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ADDENDUM

Local fluid and heat flow near contact lines
By D. M. ANDERSONT AND S. H. DAvVIs

Journal of Fluid Mechanics, vol. 268 (1994), pp. 231-265

It has recently come to our attention that our paper, which describes Marangoni-
driven flow near a contact line, overlooks solutions involving a general thermal
boundary condition on the free surface (private communication, S. J. Tavener 1997).
These new solutions are applicable for non-isothermal flows in a corner region where
one boundary is a rigid plane (and either perfectly insulating or perfectly conducting)
and the other is a free surface upon which a general thermal boundary condition is
applied. We describe these additional solutions below.

Consider non-isothermal flow in a single wedge bounded by a rigid plane at 6 =0
and a planar free surface at § = a. We consider the cases where the boundary at
6 = 0 is either perfectly insulating (no flux) or perfectly conducting. On the free surface
0 = « we impose a general thermal boundary condition
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where k is the thermal conductivity and 4 is the heat transfer coeflicient. The local
thermal field (before applying boundary conditions) has the general form given by
equation (2.5).

When 7 < 1, where T ~ rf{6), the free surface condition (1) leads to 07/060 =0
(i.e. a no-flux boundary condition) to leading order. When 7> 1 the free surface
condition (1) again leads to the no-flux boundary condition with the additional
condition that the temperature at r = 0 is 7,.. Solutions for these cases are described
in our paper.

There are additional solutions when 7 = 1. Here, the general thermal boundary
condition (1) does not reduce to the no-flux condition. When 8 =0 is a no-flux
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boundary, the thermal field is given by \
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where T is the temperature at the corner. If & = 7, the only solution of the form sought
with7 = 1is T = T, (i.e. an isothermal corner). When 6 = 0 is a conducting boundary
(at constant temperature 7;), the thermal field is given by

T= n+wrsine+om). (3)
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When « = /2 or 3n/2 equation (3) is replaced by
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where B, is arbitrary and T, must equal T,. Equations (2) and (3) correspond to
1sotherms perpendicular and parallel to the boundary 6 = 0, respectively, to leading
order in r. The special case represented by equation (4) also corresponds to leading-
order isotherms parallel to # = 0. The temperature gradient along the free surface
0T/dr|, is constant (to leading order in r) in each case.

The Marangoni flow (streamfunction form, ‘partial local solution’) driven by these
thermal gradients satisfies V“aﬁp = 0 and boundary conditions (2.194, b, ¢). Since the
temperature gradlent (and by assumption the surface tension gradient) is constant to
leadlng order in r, the corresponding streamfunction z/fp is proportional to 7 and is
given by equation (2.24). Here f,(«) is interpreted to be 0T/0r|, as evaluated from
equations (2) or (3). This flow corresponds to a locally-driven Marangoni flow only.
The complete local flow is obtained by adding to this flow the additional local flow
driven from far-field effects as described previously. There are no additional ‘local
solutions’ that have a corner-driven Marangoni flow.

An additional correction to this previous paper is that in the first paragraph
of §2.2.1, the equation V3% = 0 should be replaced by the biharmonic equation
Viy = 0.

The authors would like to thank S.J. Tavener for bringing this issue to our
attention.



