Fluid flow, heat transfer, and solidification near tri-junctions

D.M. Anderson ¹, S.H. Davis *

Department of Engineering Sciences and Applied Mathematics Northwestern University, Evanston, Illinois 60208, USA

Received 26 January 1994; manuscript received in final form 27 April 1994
EDITORIAL BOARD

D. J. HURLE H.H. Will Physics Laboratory Univ. Bristol, Tyndall Avenue Bristol BS8 1TL, UK

R. KERN CRM2, CNRS, Campus Luminy, Case 913 F-13288 Marseille Cedex 9, France Telefax: +33-91-418 916

G. B. STRINGFELLOW Dept. Materials Science, 304 EMRO University of Utah Salt Lake City, UT 84112, USA Telefax: +1-801-581 4816

Y. BANDO (Superconductivity) Lab of Solid State Chemistry Inst. for Chemical Research, Kyoto Univ. Uji, Kyoto-ku 611, Japan Telefax: +81-774-33 5089

T. NISHINAGA D. H. Electronic Engineering, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan Telefax: +81-3-3564-3974

A. BARONNET (Industrial, Biological and Molecular Crystals) CRM2, CNRS, Campus Luminy, Case 913 F-13288 Marseille Cedex 9, France Telefax: +33-91-418 916

K. SATO (Biocrystalization and Organic Crystals) Fac. Applied Biological Science Hiroshima Univ. Higashi-Hiroshima 724, Japan Telefax: +81-824-277 062

L. F. SCHNEEMEYER (Superconductivity, Oxides, Novel Materials) Room IA-363, AT&T Bell Laboratories Murray Hill, NJ 07974-2070, USA Telefax: +1-908-582 2521

G. M. BLOM (Liquid Phase Epitaxy) Philips Laboratories, 345 Scarborough Road Briarcliff Manor, NY 10510, USA Telefax: +1-914-945 6375

D. W. SHAH (Semiconductors, Epitaxy, Devices) Texas Instruments Inc., P.O. Box 655536, MS 147 Dallas, TX 75265, USA Telefax: +1-214-995 5539

J. CHIKAWA (Perfection of Crystals) Faculty of Science, Himeji Inst. Technology Harima Garden City, Kamigori-cho Hyogo 678-12, Japan

A. CHO (Molecular Beam Epitaxy) Room IC-323, AT&T Bell Laboratories Murray Hill, NJ 07974-2070, USA Telefax: +1-908-582 2043

S. R. CORRIELL (Theory) A135 Materials Natl. Inst. of Standards & Technol. Gaithersburg, MD 20899-0001, USA

A. McPHERSON (Protein Growth) Dept. Biochemistry, Univ. of California Riverside, CA 92521, USA Telefax: +1-909-787 3790

D. E. WILLOW (Radio-Communications, Superconductivity) Hughes Aircraft Company P.O. Box H, M/S A2048, 500 Superion Avenue New Port Beach, CA 92658-5908, USA Telefax: +1-714-759 2868

J. B. MULLIN (Semiconductors) EMCC, "The Hool", Brockhill Road West Malvern, Worcs. WR4 1DL, UK Telefax: +44-684-575 591

K. PLOOG (Molecular Beam Epitaxy) Paul-Drude-lnstitut f. Festkorperphysik Hausvogteiplatz 5-7, D-10117 Berlin, Germany Telefax: +49-30-203 77201

Technical Editor: F. Y. Verlegh, Elsevier/North-Holland, P.O. Box 103, 1000 AC Amsterdam, Netherlands, Telefax: +31-20-5862 775

Elsevier Science B.V.: All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher, Elsevier Science B.V., P.O. Box 103, 1000 AC Amsterdam, Netherlands.

Special regulations for authors — Upon acceptance of an article by the journal, the author(s) will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Special regulations for readers in the USA — This journal has been registered with the Copyright Clearance Center, Inc. Consent is given for copying of articles for personal or internal use, or for the personal use of specific clients. This consent is given on the condition that the copy pays through the Center the per-copy fee stated in the code on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the USA Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, USA. If no code appears in an article, the author has not given broad consent to copy and permission to copy must be obtained directly from the author. The fee indicated on the first page of each article is per article. This issue will apply retroactively to all articles published in the journal, regardless of the year of publication. This consent does not extend to other kinds of copying, such as for general distribution, resale, advertising and promotion purposes, or for creating new collective works. Special written permission must be obtained from the publisher for such copying.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Although all advertising material is expected to conform to ethical standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made by it and its manufacturer.

US mailing address: Journal of Crystal Growth (ISSN 0022-0248) is published semi-monthly except monthly in January, February, June, July and November by Elsevier Science, Molenwerf 1, P.O. Box 211, 1000 AE Amsterdam, Netherlands. Annual subscription price in the USA is US $4822 (valid in North, Central and South America only), including air speed delivery. Second class postage paid at Jamaica NY 11431.

USA POSTMASTERS: Send address changes to Journal of Crystal Growth, Publications Expediting, Inc., 200 Meacham Avenue, Elmwood NY 11003. Airfreight and mailing in the USA by Publications Expediting.
Fluid flow, heat transfer, and solidification near tri-junctions

D.M. Anderson *, S.H. Davis

Department of Engineering Sciences and Applied Mathematics Northwestern University, Evanston, Illinois 60208, USA

Received 26 January 1994; manuscript received in final form 27 April 1994

Abstract

Steady, two-dimensional fluid flow and heat transfer are considered near tri-junctions at which solidification is occurring. Meniscus-defined configurations as well as closed configurations such as directional solidification are examined. The local wedge geometry admits separable solutions in plane polar coordinates. Over the class of functions which have bounded temperatures and velocities at the corner, local solutions, those which satisfy all local boundary conditions, and partial local solutions, those which satisfy all but the normal-stress boundary condition, are considered. The aim in this work is to describe local fluid flow and heat transfer in problems where solidification is occurring by identifying singularities in the heat flux and stress which are present at the tri-junction, determining the dependence of these singularities on the wedge angles, and determining when specific wedge geometries are selected. It is found that the locally dominant flow is that due to the expansion or contraction of the material upon solidification.

1. Introduction

Corner flows always are present at the “edges” of fronts that define phase transformation. For example, if a droplet of volatile liquid spreads on a heated surface, the evaporative mass loss near the contact line modifies the local dynamics [1]. Contact lines joining multiple-phase/multiple-field regions occur frequently in crystal growth systems. Meniscus-defined processes such as float-zone, and Czochralski systems, as well as other solidification processes are in this category (e.g., see Brown [2]).

Two-dimensional isothermal viscous flow in a corner region has been studied by several authors. Dean and Montagnon [3] considered a wedge bounded by two rigid planes and determined properties of the flow as functions of the wedge angle. Michael [4] considered the same geometry but with one solid boundary and one free surface and found that in order for the free surface to be stress-free the wedge angle must be π. Moffatt [5] considered these cases as well as the case of a wedge bounded by two free surfaces and described in detail situations in which sequences of eddies, now known as Moffatt vortices, can be present in the flow. Proudman and Asadullah [6] considered a two-fluid system where the two fluids meet along a flat surface. They found that the presence of a second phase with small viscosity resulted in a new mode of flow not obtained by a single-phase analysis. Anderson

* Corresponding author.

1 Present address: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK.
and Davis [7] considered two-fluid isothermal flow in a wedge bounded by two rigid planes of arbitrary angle. They identified singularities in the flow, Moffatt vortices, as well as geometries consistent with separable local solutions. They showed that the two modes identified by Proudman and Asadullah [6] are present for all wedge angles.

Anderson and Davis [8] analyzed non-isothermal corner flow in single- and double-wedge geometries. They identified heat transfer modes which are the analogs to the flow modes found by Proudman and Asadullah [6]. They also found that in order for the free surface to be stress-free, a non-isothermal planar free surface must leave a planar rigid boundary at an angle of π, the same angle as that found by Michael [4] for a isothermal rigid/free wedge.

The goal of the present work is to extend the isothermal and non-isothermal corner flow results to cases of systems in which phase transformation is occurring. In Section 2 solidification is considered. The aim is to determine those wedge angles for which solutions exist, and identify the strengths of singularities in the stresses and heat fluxes as functions of the wedge angles.

The class of solutions to be considered have bounded temperatures and velocities at the wedge vertex. Furthermore, both local solutions, those which satisfy all local boundary conditions, and partial local solutions, those which, when free surfaces are present, satisfy all local boundary conditions with the exception of the normal-stress boundary condition, are sought. Partial local solutions are important in the description of the local flow valid for infinite surface tension (or zero capillary number). When perturbation methods for small capillary number are used, conditions on the flow imposed by the normal-stress bound-

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of boundary conditions for flow with solidification</td>
</tr>
<tr>
<td>Hydrodynamic</td>
</tr>
<tr>
<td>$\theta = 0$</td>
</tr>
<tr>
<td>Meniscus-defined growth</td>
</tr>
<tr>
<td>Directional solidification</td>
</tr>
</tbody>
</table>

2. Non-isothermal flow with solidification

Consider local fluid flow and heat transfer near contact lines at which solidification is occurring. The first problem of study is meniscus-defined solidification systems. The analysis is generic in that the local wedge geometry is present in many problems in this category, e.g. Czochralski systems, float-zone systems, and surface welding systems [2]. Later, a directional solidification system will be considered.

In each case, there is heat transfer in two phases but flow in just one. For simplicity thermocapillary effects are neglected. The boundary conditions for these two systems are outlined in Table 1. Here “rigid, nonmaterial” indicates that there is a net mass flux through the surface due to solidification resulting in nonzero normal and tangential velocities, “rigid” and “free” indicate planar rigid and planar free surfaces, respectively, “nf” indicates a no-flux thermal boundary condition, “melting temp” indicates that the solidification front at $\theta = 0$ is at the melting tem-
perature, T_M, and “heat balance” indicates that the jump in heat flux across the interface is balanced by the release of latent heat. Note that the flow has a locally-driven component due to the phase transformation at the solidification front.

Meniscus-defined systems: The geometry is shown in Fig. 1. The solid phase is represented by the wedge between $\theta = 0$ and $\theta = -\alpha_1$ and the liquid phase is represented by the wedge between $\theta = 0$ and $\theta = \alpha_2$. The boundary between the two phases, $\theta = 0$, is the solidification front. Each boundary is assumed to be planar. The radial distance from the corner is r. In a typical meniscus-defined crystal growth system the third region (or wedge) would represent a gas phase, which here is taken to be passive. A reference frame is defined in which the solidification front is stationary and the solid/gas interface is parallel to the pulling velocity, V (i.e. the steady-state case).

The energy equations for both the solid and the liquid contain translational terms due to the moving reference frame. However, these equations simplify near the corner region. The governing equations for the solid and liquid temperatures, T_S and T_L respectively, and the stream-function ψ are

$$\nabla^2 T_S = 0 \text{ in the solid},$$

$$\nabla^2 T_L = 0 \text{ in the liquid},$$

and

$$\nabla^4 \psi = 0 \text{ in the liquid},$$

when $r \ll \min(\mathcal{A}_L^{(th)}/|V|, \mathcal{A}_S^{(th)}/|V|, \nu/|V|, \mathcal{A}_L^{(th)}/U, \mathcal{A}_S^{(th)}/U, \nu/U)$, where $\mathcal{A}_L^{(th)}$ and $\mathcal{A}_S^{(th)}$ are the thermal diffusivities of the liquid and solid, respectively, ν is the kinematic viscosity, and U is a velocity scale. The thermal boundary conditions are

$$\frac{\partial T_S}{\partial \theta} = 0 \text{ on } \theta = -\alpha_1,$$

$$T_S = T_L = T_M \text{ on } \theta = 0,$$

$$\frac{\rho_S L_v \nu_n r}{k_L} = k \frac{\partial T_S}{\partial \theta} = k \frac{\partial T_L}{\partial \theta} \text{ on } \theta = 0,$$

$$\frac{\partial T_L}{\partial \theta} = 0 \text{ on } \theta = \alpha_2,$$

where T_M is the melting temperature, ρ_S is the solid density, L_v is the latent heat, and $k = k_S/k_L$ is the ratio of thermal conductivities (solid to liquid). Note that $\nu_n = -|V| \sin \alpha_1$ and $v_t = |V| \cos \alpha_1$ are the normal and tangential components of the velocity of the solidification front. The hydrodynamic boundary conditions are

$$\frac{\partial \psi}{\partial r} = -\rho \nu_n \text{ on } \theta = 0,$$

$$\frac{1}{r} \frac{\partial \psi}{\partial \theta} = v_t \text{ on } \theta = 0,$$

$$\psi = 0 \text{ on } \theta = \alpha_2,$$

$$\frac{\partial^2 \psi}{\partial \theta^2} = 0 \text{ on } \theta = \alpha_2,$$

$$-p + \frac{2 \mu}{r} \left(\frac{1}{r} \frac{\partial \psi}{\partial \theta} - \frac{\partial^2 \psi}{\partial r \partial \theta} \right) = 0 \text{ on } \theta = \alpha_2,$$

where $\rho = \rho_S/\rho_L$ is the density ratio (solid to liquid), p is the pressure, and μ is the viscosity. When $|V| = 0$, there is no solidification, $u_n = u_t$.
with the constraints
\[\alpha_1 = \left(\frac{p}{q} \right) \alpha_2, \]
\[\tau = q \pi / 2 \alpha_2, \]
where \(p \) and \(q \) are any positive, odd integers. It is important to note here that either the particular thermal field (with \(T \sim r^\gamma \)) or homogeneous thermal field (with \(T \sim r \)) may be dominant near the corner \((r \to 0) \). Specifically, when \(\tau < 1 \), the homogeneous thermal field is dominant. It follows from Eq. (2.8) that only the case \(q = 1 \) gives \(\tau < 1 \). This requires \(\alpha_2 > \pi / 2 \). To see that no larger values of \(q \) give \(\tau < 1 \) note that for \(q \geq 5 \), \(\tau < 1 \) requires that \(\alpha_2 > 5 \pi / 2 \); such angles are not physically possible. For \(q = 3 \), \(\tau < 1 \) requires that \(\alpha_2 > 3 \pi / 2 \). However, (2.7) requires that \(\alpha_1 = (p/3) \alpha_2 \). So \(\alpha_1 > p \pi / 2 \geq \pi / 2 \) and \(\alpha_1 + \alpha_2 > 2 \pi \), which is not physically possible. By a similar argument one can deduce that \(\tau < 1 \) only when \(\alpha_1 = \alpha_2 \) (i.e. \(p = 1, q = 1 \)). Therefore, the homogeneous thermal field is dominant only when \(\alpha_1 = \alpha_2 > \pi / 2 \), in which case \(\tau = \frac{1}{2} \pi / \alpha_2 < 1 \). Note that when \(\tau = 1 \) the leading order homogeneous temperature field is linear in \(r \) and therefore can incorporated into the particular solution (it merely changes the constant \(A_S^{(0)} \)).

Next, we consider the flow problem. We assume a streamfunction given by

\[\psi = r^{\sigma + 1} \left[A_\sigma \cos(\sigma + 1) \theta + B_\sigma \sin(\sigma + 1) \theta \right. \]
\[\left. + C_\sigma \cos(\sigma - 1) \theta + D_\sigma \sin(\sigma - 1) \theta \right] \]
\[+ r^2 \left(A_1 \cos 2 \theta + B_1 \sin 2 \theta + C_1 \theta + D_1 \right) \]
\[+ r \left(A_0 \cos \theta + B_0 \sin \theta + C_0 \cos \theta + D_0 \sin \theta \right), \]
where \(A_i, B_i, C_i \) and \(D_i \) for \(i = 0, 1, \sigma, (\sigma \neq 0, 1) \) are unknown constants to be determined by the boundary conditions. In general, one or more of these coefficients will be left undetermined by the local analysis; these are in principle determined by matching to an outer flow. The exponent \(\sigma \), which arises as a separation constant, may be complex and is taken to have positive real part. Values of \(\sigma \) with \(\text{Re}(\sigma) < 0 \) are not considered since they lead to unbounded velocities at the wedge vertex, \(r = 0 \). The dominant contribu-
tion to the flow corresponds to the exponent of r with the smallest real part.

Both local solutions and partial local solutions are sought. The local solution satisfying the boundary conditions (2.3) is given by

$$
\psi = r |V| (\rho \sin \alpha_1 \cos \theta + \cos \alpha_1 \sin \theta),
$$

(2.10)

provided that the condition

$$
\rho \sin \alpha_1 \cos \alpha_2 + \cos \alpha_1 \sin \alpha_2 = 0
$$

(2.11)

is satisfied. (This condition arises as a result of the requirement that the normal stress vanish on the free surface α_2, and can be thought of as the analog of the restriction found by Michael [4] for the rigid/free wedge problem, which requires a wedge angle of π in order for the normal stress to vanish on the free surface.) Notice that this is simply a uniform flow field, and corresponds to zero normal and zero tangential stress on the free surface $\theta = \alpha_2$. When $\rho = 1$, this flow corresponds to a uniform translation at the pulling speed $|V|$. Note that when $\alpha_2 = \pi$, there are no physically allowable values of α_1 satisfying condition (2.11). Therefore, one cannot superpose onto this flow an unforced flow, corresponding to $|V| = 0$, which requires $\alpha_2 = \pi$ in order to satisfy all local boundary conditions [4].

It is of interest to determine the wedge angles which satisfy the restrictions placed by the thermal fields as well as by the flow field. In general, the thermal solution requires that $\alpha_1 = \alpha_2$, which, from Eq. (2.11), gives $2\alpha_1 = 0$ for all values of ρ. This suggests that $\alpha_1 = \alpha_2 = \pi/2$. When the liquid is locally isothermal, the only condition on the wedge angles due to the thermal problem is that $\alpha_1 = \pi/2$. However, local solutions require that Eq. (2.11) holds, giving $\alpha_2 = \pi/2$. Similarly, for a locally isothermal solid both α_1 and α_2 must be $\pi/2$. In each of the above cases, both the temperature and streamfunction are linear in r.

These local results show that the growth angle ϕ (see Fig. 1), which is defined by

$$
\phi = -\pi + \alpha_1 + \alpha_2,
$$

(2.12)

must be zero. This can be compared with the results of Surek and Chalmers [9] who used a float-zone technique to measure ϕ. They studied silicon ($\rho = 0.909$) and germanium ($\rho = 0.9546$) and found values of ϕ to be 11° and 8°, respectively. The fact that our predicted value is $\phi = 0$ may suggest that the local angle found here is present on a smaller scale than the angle observed.

Next, partial local solutions are sought. The same thermal-field results apply as given by Eqs. (2.5)–(2.8). Now, however, the normal-stress condition (2.3e) on $\theta = \alpha_2$ is relaxed. The streamfunction is given by

$$
\tilde{\psi} = \tilde{\psi}_1 + r |V| \left\{ \rho \sin \alpha_1 \cos \theta + \cos \alpha_1 \sin \theta - \frac{\rho \sin \alpha_1 \cos \alpha_2 + \cos \alpha_1 \sin \alpha_2}{\alpha_2 - \cos \alpha_2 \sin \alpha_2} \right. $$

$$
\left. \times \left[\theta \cos(\theta - \alpha_2) - \cos \alpha_2 \sin \theta \right] \right\},
$$

(2.13)

where $\tilde{\psi}_1 \sim r^{\sigma + 1}$ represents the homogeneous contribution to the flow corresponding to isothermal flow in a rigid/free wedge and is given by Anderson and Davis [7] by their equations (2.22), (2.28), (2.29), (2.30), or (2.32), depending on α_2, where the exponent σ in the most general case is given by

$$
\sigma \sin 2\alpha_2 - \sin 2\sigma \alpha_2 = 0.
$$

(2.14)

This restriction on σ is that found by Moffatt [5] for a rigid/free wedge. It is this isothermal contribution that provides local information from the far-field flow. Regardless of the value of α_2 and regardless of the isothermal contribution to the flow, the local flow is always dominated by the locally-driven flow due to phase transformation. To see this, note that the flow due to phase transformation is represented by velocity components that are constant with respect to r and therefore do not diminish as the corner is approached. This is in contrast to the isothermal flows which have velocity components proportional to r^σ (where $\text{Re}(\sigma) > 0$) which vanish at the corner.

One must interpret the restrictions placed on the wedge angles, α_1 and α_2, and exponents, τ and σ. In general, the thermal problem requires
that \(\alpha_1 = \alpha_2 \geq \pi/2 \). The particular thermal field (2.5) is dominant when the equality holds and the homogeneous thermal field (2.6) is dominant otherwise. The value of \(\tau \) is given by \(\tau = \frac{1}{2} \pi / \alpha_2 \) so when \(\alpha_1 = \alpha_2 > \pi/2 \), the heat flux is singular. Also note that neither \(\alpha_1 \) nor \(\alpha_2 \) can exceed \(\pi \).

When the liquid (solid) is locally isothermal, \(\alpha_2 \) (\(\alpha_1 \)) is left undetermined by both the thermal and flow problem. In all of the above cases, Eq. (2.14) determines the value of \(\sigma \) for the flow field given an angle in the liquid \(\alpha_2 \); it does not involve the angle \(\alpha_1 \) in the solid. While the value of \(\sigma \) is given by Eq. (2.14), the stress field now has an \(r^{-1} \) singularity due to the term in the streamfunction proportional to \(r \theta \cos(\theta - \alpha_2) \). This is the dominant singularity.

Directional solidification system: The geometry for this system is shown in Fig. 2. The boundaries \(\theta = \alpha_2 \) and \(\theta = \alpha_2 - \pi \) are rigid surfaces and \(\theta = 0 \) represents the solid/liquid interface. The container, or ampoule, is pulled upwards with velocity \(V \). A reference frame is used in which the solid/liquid interface is stationary.

The problem formulation remains the same as for the meniscus-defined systems with the exception of the hydrodynamic boundary conditions. For the directional solidification system these are

\[
\frac{\partial \psi}{\partial r} = -\rho v_n \text{ on } \theta = 0, \quad (2.15a)
\]

\[
\frac{1}{r} \frac{\partial \psi}{\partial \theta} = v_1 \text{ on } \theta = 0, \quad (2.15b)
\]

\[
\psi = 0 \text{ on } \theta = \alpha_2, \quad (2.15c)
\]

\[
\frac{1}{r} \frac{\partial \psi}{\partial \theta} = -|V| \text{ on } \theta = \alpha_2. \quad (2.15d)
\]

Here \(v_n = -|V| \sin \alpha_2 \) and \(v_1 = -|V| \cos \alpha_2 \). These correspond to conditions on the normal and tangential velocity components at the solidification front (\(\theta = 0 \)) and to no penetration and no slip at the sidewall (\(\theta = \alpha_2 \)). Notice that there is no free surface upon which thermocapillarity can act.

The thermal problem is the same as in the meniscus-defined systems. However, since the present geometry has a total wedge angle, \(\alpha_1 + \alpha_2 \) of \(\pi \), the results are limited to the case \(\alpha_1 = \alpha_2 = \pi/2 \). This includes cases where either the solid wedge or liquid wedge is locally isothermal. Therefore, the leading-order thermal fields are given by Eq. (2.5) and are nonsingular. As in the meniscus-defined case, the inhomogeneous boundary terms must be balanced by the terms linear in \(r \). In this case the streamfunction is given by

\[
\psi = \frac{2D_\sigma r^{\alpha+1} \sin \sigma \pi/2}{(\alpha + 1)} g(\theta, \sigma)
\]

\[
+ r |V| \left\{ \rho \cos \theta + \frac{(1 - \rho)}{(\pi/2)^2 - 1} \times \left[\theta \sin \theta + \frac{\pi}{2} (\theta \cos \theta - \sin \theta) \right] \right\}, \quad (2.16)
\]

where \(g(\theta, \sigma) \) is given by

\[
\frac{g(\theta, \sigma)}{\sin \sigma \pi/2} = \cos \theta \sin \sigma \theta
\]

\[
- \frac{\sin \sigma (\pi/2 - \theta)}{\sin \sigma \pi/2} \sigma \sin \theta, \quad (2.17)
\]
and σ by

$$\sigma \pm \sin \sigma \pi/2 = 0. \quad (2.18)$$

This restriction on σ is that found by Dean and Montagnon [3] for a rigid/rigid wedge of angle $\pi/2$. Note that the largest contribution locally is due to the term linear in r. The contribution from the far-field flow only becomes important away from the corner. Typical flows showing the contribution from the first two dominant terms in the streamfunction are sketched in Fig. 3. The two sketched flows shown in this figure correspond to $|V| = 1$, $\rho = 1$, $\alpha_1 = \pi/2$, and $D_o = 1$ (upper figure) and -1 (lower figure). While the far-field flow has a significant effect on the flow a finite distance from the corner, the flow sufficiently near the corner is always dominated by that associated directly with the solidification process (see inset). Recall that there is a r^{-1} singularity in the stress due to the presence of the terms $\theta \sin \theta$ and $\theta \cos \theta$, which vanishes only when $\rho = 1$.

3. Summary

We have presented a local picture of fluid flow and heat transfer near tri-junctions at which solidification is occurring. The class of solutions sought are those with bounded temperatures and velocities at the wedge vertex. Locally, the governing equations simplify to Laplace’s equation and the biharmonic equation for the temperature and streamfunction, respectively. Separable solutions for the temperature and streamfunction are written as $T \sim r^\sigma f_\sigma(\theta)$ and $\psi \sim r^{\sigma+1} f_\sigma(\theta)$, respectively. For the streamfunction, one distinguishes between local solutions, those which satisfy all local boundary conditions, and partial local solutions, those which satisfy all local boundary conditions except for the normal-stress boundary condition. The analysis provides locally valid solutions that identify the types of singularities present at the corner and shows how these singularities vary with the wedge angles.

Two different systems are considered: meniscus-defined solidification systems and directional solidification systems. The analysis is generic in that many different solidification configurations have the same type of local tri-junction region.

In the meniscus-defined solidification system it is found that for local solutions the resulting flow is just a uniform flow towards the solidification front and has both the solid and liquid wedge angles, α_1 and α_2, respectively, equal to $\pi/2$. This gives a growth angle, ϕ, of zero. This flow is nonsingular. Since the unforced version of the flow problem, the rigid/free wedge problem studied by Michael [4], requires a liquid wedge angle of π, no unforced flow solution can be superposed. For local solutions, the dominant temperature exponent is $\tau = 1$ (i.e. $T \sim r$); therefore the heat flux is never singular. For partial local solutions the streamfunction has a locally-driven component due to the solidification but now, due to the relaxation of the normal-stress boundary condition, an unforced flow solution can be superposed. However, the locally dominant flow is still that driven by the solidification. The temperature and velocity exponents, τ and σ, are functions of the wedge angles; there is no dependence on the density ratio. The stress field always has an r^{-1}
singularity. The heat flux is singular only when both solid and liquid wedge angles are equal and greater than $\pi/2$.

In the directional solidification system the dominant flow is again the component driven by the phase transformation. The solidification front is found to be locally perpendicular to the sidewalls. The heat flux is always nonsingular.

Acknowledgements

This work was supported by grants from the National Aeronautics and Space Administration through the Graduate Student Researchers Program (DMA) and the Program on Microgravity Science and Applications (SHD). The authors would like to thank M.G. Worster for helpful discussions.

References