introduced (p=O). Ehrhard and Davis7 derived an evolution 
equation which includes the nonevaporative thermal effects 
of Eq. (9) plus the effects of gravity. Their system, in the 

1 
J=K+h 

and the temperature is given by 

(11) 

T=i-&. (12) 

Note that the mass flux varies in space and time through the 
droplet profile, h, and is strongest at the contact line where 
h = 0. Here we see directly the effect of the nonequilibrium 
parameter, K, on the mass flux and temperature. The mass 
tlux becomes increasingly strong as K gets smaller. As 
K-+0, the temperature of the interface approaches the satu- 
ration temperature everywhere except near the contact line, 
where it rapidly approaches the plate temperature. This cor- 
responds to very large heat fluxes, and hence, very large 
mass fluxes, near the contact line. As K--+cQ, the temperature 
of the interface approaches the plate temperature. Here the 
heat flux and hence, mass flux, approach zero. The horizontal 
and vertical components of the fluid velocity, u and w, are 
likewise related to h. The specific forms can be found in 
Anderson.20 

Equation (9j is subject to boundary and symmetry con- 
ditions, 

%44,d=O, (134 

clh 
-I$ (44,4= -@Cd, 

dh 
z (0,-T)= 2 (0,7)=0; 

contact-line condition, 

E 
a&j=- K0(7) ~ + tm(7)); 

and the global mass balance 

E 
WX, 7) f K+h(x,T) 

dx=O. 

WI 

(is) 

Here G= ( v/v) (nho , and f( 0) is given by Eq. (3b) with 0, 
and t& replaced by 0, and @,, where (0,13,,0,) 
= ~(0, OA ,O,). There are also initial conditions at the con- 
tact line, a(O) = 1 and 0(0)=2, and on the droplet profile. 

In contrast to past analyses, the volume of the droplet is 
not conserved; the rate of change of mass in the droplet is 
equal to the mass loss through the interface due to evapora- 
tion. Note that the contact-line condition and global mass- 
balance conditions reduce for E=O to those of viscous 
spreading and conservation of volume. 

Table II shows representative values for the parameter 
appearing in Eqs. (9), (14), and (15) for water and ethanol 
systems. We have taken the value of K here to be larger than 
that shown in Table I for demonstration purposes. However, 
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TABLE II. Parameter values for different initial profiles for water and eth- 
anol; C=capillary number, E=evaporation number, M=Marangoni num- 
ber, j=density ratio, K=nonequilibrium parameter, p=slip coefficient, G 
=characteristic spreading velocity, @,=receding contact angle, 
0, = advancing contact angle. 

a=O.l e=o.o05 
Water Ethanol Water Ethanol 

6-l 6.8X 102 1.ox1oa 1.9x10-2 2.8x10-3 
E 0.1 4.9x 10-a 2.0 0.98 
K 2.0x 10-j 1.ox1o-3 1.0x 10-a 5.0x 10-a 
P/j 1.6X10-* 1.2x10-3 7.9x 10-4 6.0X10-’ 
MK 0.17 0.14 8.7x10-a 7.0x 10-a 
P 0.01 0.01 0.04 0.04 
r-l 0.03 0.02 10-7 1O-7 
0, 0.1 0.1 2.0 2.0 
0 A 0.1 0.1 2.0 2.0 

we can associate the value of K with the inverse of the Biot 
number used by Ehrhard and Davis7 and therefore argue that 
a wider range of K, including larger ones, are relevant for 
these systems. Further, results in Sets. VI A and VI C show 
the sign&ant quantitative changes in the results for small 
values of K. ‘MO sets of values are shown; e=O.l (ho=O.l 
cm and ao=l cm), and ~=0.005 (h,=0.022 36 cm and 
a,=4.472 cm). These values were chosen so that each case 
has the same initial volume. Only the initial configurations 
are different (thin, and thinner, respectively). Here, as an 
order of magnitude estimate for 77 we have taken 7 -1 cm/s 
[where )7= (~/v)~~h,J (Schwartz and Tejada”) and have 
also used m=3 for both water and ethanol. It should be 
noted that the exact values of 17 appropriate here are not 
known to the authors. These values will depend on specific 
properties of the substrate, and in general need to be deter- 
mined experimentally. 

The parameter values in Table II show that two general 
cases may be of interest; C-‘+l? and c-’ g”E. Therefore, 
we shall consider two limits- which simplify this system. 
First, we shall look at the small capillary number limit, 
c-0, where surface tension is dominant. Then, we shall 
look at the “large” capillary number limit, c-‘-+0, where 
evaporation is the dominant mechanism determining the 
droplet profile. Our aim is to understand how the physical 
mechanisms involved interact in determining the dynamics 
of the droplet. After determining the general behavior, we 
shall show results for parameter values corresponding to wa- 
ter and ethanol drops. 

V. STEADY SPREADING AND EVAPORATION 

In order to focus on the effects of the mass loss on 
contact-angle dynamics, we shall define a steady, two- 
dimensional, evaporating droplet. Such a configuration, 
shown in Fig. 2, can be achieved by pumping liquid through 
a localized opening in the base of the droplet (away from the 
contact line) at a rate which exactly balances the mass loss 
through the interface due to evaporation. Although this con- 
figuration may be idealized, it does serve as a good illustra- 
tion of certain principles and identifies an important balance 
at the contact line. One could also imagine the same type of 

J(x) 

Q 

FIG. 2. The steady two-dimensional evaporating droplet with mass Hux 
through the base. When the mass flux through the base balances the evapo- 
rative mass flux through the liquid-vapor interface, a steady droplet con- 
figuration can be achieved. 

situation occurring at the leading edge of an evaporating liq- 
uid film on an incline where the amount mass being supplied 
by the flow down the incline is exactly matched by the 
amount lost due to evaporation, creating a steady configura- 
tion. Steady menisci at which phase transformation occurs 
are common in heat pipes, for example, and the configuration 
we treat here is fundamentally the same. The key results of 
this section will be largely independent of the particular 
steady configuration chosen to illustrate them. 

The formulation of this problem is identical to the pre- 
vious case with the exception that the boundary condition 
w = 0 on z= 0 is replaced by w = W(x). With the assumption 
that W(x) is sufficiently localized such. that W(a) =O, we 
obtain the generalized evolutionary system similar to Eqs. 
(9), (14), and (1% 

h,+ A- W(x)+; [i?h’j/?+ f h jh_ 

+IiiK 
h(P+ ;h)h, 2l? h’(/?+ $h)h, 

(K+h)2 $7 (K+h)3 1 WJ) 
=” 

‘d7)= - &--iT) -J--+ ;if@i4), 

and 

E 
Ux, 4 + K+h(x,s-) w(xjdx. (18) 

subject to the boundary conditions (13) and initial condi- 
tions. 

Steady solutions satisfy the above system with all time 
derivatives set to zero. In this case, we immediately find that 
the contact-line condition (17) gives the steady value OS of 
0, in which evaporative mass loss balances spreading. Since 

E 
+f(@d= m’O1 

8,>0, always; evaporation gives an apparent angle 
greater than, possibly much greater than, 0, . 0, satisfies 

I? 
c&(0,-ep&. i20) 

This gives an explicit value for 0, on a macroscopic scale, 
which includes the effects due to phase transformation. Note 
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that this result is determined at the contact line and is not 
dependent on details of the profile away from the contact 
line. Therefore, this result holds for the steady evaporating 
droplet as well as for the leading edge of a steady evaporat- 
ing liquid am, for example. We note here that Ripple5 ana- 
lyzed a mic$oscopic evaporating contact line, which included 
intermolecular forces and an adsorbed liquid film, and pre- 
dicted an increased microscopic contact angle with increased 
evaporation. Also, steady microscopic contact angles were 
achieved experimentally by Sujanani and Wayner4 and were 
found to increase with increased evaporation. Information on 
macroscopic contact angles suggests that they also increase 
with evaporation (e.g., Moosman and Homsy3 and Wayne& 
Chung and Bankoff2’ found that their static rivulet and dry- 
patch models, which describe the breakdown of a volatile 
liquid film into rivulets, would be consistent with their ex- 
perimental observations only if the contact angle were taken 
to be “large.” Comparison of steady macroscopic contact 
angles found experimentally with the predictions of Eq. (20) 
may be the most direct way to test the range of validity of 
our contact-line condition. 

For purposes of illustration we shall seek a’solution of 
the evolution Eq. (16) with c= 0. This gives a parabolic 
profile 

h(x)= 2 (ai-x2). 

We substitute this into Eq. (18) and integrate to obtain 

2Eas 
- tanh-’ 
OsaJ 

W(x)dx=Q, 

(21) 

(22) 

where ai = [ug + (2asK/Os)]1’2, which determines the 
droplet radius, as, for a given inflow W(x). Alternatively, 
for a given equilibrium volume, which fixes as, the neces- 
sary intlow is given from Eq. (22). It is important to note that 
while the drop profile and contact-line position are constant 
in time, there is fluid motion corresponding to the flow from 
the source to the droplet surface where it evaporates. This 
can be seen clearly from the original mass balance (4) which 
shows that un, regardless of its form, must be positive for 
evaporation at a stationary contact line. 

The effect of evaporation on the droplet profile can be 
seen if we compare a profile in this case, where @,>O, , 
with one in which no evaporation occurs, where @Is= OA . 
Figure 3 shows two such profiles with the same initial con- 
ditions and equilibrium volume. Recall that h and x are 
scaled quantities and therefore the profiles do not appear to 
be “thin.” Here OA=O.l, E=0.5, K=O.l, G=O.l, and 
nz = 3. The lower profile in Fig. 3 corresponds to the equilib- 
rium configuration in the case of no evaporation. Here the 
drop has gone from its initial configuration to its equilibrium 
configuration solely due to viscous spreading. The steady 
profile shown is the taller one in Fig. 3 and has nonzero Q. 
Note that it has a slightly smaller radius than the initial ra- 
dius of 1.0. These two profiles show that the presence of 
evaporation can have a dramatic effect on the equilibrium 
droplet profile, and in particular on the steady contact angle. 
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FIG. 3. Zero capillary number, steady spreading, and evaporation: T.vo 
droplet profiles with c=O, @)A=OR=O.l, G=O.l, and m=3. The upper 
profile corresponds steady evaporation with E= 0.5 and K=I). 1, and 
Q=O.68 while the lower profile corresponds to no evaporation: E= 0 and 
Q = 0. Note that the shape is independent of p, A?, and fi whed C? = 0. Both 
correspond to the same initial and fmal volumes and the same initial condi- 
tions, a(O) = 1, O(O)=2 Note that in the absence of evaporation the drop 
has spread to an equilibrium configuration with OS= OA while with evapo- 
ration, the drop has receded to a smaller radius and OS>@, , as given by 
es. cm. 

VI. UNSTEADY SPREADING AND EVAPORATION 

We return to the two-dimensional droplet in the absence 
of injected fluid, Q = 0. In ‘the problems that follow, we shall 
be particularly interested in the implications of the contact- 
line condition (5) which we propose. 

A. Zero capillary number 

Consider equations (9), (14), and (15) for c=O with all 
other parameters 0( 1). As discussed by Rosenblat and 
Davis,“3 this limit leads to an outer solution in time for the 
drop profile; the initial conditions on h are dropped while 
those at the contact line are enforced. We also note that the 
profiles calculated with 2 =0 are independent of slip, ther- 
mocapillarity, and vapor recoil (i.e., independent of p, h?, 
and @). 

Note that if we integrate Eq. (9) in x from 0 to a(~), 
taking into account symmetry, we obtain the global mass- 
balance equation (15). Therefore, solutions to the full time- 
dependent evolution equation automatically conserve mass 
globally. However, in the limit’ CiO, we retain only the 
curvature term to leading order in Eq. (9) and hence must 
enforce the global mass-balance (15) separately in order to 
retain the effects of bulk. evaporation. In this limit, the 
contact-line condition retains its time derivative and the 
contact-line dynamics is essential to the droplet motion. 

The solution of the evolution equation (9) with c= 0 
and satisfying boundary conditions (13) is given simply by 

h&,7)=; (&x2), (23) 
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FIG. 4. Small capillary number, unsteady spreading, and evaporation: a( 7) 
vs ~-showing the effects of the different mechanisms in the “strong” evapo- 
ration regime. Here E=0.5, K=O.l, i/=0.1, @,=O,=O.l, and m=3. 
The dashed curve corresponds to C? = 0 and is independent of the thermocap- 
illary, vapor recoiI, and unsteady and mass loss terms in the evolution equa- 
tion, and the slip coefficient p. While the initial contact angle is significantly 
larger than the static advancing contact angle, the droplet radius decreases 
monotonically to zero. The solid curves correspond to c=O. 1 and have 
p=OS. Solid curve #l has A?=0 and $g m and isolates the effect of the 
unsteady and mass loss terms. Solid curve #2 has A?= 1 .O and ,?~=a. Solid 
curve #3 (nearly overlapping but just outside curve #l) has A?=0 and ii 
= 10. We see that in each of these cases, the droplet lifetime is increased 
from the c=O case. 

where a and 0 are to be determined. This profile is the 
lubrication version of a constant curvature profile, where sur- 
face tension is dominant. The global mass balance (15) then 
gives 

-$ (@a”)=-6E & tanh-l 3 , 
l 1 

where at= [a’+(2aK/O)] 1’2. This, coupled with Eq. (14) 
subject to initial conditions, gives an evolutionary system for 
a and 0. Note that with c=O the droplet profile is indepen- 
dent of thermocapillarity and vapor recoil. We have solved 
this system numerically using a Runge-Kutta scheme [IMSL 
routine DIVPRK). The solution is quasisteady; the drop equili- 
brates instantaneously to the parabolic profile given in Eq. 
(23) and depends on time only through a and (9, which 
evolve due to viscous spreading and bulk mass loss. In the 
analysis of this evolutionary system, we shall identify the 
effects of mass loss, viscous spreading, and contact-angle 
hysteresis. 

In terms of the competition between viscous spreading 
and evaporation we find that there are two typical regimes. If 
we look at the contact-line condition (14) evaluated at r-0, 
we find that adO) can be either positive or negative. That is, 
although evaporation is present, ,!? # 0, and always results in 
the disappearance of the droplet, the droplet may still spread 
initially. Specifically, we find that if 

- ;+ ijf(2)<0 (>O)-ta,(O)cO (>O). (25) 

We shall denote the first case, where a,(O)<O, the 
“strong”-evaporation regime, and the second case, where 
a ,.( 0) > 0, the “weak’‘-evaporation regime. 

The following results correspond to K= 0.1, 7;1y 0.1, 
O,=O,=O.l, m=3; there is no contact-angle hysteresis. 
In the strong-evaporation case we take l?= 0.5 while in the 
weak-evaporation case l!? = 0.05. 

Solutions for the strong-evaporation regime are shown in 
Figs. 4 and 5, showing a vs r and the corresponding value of 
0 vs r, respectively. In both figures, the dashed curve corre- 
sponds to the solution with c = 0, which has no corrections 
due to the unsteady and mass loss terms, thermocapillarity, 
or vapor recoil (solid curves in these figures correspond to 
2 # 0 and are discussed in the next section). Here we see that 
while the initial contact angle is significantly larger than the 
thermostatic advancing contact angle [O(O)=2 while 
OA =O. 11, evaporation is strong enough that the droplet 
never spreads. The droplet radius decreases monotonicalljr to 
zero (see Fig. 4). The contact angle, 0, increases initially to 
a relatively constant value, a contact-angle plateau, where it 
remains until the droplet has nearly disappeared (see Fig. 5). 
Note that this value is approximately 2.5 while the steady 
angIe, OS, given by Eq. (20) and representing a balance 
between viscous spreading and evaporative effects, is 2.73 
for these parameter values. The results point out that it is 
possible for the system to maintain contact angles signifi- 
cantly larger than the static contact angle 0,) by balancing 
spreading and mass loss. 

Solutions for the weak-evaporation regime are shown in 
Figs. 6 and 7. In both figures the dashed curve corresponds to 
the result for c= 0 (again, the solid curves have c # 0 and 
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FIG. 5. Small capillary number, unsteady spreading, and evaporation: O(T) 
vs Q corresponding to Fig. 4. Here E=OS, K=O.l, G=O.l, 
@a= OA=O.l, and m=3. The dashed curve corresponds to c?=O and 
shows that 0 increases initially to a nearly constant value, where it remains 
until the droplet has nearly disappeared. This constant value is approxi- 
mately Bs , the angle which is obtained by a balance of viscous spreading 
and evaporative effects at the contact line. Note that when c = 0 the droplet 
profile is independent of slip, Marangoni effects, and vapor recoil. The solid 
curves marked #l, #2, and #3 correspond to those in Fii. 4 having the same 
parameter values. In each case, the effect of these terms is to increase the 
contact angle from the E = 0 case and to slow evaporation. 
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FIG. 6. Small capillary number, unsteady spreading, and evaporation: a(r) 
vs z showing the effect of the different mechanisms in the “weak” evapo- 
rationregime.HereE=0.05,K=O.l, Yj=O.l, @a=(+,=O.l,andm=3. 
The dashed curve corresponds to C = 0. Now we see that the droplet spreads 
initially before eventually disappearing. The solid curves correspond to 
C-O.1 and have p=O5. Solid curve #l has A?=0 and P=@J and isolates 
the effect of the unsteady and mass loss term. Solid curve #2 has k = 1 .O 
and i)=m. Solid curve #3 has &f=O and 6=0.025. We see that in each of 
these cases, the droplet lifetime is increased from the C= 0 case. 

are discussed in the next section). Although the droplet ulti- 
mately disappears, we now see that initially the droplet 
spreads (Fig. 6). The contact angle in this case decreases 
monotonically (Fig. 7). Again we note the presence of a 
contact-angle plateau; this value is roughly 1.4 while the 
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FIG. 7. Small capillary number, unsteady spreading, and evaporation: O(r) 
vs z corresponding to Fig. 6. Here E=O.05, K=O.l,- G=O.l, 
OR=OA=O.l, and m=3. The dashed curve corresponds to C=O and 
shows that 0 decreases monotonically. However, there still is a region in 
which 0 remains nearly constant. Again, this constant value is approxi- 
mately es, the angle which is obtained by a balance of viscous spreading 
and evaporative effects at the contact line. The solid curves marked #l, #2, 
and #3 correspond to those in Fig. 6 having the same parameter values. We 
see that in each case, the effect of these terms is to delay evaporation. 

FIG. 8. Zero capillary number, unsteady spreading, and evaporation:-a(T) 
vs r showing the effect of contact-angle hysteresis. In each case C-O, 
E=O.l, K=l.O, +=l.O, and m=3. Again note that when C=O the drop- 
let profile is independent of slip, Marangoni effects, and vapor recoil. The 
values of @a and GA are (1) 0,=8,=1.8; (2) 0,=1:2, 0,=1.8; (3) 
OR-1.8, O,-2.2; (4) 0,-8A=0.2; (5) 8,=8,4=2.0; (6) 
OR= 0,=2.2. The numbering indicates the ordering of the curves along 
the bottom of the figure. The disappearance time decreases when the region 
where spreading is present is larger. Curves #l and #2 show that when 0, is 
fixed while 8, is decreased, evaporation is promoted. Note that while the 
contact-line position is momentarily larger when hysteresis is present (curve 
#2) owing to the less mobile contact line, due to the subsequent decrease in 
the contact angle (see Fig. 9) when hysteresis is present, a(~-) is eventually 
driven more rapidly to zero. 

steady value, OS., for these parameter values given by Eq. 
(20) is 1.57. 

We now consider the effects of contact-angle hysteresis. 
We have looked at a wide variety of cases corresponding to 
different values of 0, and 0, with and without contact- 
angle hysteresis. These include cases with initial contact 
angle in three different regimes; O(O)>@, , 
O,<@(O)<@,, and O(O)<@,. Results from typical 
cases are shown in Figs. 8 and 9. Here E=O.l, K=l.U, 
G= 1 .O, and m = 3, while QR and OA vary. In particular, we 
shall examine the effect of the values of 0, and 0, on the 
droplet lifetime. We shall consider situations where a hyster- 
esis region is introduced (imagine starting from a case with 
OR=OA) by (i) d ecreasing 8, and keeping 0, fixed, and 
(ii) increasing OA and keeping OR fixed. 

(i) In this situation, the introduction of a hysteresis re- 
gion means that the droplet is less likely to recede (in fact, if 
0, = 0 the only tendency for the droplet radius to decrease is 
due to evaporative mass lossj. Receding leads to “thicker” 
drops, or larger contact angles (compare curve #l with curve 
#2 in Fig. 9) and hence weaker mass flux. Therefore, when a 
drop is less likely to recede, mass flux is enhanced. While 
a(r) is temporarily larger for drops with hysteresis due to 
the relative immobility of the contact line, O(r) gets smaller 
and smaller and the dominant contribution at the contact line 
is the mass loss, which eventually drives a(7) to zero faster 
in the hysteresis case. As a result, the droplet lifetime is 
decreased when OA is ftxed and 0, is decreased from OA . 
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FIG. 9. Zero capillary number, unsteady spreading, and evaporation: B(T) 
vs T  corresponding to a( Q-) in Fig. 8. The parameter values are the same as 
indicated in Fig. 8. 

(ii) In this situation, the introduction of a  hysteresis re- 
gion means that the droplet is less likely to spread. Spreading 
leads to thinner drops, or smaller contadt angles (compare 
curve #1 and curve #3 in Fig. 9), and hence enhanced mass 
flux. Therefore, when a drop is less likely to spread, mass 
flux is suppressed. So here the effect is reversed; the droplet 
lifetime is increased when OR is fixed and’@* is increased 
from 0,. 

These cases demonstrate that effects which tend to de- 
crease the contact angle and thin the drop, decrease the drop- 
let lifetime, while effects which tend to increase the contact 
angle and contract the drop, increase the droplet lifetime. 

The other curves in Figs. 8  and 9 show results for 
6,=0,=0.2 (curve #4), 0,=0~=2.0 (curve #5), and 
0, = 0, = 2.2 (curve #6). Consistent with the above conclu- 
sions we find that when the tendency to spread is stronger, 
complete evaporation is promoted (see Fig. 8); it is clear 
from Fig. 9  that drops with smaller values of 0  disappear 
sooner. Finally, we note that hysteresis is a small effect when 
0, and 0, are small compared to the initial value of 0  
since for most of the droplet lifetime @>a, and hysteresis 
does not play a role. 

A related feature that we can see in Fig. 9  is that the 
contact angle, O,, at the moment of disappearance (i.e., 
corresponding to a=O) varies strongly from case to case. 
Equations (24) and (14) can be written for small values of a, 

@?g=- ;+oilf(o) . i i 

(264 

(26b) 

Bounded time derivatives of 6  requires that as a+0 the 
quantity on the right-hand side OF Eq. (26a) vanish. However, 
this is only possible if f( OD j < 0, so that 
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FIG. 10. Zero capillary number, unsteady spreading, and evaporation: U(T) 
and O(T) vs -r for two different physical systems: water and ethanol. The 
parameter values for water are E=O.l, K=O.O02, t7=0.03, 
O,=O,=O.l, andm=3.Theparametervaluesforethanolare~=0.049, 
K=O.OOl, i]=O.O2, @,=~,=O.l, and m=3. W e  used E=O in both 
cases. Again note that when C = 0 the droplet protile is independent of slip, 
Marangoni effects, and vapor recoil. Except for the initial and final stages, 
the contact angle stays at a nearly constant value. This equilibrium value for 
the contact angle, which is given by E$ (20) and represents a balance 
between viscous spreading effects and evaporative effects, is predicted to be 
6.5 for water and 7.1 for ethanol. 

I?? 
K-27iQDIOR-ODlm=o. (27) 

Positive, real solutions to this equation give the final contact 
angle, 0,. Note that this result depends on 0, but not on 
OA . We  find that this result agrees with the numerically cal- 
culated results in Fig. 9  which have 0, #  0. However, posi- 
tive real solutions, 0, do not exist for all parameter values. 
In such cases, both a and 0 are proportional to (G-~ - Q-) 1’2 as 
T--+Q+~ so that O,=O, but the time derivatives of a  and 0 
are infinite at T= TV. Curve #4 in Fig. 9  corresponds to such 
a case. Equation (27) shows that this behavior is more com- 
mon for small values of 0,. We  note that in principle, our 
assumption of a  quasisteady solution breaks down when time 
derivatives become infinite. However, our analysis should be 
asymptotically valid for any nonzero a. 

We  now turn to the first case shown in Table II. Since 
c- * is much larger than any other parameter listed for both 
water and ethanol, we shall discuss the results in this case 
obtained with c = 0. Figure 10 shows plots of a( 7) and O(T) 
for water and for ethanol. Here we see that for both systems 
there is a rapid readjustment of the contact line and the con- 
tact angle from the initial conditions. The value of 8  attains 
a plateau, at a  value much greater than 0,) over the entire 
range with the exception of the initial and final stages. In 
fact, this value is nearly that predicted by Eq. (20) which 
gives 0, = 6.5 for water and 0, = 7.1 for ethanol. The pres- 
ence of this plateau is related to the smallness of K. 

To get a further understanding of these results we ana- 
lyze the system of Eqs. (14) and (24) in the limit as K-+0. 
The details of this analysis are found in Anderson.“’ As sug- 
gested by the plots of a  and 0 vs fin Fig. 10, we find that 
the solution to Eqs. (14) and (24) in the limit of K--+0 cor- 
responds to multiple layers in time. From this analysis we 
also obtain an estimate for the disappearance time. 
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There is an initial, or inner layer, near r-0, of O(K) 
where the contact line adjusts rapidly due to the large evapo- 
ration rate at the contact line (see Fig. 10). Here, viscous 
spreading effects are negligible to leading order. Further- 
more, there is no bulk mass loss to leading order. 

There is a second layer in time of 0(K(2m+1!12(inf1!) 
similar to the first layer in that there is negligible leading- 
order bulk mass loss. However, now due to the increased 
value of the contact angle, viscous spreading effects combine 
with evaporative effects at the contact line to slow the rate of 
increase of the contact angle. 

This intermediate layer is followed by an O(1) layer in 
time where viscous spreading effects have now balanced the 
evaporative effects at the contact line. That is, the initial 
rapid increase of the contact angle (and decrease of the drop- 
let radius) has been stopped by viscous spreading effects, 
which favor a smaller value of the contact angle. The value 
ofOisO(K -l’(“* + I)) (i.e., large), corresponding to the con- 
stant contact angle OS satisfying Eq. (20), and the value of a 
is 0(K*‘2(“f1)). Once again, this layer has negligible 
leading-order bulk mass loss. 

The fourth layer corresponds to a long time scale, 
Q[l/(K 1’(‘12+1)lln K/)1. This represents the time scale on 
which bulk mass loss is significant when the contact angle 
remains at the above (large) constant value, 0s. The large 
contact angle leads to less efficient evaporation and hence 
the long time before a significant amount of mass evaporates. 
The behavior in this regime corresponds to bulk evaporation 
of the droplet with a constant contact angle. Motion at the 
contact line is due only to mass loss in the bulk. The de- 
crease of the droplet radius is approximately square-root in 
time. It is this time scale that measures the disappearance 
time, 70, given by 

4(m+l) @se 
7D=3(2m+3) 7 ‘- lln’K/ ‘:I::) 142@s0) 

1 
pl(m+l) Iln KI ’ 08) 

where OS0 = (El $ r’(“* + r) . Recall that the scaling unit for 70 
is a slow viscous time scale, so that, as expected, the final 
time increases with decreasing l? ( rD--E-m’(m+ I)). Further- 
more, it increases with decreasing Q ( r-- G-r’(“+ “). This 
can also be expected if we note that when O>@, the in- 
creasing of 77 corresponds to stronger spreading, and hence 
thinning of the drop, which promotes evaporation. This esti- 
mate for the disappearance time agrees well with the numeri- 
cal results for water and ethanol plotted in Fig. 10. 

The corresponding disappearance times in dimensional 
terms for the first case shown in Table II (and Fig. 10) are 
230 s for ethanol and 187 s for water. This nonintuitive result 
that water evaporates before ethanol might be explained in a 
number of ways. First, the disappearance time depends on 7, 
the value for which we do not know precisely. Another factor 
to bear in mind is that the base temperature for ethanol is 
considerably lower than that for water. That is, the base tem- 
perature is taken to be ten degrees above the saturation tem- 
perature in each case (so TB=89 “C for ethanol while 
T,=llO “C for water:). We find that if the base temperature 

for the ethanol system is taken to be the same as that for 
water, the ethanol droplet does in fact evaporate first. We 
discuss this issue further in Sec. VI C. 

B. Small capillary number 

Consider Eqs. (9), (14), and (15) with c< 1 but nonzero 
with all other parameters O(1). In order to solve Eq. (9) in 
this limit subject to the boundary conditions (13) we assume 

h=h,+C’h,+*- . (29) 
In general, we must expand a and 0 as well. However, this 
can be avoided since h can be determined in terms of a and 
0 before the contact-line and global mass balance conditions 
are enforced. We find that this leads to an O(c2) error made 
in computing hl but this is acceptable since we are only 
interested in the solution through O(c) . 

At leading order we find 

At O(e) we find 

’ h 
lxxx=h;(p+ $ho) x j-j ho,+ &jdx 

(31) 

subject to hl(a,T)=O, hl,(a,T)=O, and h,,(O,T) 
= h&O, 7) = 0. Note that the second symmetry condition 
is satisfied if 

ho,+ ;; dx=O. 
- i 0 

(32) 

However, we replace ho by h and enforce 

j-j h,+ -&)dx=O. (33) 

This means that there will be an acceptable O(c’) error 
made in calculating h, . 

We can integrate Eq. (31) to obtain a solution for h 1 (see 
Appendix A). The global mass balance with the expansion 
for h correct to O(c) inserted gives a relation between u(r) 
and O(r). Together with the contact-line condition (14) this 
gives an evolutionary system for a( 7) and O(T) subject to 
initial conditions. We solved this system using a Runge- 
Kutta scheme (IMSL routine DIVPRK) with integrals from the 
global mass balance condition also computed numerically 
(IMSL routines DQDAGS and DTWODQ). 

Figures 4 and 5 show the solutions for a and 0 which 
include corrections due to the unsteady and mass loss terms, 
thermocapillarity, and vapor recoil, using c = 0.1, K = 0.1, 
+=O.l, O,=OA=O.l, m=3, p=O.5, and l?=0.5 (this is 
the strong evaporation regime with no contact-angle hyster- 
esis present). Curve #l shows just the effect of the unsteady 
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and mass-loss terms (iI? = 0, p= m j. While the basic behavior 
of a and 0 is similar to the c = 0 case (dashed curves), we 
find that the disappearance time is increased. Curve #2 
shows the result with the unsteady and mass loss terms as 
well as the Marangoni term (G = 1 .O, p= ~0). Here we see 
that the droplet lifetime is prolonged slightly. Curve #3 
shows the results including the unsteady and mass loss term 
with the vapor recoil term (&f= 0, c= 10). Again, the effec- 
tive evaporation rate decreases. 

Another case is shown in Figs. 6 and 7. These corre- 
spond to the weak evaporation regime. The solid curves, cor- 
responding to c=O. 1, are similar to the c=O results 
(dashed curves) and again show that the most significant 
effect of the correction terms is to increase the lifetime of the 
droplet. The unsteady and mass loss terms (solid curve #l 
with a=O, and p=m) increase the droplet lifetime. The 
inclusion of the vapor recoil term (solid curve #3 with &l=O, 
and p= 0.025) and the Marangoni term (solid curve #2 with 
M= 1.0, and fi=m) increase the droplet lifetime further. 

We now wish to describe physically the effects seen in 
these results. We first note that in the limit c-+0, evapora- 
tion is strongly affected by the behavior at the contact line. 
From Eq. (11) we know that the mass flux is strongest where 
the droplet is thinnest; that is, at or near the contact line. 
Therefore, mechanisms which tend to increase 0 increase 
the droplet lifetime while those which tend to decrease 0 
decrease the droplet lifetime. 

We find that the inclusion of the unsteady and mass loss 
terms in the correction h, increases the droplet lifetime. This 
seems counterintuitive since if more mass is lost one might 
expect the droplet lifetime to be decreased. However, the 
combined effect on the droplet profile is to transport mass 
from the contact-line region toward the center of the drop. As 
a result the drop steepens near the base, increasing the con- 
tact angle, making evaporation less efficient. 

We now consider thermocapillary effects. Thermocapil- 
larity results from surface-tension gradients on the droplet 
interface. Since the interface temperature is lower at the top 
of the droplet than it is near the contact line, thermocapillar- 
ity drives a flow away from the contact line along the inter- 
face, down near the center of the drop, and outward along the 
base. The return flow is generated by a pressure gradient in 
which the pressure near the center of the droplet is high, 
causing the drop to thicken near the center (Ehrhard and 
Davis7). Consequently the droplet lifetime is increased. 

We now consider vapor recoil. Vapor recoil effectively 
causes an increased pressure to be exerted on the droplet due 
to momentum transfer from the escaping particles. As de- 
scribed in Palmer” and Burelbach, Bankoff, and Davis,’ a 
slowly moving liquid particle undergoes a large acceleration 
upon vaporization owing to the disparate densities between 
the vapor and liquid phases and exerts a pressure downward 
on the interface. Since the mass flux is larger near the contact 
line than near the center of the droplet, the pressure is cor- 
respondingly stronger near the contact line. Thus, this non- 
uniform pressure distribution causes the drop to “stand up,” 
retarding evaporation. 

C. “Large” capillary number 

We now consider Eqs. (9), (14), and (15) with ($1. We 
introduce an evaporative time scale, t=l?r, and neglect ther- 
mocapillary and vapor recoil effects to obtain the evolution 
equation, 

ht+ &+A -$2(,+&+xx,j=0, 
the contact-line condition, 

a,(t)=- &+;fwth 

and the global mass balance, 

h,(w) + 

(35) 

(36) 

More specifically, we shall consider h = c-l/,!?< 1. Further- 
more, the ratio, 77 /.I?, which is the coefficient of the viscous 
spreading in Eq. (35), will be taken small. In the limit h-0 
the spatial derivatives drop out of the evolution equation (34) 
and therefore we expect the drop to have a shape given by 
the initial conditions near the center and some type of 
boundary-layer correction near the contact line, where the 
spatial derivatives cannot be neglected. Before proceeding 
with inner and outer expansions for h we note that when 
X=0 and + ll?=O, we obtain 

1 
ht+ -=o, K+h 

The global mass balance (36) is identically satisfied when 
Eq. (37) holds. Now if we enforce boundary conditions (13a) 
and (13b) on h we find that Eq. (38) is identically satisfied. 
Therefore, a solution of Eq. (37) is the exact solution when 
X=0 and G Ii = 0 with a and 0 determined by the boundary 
conditions (13a) and (13b) [or equivalently related by Eq. 
(38)]. These solutions represent motion purely due to evapo- 
ration. The following analysis represents a perturbation from 
this purely evaporating solution, where Xel and 77 l.l?+Z 1. 

For an outer solution we seek a regular perturbation ex- 
pansion in powers of h. We expect that the contact-line po- 
sition will be determined by evaluating the outer solution at 
x=a(t) and therefore use a strained coordinate” in time to 
obtain corrections to the leading-order solution for a and 0. 
We expand the variable as follows: 

h=ho(x,s)+hh,(x,s)+... , (39a) 

a=ao(s)+Xal(s)+**- , (39b) 

@=@,(s)+AOl(sj+-.- , (394 

with the strained coordinate t=s+ At,(s) + a** . At leading 
order we obtain from the evolution equation (34) 
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t?lZ” 1 
-z+ m=O* (40) 

We solve this subject to the initial profile condition 
k(x,O) = 1 --.x2 and find that 

ho(x,s)=[(1-X”+K)2-3_S]1’2-K. (41) 

At O(X) we find that 

ah1 hI -I 
ds (K+hJ 

2=t;(s) ~-;[h+3+fho)hoxxx]. 

(42) 

The solution, hI , which is given in Appendix B, depends on 
the presently undetermined function tl(s). 

We next consider the inner region. Here we introduce a 
stretched variable, c=[a(t)-xl/k, and a scaled profile 
height, Ii= h/X, to obtain 

XHt+atHc+ K+ XH ~=-[H2Hcif( p+ 5 AH)] . 
(43) 

We expand H=H,+ AH,+ a. * and find that the leading- 
order problem can be integrated once giving 

4~s)+adfo+ $= -P@iHo~g (44) 

subject to the boundary conditions H,(O)=0 and 
Ho&O) =Oo. Here d,(s) is an unknown function of time 
arising as an integration constant. The left-hand side of this 
equation corresponds to the unsteady and mass loss terms 
while the right-hand side corresponds to the slip term. 

Before the inner problem can be solved, we must deter- 
mine the matching conditions. Expecting that as &-+a (i.e., 
away from the contact line), HoppO, we find that match- 
ing at leading order requires that ho(ao ,s) = 0. Since ho con- 
tains no unknown quantities, this gives an expression for the 
leading-order contact-line position 

ai=1+K-(K2+2s)1’2. (45) 

This immediately shows that the drop radius decreases 
monotonically in time to leading order; evaporation is the 
dominant mechanism controlling the motion of the contact 
line. Matching at O(h) gives 

~~,(s)=ao,[a~(s)ho,(ao,s)+h,(ao,s)l. (46) 

This equation relates two unknown quantities, d,(s) and 
al@) and also involves tl(s) through h,. 

Now, since an is known explicitly, the contact-line con- 
dition (35) determines Oo. If we now expand O. in powers 
of ;;I f.??, we find that 

ii 
- 2 B 

oo=ooo- E [K@;,f(@rJ()>]+O E , 
0 

i47j 

where Ooo= -(Kao,)-‘. Note that aos is always negative. 
We assume, for proper ordering, that 1 %= ?,r IEPX. 

Now, to solve the inner problem we write 

-o.501~,1,,~~~~,,,,~,~~,~,~~~~~~~~~,~~~~~~~~~, 
0.0 50.0 100.0 150.0 200.0 

FIG. 11. Large capillary number, unsteady spreading, and evaporation: the 
inner solution w((D. The solution shows an oscillatory behavior of the pro- 
file in the inner region. The scaled inner shape profile is 
W=~K*O&J(Oa,Jw and the scaled inner coordinate is E=PK@&b. 
When f(@aa) is positive (negative) the inner solution has a slight dip 
(bulge) near the contact line. If f(Oaa) =O there is no contribution from the 
inner solution at this order and the outer solution is the uniformly valid 
solution. 

Ho=Hoo(~)+~ W(c)+... . (48) 

Inserting this into the O(1) inner equation (44) gives at lead- 
ing order in 17 /E the same equation with Ho replaced by 
Ho0 ; however, now the boundary condition H,,&O) = Ooo is 
such that a solution linear in 5 is allowed, viz., 

Hoe= - 
5 

-=@noE, 
KaOs 

(49) 

where we have also imposed Hoo(0)=O giving dt(s)=O. 
We shall find that this expression is the same as the first 
nonzero term in the outer solution expanded near x = a. 

We next consider the 0( 17 /f?) inner problem. Here we 
obtain 

w = c2w&” 

subject to 

w(O)=O, 

w&O)= - 1, 

and the matching condition 

(50) 

614 

(51b) 

wc5p0, as %+m, (51c) 

where W=/X20~of(Ooo)w and ~=pKO~,~. This rescal- 
ing leaves the new inner variables, w and 5, independent of 
time. As a result, we need only solve this equation once; the 
solutions at different times simply change the amplitude and 
stretch the coordinate. We have solved this equation numeri- 
cally and the solution is shown in Fig. 11. Here we see that 
the solution is oscillatory and decays at infinity. Equation 
(50) represents a balance between the slip/capillary term 
(/IH2He&)5 and the unsteady motion of the contact line 
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a,Hs in Eq. (43). Since W is proportional to f(@,,) the 
oscillations are directly related to the contact angle being one 
which leads to viscous spreading (or receding). We note here 
that similar oscillatory shapes near contact lines have been 
found in different contexts. Keller and Miksi? (and more 
recently Lawrie%) considered potential flow in a liquid 
wedge and calculated similarity shapes in which the adjust- 
ment of the initial contact angle to the equilibrium contact 
angle led to capillary waves on the free surface. We note that 
while wCr5 decays to zero “quickly” as &co, the decay of 
w(/J is much weaker due to the factor of l” in Eq. (50). 
Also, the sign of W depends on the sign of f(@,,). If 
f(@a,) > 0 oscillations start out as a slight dip near the con- 
tact line and if f( @,a) (0 the oscillations start out as a slight 
bulge near the contact line. Again, if f(C),,) =0 (i.e., the 
contact angle corresponds to an equilibrium angle in the non- 
volatile case) there are no oscillations, and to this order, the 
outer solution is the uniformly valid solution. Note that de- 
creasing p decreases the amplitude and also the range in x. 
Also, larger @,a implies a larger amplitude and a greater 
influence of the inner region toward the center of the drop. 
That is, the inner region has a more significant effect on the 
profile as a whole as the contact angle increases. 

We now return to the matching condition (46) with 
d,(s)=0 and find that al(s) is proportional to hr(aa,s). 
Recalling that h r depends on the strained coordinate function 
tr(s), this formula suggests choosing tl(s) such that 
hl(ao,s)=O and therefore a,(s)=O. Such a choice of tr(s) 
builds the O(X) correction to the contact-line position into 
the leading-order solution, au(s), through the coordinate 
transformation [the specific form for tr(s) is given in Appen- 
dix B]. 

Now, from the contact-line condition (35), using the fact 
that a r = 0, we find that 

01= -RO;,t;~s)uo,+Q ; . 0 
Finally, we can write down a uniformly valid solution 

for the droplet profile 

h,,if=[ho(x,s)+Xhl(x,s)l 

Sh $?K2@~of(ooo)w(~) +.-- . 
i- i (53) 

While the inner and outer solutions match, as a result of the 
relatively slowly decaying nature of the inner solution, real- 
istic solutions obtained from this equation require that A be 
small enough so that the inner solution does not alter the 
outer profile. The global mass balance (36) must be applied 
to a uniformly valid solution, and is found to be satisfied 
identically though 0(X2) by Eq. (53). 

From this analysis we can also obtain an estimate for the 
disappearance time. This is found by setting a, in Eq. (45) 
equal to zero. In terms of the time coordinate, s, we find that 

1+2K 
sD=-T--- (54) 

This simple relationship shows the dependence on the non- 
equilibrium parameter, K. For a highly volatile drop (K&+0) 

1.2 3 

1 .o i 

0.8 i\ 

0 0.6 
0.4 I 

FIG. 12. Large capillary num_ber, unsteady spreading, and evaporation: a(t) 
vs t forK=1.0,~=0.001,E=1.0, 0,=0,=2.0, andm=3. Curves for 
A=0 (dashed) and h=O.l (solid) are shown. Here we see that the droplet 
lifetime is prolonged as h is increased from zero. 

the disappearance time is smallest, while for a nonvolatile 
drop (K--SW) the droplet never disappears. In terms of the 
strained coordinate and the slow viscous time scale used in 
Eq. i28j we find that 

lf2K h 
70-y+ E tl(sJ. (55) 

Here, rD -E-l while in the previous result for ?=O and 
K+l given by Eq. (28) we found rD-L?-m’(m+l). 

In dimensional terms, the leading-order estimates for the 
disappearance times are 9.4 s for ethanol and 8.7 s for water. 
Again we see the apparent paradox that water evaporates 
before ethanol. However, the base temperature is consider- 
ably lower for ethanol than that for water and, again, we find 
that ethanol evaporates before water if the base temperatures 
in each case are taken to be the same. We note that the 
present time estimates, at least to leading order, do not in- 
volve any contact-line effects. The time scale for evaporation 
is determined directly by a balance of heat conduction with 
the latent heat of vaporization. Finally, we note that the di- 
mensional disappearance times for ~=0.1 (the first example 
shown in Table II, corresponding to a thin drop) are much 
greater than those for ~=0.005 (the second example shown 
in Table II, corresponding to a very thin drop), as expected. 
This could be another resolution to the above paradox. That 
is, if a more realistic situation for an ethanol drop is that it is 
initially thinner than a water drop on the same substrate, then 
this too would reduce the evaporation time for ethanol. 

We observe that the parameter k’ is the only one that 
appears in the leading-order results. In the following we dis- 
cuss the leading-order and correction terms for different val- 
ues of K with the other parameters fixed (p=O.OOl, I?= 1 .O, 
@,=0,=2.0, and m=3). 

Figures 12-14 show results for K= 1.0 and different 
values of h and 7. Figure 12 shows the monotonic decrease 
in the droplet radius. We see that when X is perturbed from 
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FIG. 13. Large capillary number, unsteady spreading, and evaporation: o(t) 
vsrforK=1.0,,8=0.001,E=l.0, OR=OA=2.0, andm=3.Thedashed 
curve corresponds to A= i=O. We see that a nonzero value of G alters the 
profile but does not change the final time. A nonzero value of A leads to a 
decrease in 0 at early times and an increase in 0 for later times (relative to 
the unperturbed case) and an overall increase in the droplet lifetime. 

zero, the droplet lifetime is prolonged. Note that the value of 
(z, and hence the disappearance time, is independent of 17. 
This reflects the fact that the contact-line position is deter- 
mined to this order by the outer solution. Figure 13 shows 
the changes in 0 that occur when A and Gj are perturbed from 
zero. Here we see that changing 17 alone changes the value of 
0 but, again, does not affect the disappearance time. Kelative 
to the unperturbed case, there is an initial decrease in 0 
followed by an eventual increase. Figure 14 shows the pro- 
files for the case A = += 0.1 at four different times. Note that 
no oscillatory behavior is observable on this scale. 

FIG. 14. Large capillary number, unsteady spreading, and evaporation: Uni- 
form profiles for K=l.O, p=O.OOl, I?=l.O, 8,=OA=2.0, m=3, and 
A= @=O. 1. Consistent with the results shown in Fig. 13 the contact angle 
tends to decrease from its initial value. Here we also see that there is no 
noticeable effect of the oscillatory behavior in the inner region. 

FIG. 15. Large capillary number, unsteady spreading, and evaporation: a(t) 
vs t forK=S.O, p=O.OOl, E=l.O, Oa=O,=2.0, and m=3. Curves for 
A=0 (dashed) and h=O.l (solid) are shown. We note that the effect of the 
correction term in A is to slightly prolong the droplet life, while changes in 
5 do not change the droplet lifetime, nor the value of a. 

Next, we consider a larger value of K. Figures 15-17 
correspond to K = 5 .O and different values of A and 17. Figure 
15 shows the droplet radius, a(t). Here we see that correc- 
tion terms due to nonzero A have a very small effect in pro- 
longing the droplet lifetime (the dashed curve corresponds to 
X=0). In Fig. 16 we see that when A= G=O (dashed curve) 
the contact angle decreases monotonically in time. When 
correction terms are included due to nonzero A only, the 
contact angle changes only slightly. However, when a non- 
zero value of 5 is used, the contact angle, while still decreas- 
ing monotonically, is significantly larger for later times. Fig- 

0.0 1 .o 2.0 3.0 4.0 5.0 TO 

FIG. 16. Large capillary number, unsteady spreading, and evaporation: o(t) 
vs t for K=.?.O, p=O.bOl, I?= 1.0, 8,=8,,=2.0~ and ,=j. The dashed 
curve corresponds to A = ?I= 0. Here the contact angle decreases monotoni- 
cally in time in all cases shown. We see a significant departure in the value 
contact angle from the unperturbed case when ;/ is perturbed from zero. 
Relatively small changes occur when only A is perturbed from zero. 
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FIG. 17. Large capillary number, unstecdy Spreading, and evaporation: Uni- 
form profile for K=S.O, p=O.OOl, E=l.O, @,=O,=Z.O, m=3, and 
A= $=O.l. at t=O.9994. Also shown is the inner solution profile, W . In 
this case, the value of f(O,,,)<O so there is a slight bulge in the droplet 
profile in the immediate vicinity of the contact line. This is a very small 
effect and is not directly visible in the corresponding uniform solution 
shown. 

ure 17 shows a single profile for t= 0.9994 (s= 1 .O) and 
A= +O. 1. Included on this plot is the inner solution w 
appearing in Eq. (53). Here we can see the range affected by 
the inner solution. Note that in this case f(@ ,,) <O (see Fig. 
16 and note that OR= 2.0) so there is a bulge in the imme- 
diate vicinity of the contact line. Again this is a very small 
effect which is not visible when the uniform solution is plot- 
ted. 

The general behavior for small values of K can be seen 
in the solutions plotted for water and ethanol in Figs. 18 and 
19; the second case listed in Table II, for .z=O.O05. These 

~ water 

3 
:).uG-~rrrma.,ll I,,IIII, ~,~'~'~~~l'~l~~l~I""i'r ’ "'1 I\ """"I 0.1 0.2 0.3 0.4 0.5 0.6 

t 

FIG. 18. Large capillary number, unsteady spreading, and evaporation: 
leading-order solution for a(t) vs t for parameter value estimates for water 
and ethanol as shown for ~=0.005 in Table II. The corresponding contact 
angle for each case is shown in Fig. 19. 

0.0 I ifirrn’I,,i~I,rII,,,I’rrnsrrl 
0.0 0.1 0.2 ro.3 0.4 0.5 0.6 

t 

FIG. 19. Large capillary number, unsteady spreading, and evaporation: 
leading-order solution for o(t) vs t for parameter value estimates for water 
and ethanol as shown for .~=0.005 in Table II. In each case, the value of 0 
gets exceedingly large, limiting quantitative conclusions. However, qualita- 
tively these results suggest that for these two systems, the value of the 
contact angle may be approaching d2.. 

figures show leadirig-order results, which depend only on K. 
Figure 18 shows a monotonic decrease in the droplet radius, 
while Fig. 19 shows that the contact angle, 0  gets very large. 
For small values of K, OoO becomes large and higher-order 
corrections shown in Eqs. (47) and (52) also get large. There- 
fore, X and $,/E must be taken correspondingly small to ob- 
tain valid results,. Since our model is based on a small-slope 
theory, quantitative conclusions cannot be made when 0 is 
large; however, qualitatively these results suggest that the 
contact angle gets large. This is consistent with the results of 
Chung and Bankoff, who have found through experimental 
investigations and analysis from their static rivulet and dry- 
patch models that large contact angles are seen. 

It is interesting to note that since the outer solution sat- 
isfies Eq. (34) with the spatial derivatives absent, the initial 
profile evolves in time only through bulk mass loss. The 
initial conditions we considered corresponded to parabolic 
profiles. However, if we were to consider an initial profile 
with a dimple in the center, for example, we would expect 
that the drop profile will eventually evolve into two drops, 
separated by a dryout region. In the case of an axisymmetric 
droplet with a dimple in the center, this might correspond to 
a circular droplet with a dryout hole in the center. 

VII. SUMMARY 

We  have considtred the evaporation of a  two- 
dimensional liquid droplet on a uniformly heated horizontal 
surface. In our analysis, we have studied the effects of cap- 
illarity, thermocapillarity, vapor recoil, viscous spreading, 
contact-angle hy?teresis, and mass loss on the dynamics of 
the droplet profile and contact-line region. We  have used the 
one-sided model of evaporation of Burelbach, Bankoff, and 
Davis,’ which is modified to include the presence of contact 
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lines. Our model also extends that of Ehrhard and Davis7 of 
nonisothermal spreading to include evaporation. 

We have formulated a new contact-line condition (5) 
based on a mass balance across the evaporating interface. In 
order to obtain a leading-order description, we have assumed 
that the relation between the macroscopic contact angle and 
the fluid velocity at the contact line is approximately given 
by its nonevaporative form. The lack of direct experimental 
observations of the fluid velocity at the contact line when 
evaporation is present does not allow for the use of an em- 
pirical relation that includes evaporative effects. However, 
the results, based on our assumption, have been compared 
whenever possible with existing information and agree with 
one’s expectations. Further, we have identified features of the 
competition between spreading and evaporation which can 
be tested experimentally. 

Using a lubrication theory, we obtained evolution equa- 
tions for the droplet profiles for two cases: with and without 
a mass source in the base. The presence of a mass source in 
the base allows for the calculation of steady droplet profiles. 

We first examined the steady evaporation case. Here we 
found that when the contact line is stationary, the contact-line 
condition determines the steady contact angle, 0,) which 
balances spreading with evaporative mass loss. We found 
that 0s is always larger than the advancing contact angle, 
OA . This result holds for nny steady evaporating meniscus 
and is not dependent on the particular configuration in which 
the steady meniscus is present. 

For unsteady spreading and evaporation (with no mass 
source in the base) we considered three main limits: zero 
capillary number, small capillary number, and large capillary 
number. 

For zero capillary number, the evolution equation is sat- 
isfied by a parabolic droplet profile. The contact angle and 
droplet radius are determined by the contact-line condition 
and a global mass-balance condition. We found that although 
evaporation always causes the droplet to completely disap- 
pear, there are two basic regimes in which the dynamics of 
the contact line differ. The first of these is a “strong” evapo- 
ration regime where the droplet radius decreases monotoni- 
cally in time. The second is a “weak” evaporation regime 
where the droplet spreads initially. We were also able to 
identify the effects of contact-angle hysteresis. In terms of 
the droplet lifetime, we found that effects which tend to de- 
crease the contact angle and thin the drop promote evapora- 
tion while those which tend to increase the contact angle and 
contract the drop delay evaporation. 

We discussed the results for small K (highly volatile 
droplets) and found multiple time regimes in the dynamics of 
the contact line. One af the pronounced features here is a 
rapid readjustment of the contact angle and drop radius from 
the initial conditions. Following this adjustment, the contact 
angle remains at a-nearly constant value, the plateau, much 
greater than the advancing contact angle, OA , for most of the 
droplet life (see Fig. 10). The height of the plateau is given 
by OS, the constant angle predicted by the steady evapora- 
tion problem where viscous spreading balances mass flux at 
the contact line. The presence of such a plateau during un- 
steady evaporation is a further feature which could be iden- 

tified in experiments. After the initial readjustment, the drop- 
let radius decreases relatively slowly to zero with 
approximately the square-root in time. From this analysis we 
obtained an estimate for the disappearance time [Eq. (28)]. 
This estimate shows that the disappearance time increases 
with increasing contact angle and decreases with increasing 
evaporation number, E (i.e., stronger evaporation). 

Next, we considered the results for small but nonzero 
capillary number. Here- we identified the effects of ther- 
mocapillarity, vapor recoil, and the unsteady and mass loss 
terms in the evolution equation. We found that thermocapil- 
larity, which transports mass from hot regions (near the con- 
tact line) to colder regions (near the top of the droplet), tends 
to contract the droplet. As a result the contact angle increases 
and we find that evaporation is delayed. Vapor recoil, which 
represents a nonuniform pressure acting down on the liquid- 
vapor interface and which is stronger near the contact line, 
also acts to contract the drop and make evaporation less ef- 
ficient. The inclusion of the unsteady and mass loss terms in 
the evolution equation has a similar effect of increasing the 
droplet lifetime. While this may seem counterintuitive, the 
combined effect of these terms is to transport mass from the 
contact-line region toward the droplet center, steepening the 
base. The end result is that evaporation is delayed. 

Finally, we have treated the large capillary number limit 
in the absence of thermocapillarity and vapor recoil. Here we 
have also taken 5 /E (the measure of viscous spreading in 
the contact-line condition) to be small. We found that the 
droplet profile could be described by an outer region, away 
from the contact line where the pressure jump due to surface 
tension can be neglected, and an inner region near the con- 
tact line where the effects of curvature and slip are impor- 
tant. We find that the inner region corresponds to a spatially 
oscillating solution which decays away from the contact line 
(see Fig. 11). Depending on the sign of f(o), the character- 
istic of the velocity dependence of the contact angle, these 
oscillations may correspond to either a dip or bulge of the 
liquid-vapor interface immediately adjacent to the contact 
line. We find, however, that these oscillations are typically 
not observable in plots of the uniform solution (see Figs. 14 
and 17). We also find that the droplet radius always decreases 
monotonically (see Figs. 18, 12, and 15) while the contact 
angle may get large when K is small but may also decrease 
monotonically for larger values of K (see Figs. 19, 13, and 
16). 

It should be noted that a variety of instabilities have been 
reported under similar circumstances to those we have de- 
scribed here. Contact-line instabilities found under isother- 
mal conditions, as well as thermally induced instabilities and 
instabilities related to evaporation may be present here. 
Ehrhard’ performed experiments for droplet spreading and 
observed wavy instabilities at the contact line under both 
isothermal and nonisothermal conditions. Cazabat et al.” 
observed a fingering instability of a liquid film rising under 
Marangoni forces produced by an underlying temperature 
gradient. They found that the fingers develop from a liquid 
rim that builds up at the leading edge as a result of the 
Marangoni flow. Redon et aLZ8 observed a “festoon” insta- 
bility during the spreading of a volatile liquid droplet. There 
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was no external temperature gradient, but evaporation near 
the contact line increased the local surface tension so that 
Marangoni flow was induced and a liquid rim formed at the 
edge of the drop. While the Marangoni flow found in our 
case is directly opposite from that observed in Cazabat 
et al.“’ and Redon et al.,= the potential for thermally in- 
duced instabilities in our problem should be kept in mind. 
Finally, instabilities due to evaporative effects such as vapor 
recoil (e.g., see Palmer,‘” Burelbach, Bankoff, and Davis,g 
and references therein) may play a role here. 
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APPENDIX A: O(c) PROFILE CORRECTION 

The following is the representation for the O(c) correc- 
tion to the droplet profile in the e4 1 analysis of Sec. VI B: 

h,(x,7j=(Oaj,f,(x;a,Ojf r fz(x;a,@) 
( i + 

+f3~x;a,~)+f4(x;a,e)s-f50, 

where 
(p-x2 a 

fi(x;a,O)= - 
I 2a 0 Fi(S;a,@WC 

1 ‘a 
-- 

J 2 0 !a-tWi(5;a,@)G 

+’ 
I 

x (x-6j2 
2 0 a-5-- Fi(t;a,@Wt @lb) 

for i= 1 ,...,5 with 

Fl(x;a,Oj= 
(2d0 j2 

2(a+x)2(P+ iho) ’ 
(Al4 

Fz(x;a,O) = - 
(2a/@)2(a2+ax+x2) 

6(a+x)‘(/3+ $zo) ’ 
(Al4 

F3ka,@j 
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(a+x)(K+hoj2(p+ $z~) ’ 

Wfj 

-2 h F5(x;u,@)=- z- Ox 
P w+hoY (a-x>, 

and at=[(2aK/O)+a”]“2. 

(Aid 

APPENDIX B: OUTER SOLUTION FOR b-1 

The following is the correction, h, , to the outer solution 
profile for the large capillary number analysis of Sec. VI C: 

h1b,s)= & -t*(s)+; r,(x)[P-‘-P;‘]+; Y2(x)[P-3’2-P;3’2]=t; r3(x)[P-1-P;*]+P4(x)[p-1’2-p;1’2] 

- k r+)[ln P-In PO]-r,(x)[P1’2-~~‘2]- i r,(xj[P-PO]-+ rs(~)[P3/2-P~/2]- t r9(~)[p2-p~] 

- + rlo(X)[P5’2-P;‘2] ) 
-1 (Blj 

where P=[ho(x,s) +K]’ and PO= [h0(x,0)+K12. The coefficients, ri(x), are functions only ofx and are listed below. 
The function tl(s) is given by 

t~(~)=~~~(a~)[P~a-P~~2]-tfr~(ao)[P~3’2-~,-,1’2]+~r3(aO)[P~1-P~~1]+~q(aO)[P~1’2-P,;Z”2] 

- $s(ao)[ln P, - In Po,]-r6(ao)[P~‘2- p:l,21-~~7(a0)CPn-P~,l-Sr,(a0)[P ~‘2-P~~2]-~~g(ao)[P;4-P~,] 

- b-;r10(a0)CPi’2- 63, 032) 
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where P, = K2, P,, = K2 + 2s, and ri(ao) are shown below. 
The following are the coefficients which appear in the 

O(h) correction to the outer solution equation (Bl) and the 
strained time coordinate in EQ. (B2) for the large capillary 
number analysis of Sec. VI C: 

rl(x)= gK2(p- &)(ci)4, iB34 

I’~(x)=gwc-2p)(c;)4, (B3b) 

r3(x) = &(/3-K)(ci)4- $Y2(p-- +K)(ci)“cy , (B3c) 

~~(~)=~(K-P)(c;)~c;+K~(P-~K)[~c’;)~+c;c;”], 

(B3e) 

r6(x) = $K(K--2p)c~c~ - &yc’,‘+ $v(K-2P) 

rg(x)= - &3-K)c’;“, (B3i) 

rlo(x)= - kc:“, iB3j) 

where 
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