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We consider a model for the solidification of an ideal ternary alloy in a mushy
layer that incorporates the effects of thermal and solutal diffusion, convection and
solidification. Our results reveal that although the temperature and solute fields are
constrained to the liquidus surface of the phase diagram, the system still admits
double-diffusive modes of instability. Additionally, modes of instability exist even in
situations in which the thermal and solute fields are each individually stable from a
static point of view. We identify these instabilities for a general model in which the
base-state solution and its linear stability are computed numerically. We then highlight
these instabilities in a much simpler model that admits an analytical solution.

1. Introduction
In the most basic notion of buoyant convection, a light fluid region above a heavy

fluid region in a gravitational field represents a stable configuration, while a heavy
fluid region above a light fluid region represents a potentially unstable configuration.
In the latter case, for a motionless fluid layer to begin to convect, the buoyant
forces must be sufficient to overcome viscous and other resistive forces present in the
fluid. For a pure fluid whose density decreases with temperature, thermally driven
convection could thus commence given an ample supply of heat from below. Similarly,
in an isothermal two-component fluid compositionally driven convection can occur
when the composition field gives rise to an adverse density gradient, e.g. (heavier)
salty fluid above (lighter) fresher fluid.

When two diffusing fields, for example temperature and concentration, are present
in the same system the characterization of buoyant convection becomes at once both
more complicated and more interesting. In such cases, one must first recognize that the
fluid density depends in general on both the temperature and species concentration
of the fluid. However, it is also crucial to recognize that the two diffusing quantities
can have different diffusivities. These are the key factors controlling the phenomena
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of double-diffusive convection (e.g. Turner 1973; Huppert & Turner 1981). In this
setting it is possible for a statically stable system (i.e. one whose net density profile
is stably stratified) to be linearly unstable to perturbations. Two basic situations can
be identified. First, if the slower diffusing component is destabilizing and the faster
one is stabilizing, then a direct mode of instability referred to as ‘salt fingers’ or
‘salt fountains’ can be present. For a typical case with heat and species diffusion –
wherein heat diffuses much more rapidly than species and the fluid density decreases
with temperature and increases with salinity – if fresher and cooler fluid is below
saltier and warmer fluid, the system is unstable with respect to the slower diffusing
composition and salt-finger convection can occur. Here a parcel of fluid displaced
upwards equilibrates to its new thermal environment (i.e. warms) relatively quickly but
owing to the slow diffusion of species remains relatively fresh (and light) compared
with its surroundings, and so the parcel continues to rise. This scenario is known
as the ‘fingering’ regime. On the other hand, if the slower diffusing component is
stabilizing and the faster one destabilizing, then the system can admit an over-stable
oscillatory instability. Such could be the case with saltier and warmer fluid below
fresher and cooler fluid; the faster diffusing thermal field is destabilizing. Here a fluid
parcel displaced upwards again equilibrates thermally (i.e. cools) relatively quickly
but remains saltier (and heavier) with respect to its new environment. The parcel is
forced back down but with a lag in temperature relative to its local environment that
effectively adds gravitational mass to the parcel (a similar lag reduces the gravitational
mass on an up cycle) and causes it to return to its original position with more inertia
than on its previous cycle; the parcel overshoots its original position, and an over-
stable oscillation occurs. These oscillations are supported by a stable solute field, and
the diffusion of heat allows them to grow. This scenario is known as the ‘diffusive’
regime.

These ideas have also been extended to describe convection of viscous fluids with
three diffusing components. Griffiths (1979) performed a linear stability analysis
to assess convection of an isothermal fluid with three diffusing components in
a horizontal layer for which the base-state solution consisted of three linear
concentration profiles. As in standard double-diffusive convection scenarios when two
diffusing components are present, this ternary system admitted direct salt-finger modes
as well as over-stable oscillatory modes. A notable result identified by Griffiths (1979)
occurs when the fastest and slowest diffusing components contribute the same trends
with respect to the density gradient (either both stabilizing or both destabilizing);
here salt-finger modes and oscillatory modes can be simultaneously unstable. This
can be understood from the perspective of the above-mentioned two-component view
of double-diffusive convection by pairing simultaneously the intermediate diffusing
component with the faster and the slower diffusing components.

Similar characterizations of double-diffusive convection in porous layers, which are
of interest in the present work, can be found in the book by Nield & Bejan (1998). The
linear stability problem of double-diffusive convection in a porous layer was originally
examined by Nield (1968) and follows closely the ones described above for a viscous
fluid. However, one notable difference is that although real modes of instability can
occur in the statically stable regions, oscillatory modes, while still present, do not occur
in the statically stable regions. Nield’s original analysis has been extended to include
cases of ternary convection in non-reactive porous layers. Rudraiah & Vortmeyer
(1982) repeated the linear stability analysis of Griffiths (1979) for ternary convection
in a non-reactive porous layer and reported very similar results. Poulikakos (1985)
also presented linear stability results for convection of three diffusing components
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in a non-reactive porous layer. These results included the case in which one of the
components was a thermal field which, unlike solute, can diffuse equally well through
both solid and liquid phases of the porous media.

Buoyant convection often occurs in systems undergoing phase transformation.
During the solidification of a binary alloy, for example, both thermal and
compositional gradients can be present in the melt, and convection coupled with
morphological instabilities of the solid–liquid interface can occur (e.g. see Coriell
et al. 1980; Hurle, Jakeman & Wheeler 1982; Schaeffer & Coriell 1984; Thi, Billia &
Jamgotchian 1989; Lan & Tu 2000). Double-diffusive effects are also known to play
important roles in geophysical processes such as magma crystallization (Huppert &
Sparks 1984).

It is well known that during solidification of binary alloys, regions known as
mushy layers – reactive porous-like regions made up of fine-scale crystals – can form
between completely liquid regions and completely solid regions (e.g. see the reviews
by Worster 1997, 2000; Davis 2001). Since thermal and solutal gradients can occur in
the completely liquid region of such systems the same mechanisms that drive double-
diffusive convection in an isolated fluid layer are again present. Further, just as in a
non-reactive porous medium, convection driven by thermal and/or solutal gradients
within the mushy layer is also possible. However, unlike the case of a non-reactive
porous media, the temperature and composition fields in a mushy layer are coupled
with the equilibrium phase diagram. In particular, the relatively high surface-area-to-
volume ratio of the dendritic crystals in the mushy layer implies that thermodynamic
equilibrium is maintained, and for binary alloys this directly couples the temperature
T and liquid composition C within the mushy layer through the liquidus constraint
T = T L(C) of the equilibrium phase diagram. Therefore, while the thermal diffusivity
is in general much larger than the solutal diffusivity, the temperature and composition
within the mushy layer do not behave as independently diffusing quantities owing
to the liquidus constraint. This direct coupling therefore eliminates an essential
mechanism required for double-diffusive convection. Consequently, while there are
a host of interesting, novel and industrially relevant buoyant convective phenomena
that occur within binary alloy mushy layers (e.g. Worster 1992a,b; Amberg & Homsy
1993; Chen, Lu & Yang 1994; Anderson & Worster 1995, 1996; Schulze & Worster
1998, 1999, 2001; Chung & Chen 2000; Chung & Worster 2002; Guba & Worster
2006a,b; Roper, Davis & Voorhees 2007, 2008; Katz & Worster 2008) double-diffusive
convection driven from within the mushy layer itself is not one of them. Studies such
as those by Nandapurka et al. (1989) and Singh & Basu (1995) that specifically
refer to double-diffusive, or thermosolutal, convection in binary mushy layer systems
still impose the condition of thermodynamic equilibrium within the mushy layer and
therefore implicitly refer to double-diffusive convection driven from within completely
liquid regions rather than from within a binary mushy layer.

While the understanding of convection in binary mushy layers is by no means
complete, there is considerable interest from both industrial and scientific points of
view in developing a better understanding of solidification, convection and mushy
layer formation in ternary alloy systems. The equilibrium phase diagram for such
systems (e.g. Lupis 1993; Smallman & Bishop 1999) can range from relatively
simple to highly complex. Systems of interest in metallurgy (e.g. Boettinger et al.
1995; Krane & Incropera 1997; Schneider et al. 1997; Krane, Incropera & Gaskell
1998; Felicelli, Poirier & Heinrich 1997, 1998) tend to be in the latter category.
A fourth, intermetallic phase often further complicates ‘ternary’ systems. Other
recent work has focused on aqueous ternary systems, whose equilibrium phase
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diagrams can be characterized relatively easily by a few simple formulas. Laboratory
experiments on the aqueous system water–potassium nitrate–sodium nitrate (H2O–
KNO3–NaNO3) have revealed that in this ternary eutectic system two distinct mushy
layers, referred to as the primary and secondary mushy layers, can form between the
completely solid and completely liquid layers (Aitta, Huppert & Worster 2001a,b;
Thompson et al. 2003b). Convection and solidification of another aqueous ternary
system H2O–CuSO4–Na2SO4 has also been recently examined (Bloomfield & Huppert
2003).

The primary and secondary mushy layers in these aqueous systems are distinguished
by the make-up of the solid material; for example, the solid in the primary layer
could be made up of pure ice crystals, while the crystalline matrix of the secondary
layer is made up of solid ice and solid potassium nitrate. From the point of view
of the equilibrium phase diagram, the primary mushy layer is associated with
a liquidus surface, and the secondary mushy layer is associated with a cotectic
boundary marking the intersection of two liquidus surfaces. In the primary mushy
layer the corresponding thermodynamic equilibrium constraint takes the form
T = T L(C1, C2), which states that the temperature and liquid compositions C1 and
C2 are constrained to lie on the liquidus surface. In the secondary mushy layer two
thermodynamic equilibrium constraints of the form T = T C

1 (C1) and T = T C
2 (C2) hold

for the temperature and compositions along a cotectic boundary. In the secondary
mushy layer C1 and C2 are directly linked to each other and to T ; consequently, these
quantities cannot diffuse independently here, and like the binary case, an essential
mechanism for double-diffusive convection is absent. In the primary mushy layer,
however, there is an additional degree of freedom between the temperature and
compositions, as they are linked only through a single constraint T = T L(C1, C2).
Does this additional degree of freedom between the temperature and compositions
in the primary mush of the ternary system along with thermal and solutal diffusion
allow double-diffusive convection to be driven from within a ternary alloy primary
mushy layer? More generally, what type of modes are driven from within a primary
mushy layer of a ternary alloy? Our objective in the present work is to address these
questions.

Previous theoretical studies related to the aqueous ternary alloy systems described
above have addressed diffusion-controlled growth of primary and secondary mushy
layers without convection (Anderson 2003; Thompson, Huppert & Worster 2003a)
and convective effects within primary and secondary mushy layers in the absence of
solute diffusion (Anderson & Schulze 2005). While these studies have revealed the rich
structure of non-convecting ternary mushy layers as well as both linear and nonlinear
convecting states, the existence of double-diffusive convection in general ternary
mushy layer systems has not been established. Recently, Flynn (2009) developed a
pseudo-spectral numerical scheme to investigate the linear stability of a full three-
layer ternary mush problem that extends the work of Anderson & Schulze (2005) to
include the effects of solute diffusion. A complete study of this three-layer model is
currently underway.

We shall explore in a ternary alloy model the onset of convection within a single
primary mushy layer accounting for the effects of both thermal and solutal diffusion.
Section 2 outlines the ternary mushy layer model. Section 3 gives the details of the
linear stability analysis including the base-state solution, the disturbance equations
and numerically computed neutral stability results. Section 4 describes a simple model
system deduced from the full ternary model that admits an analytical solution and
reveals a new mechanism for instability. Conclusions are given in § 5.
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2. Ideal ternary mushy layer in a moving frame
We examine a model ternary mushy layer confined between two positions z̃ = V ′t ′

and z̃ =H ′ + V ′t ′ that move in time t ′ at a given constant speed V ′. The mushy layer
thickness H ′ is assumed to be a given constant. The fluid density has the form

ρ ′ = ρR
[
1 − α(T ′ − T ′

R) − α1(C
′
1 − C ′

1R) − α2(C
′
2 − C ′

2R)
]
, (2.1)

where α and αj (j = 1, 2) are thermal and solutal expansion coefficients and R

indicates a reference state. The governing equations for temperature T ′, composition
C ′

1 and C ′
2, solid fraction φ, pressure p′ and Darcy velocity u′ in terms of a coordinate

frame z′ = z̃ − V ′t ′ moving with the mushy layer are

c̄(φ)

[
∂T ′

∂t ′ − V ′ ∂T ′

∂z′ + u′ · ∇T ′
]

= ∇ ·
(
k̄(φ)∇T ′) + Lv

(
∂φ

∂t ′ − V ′ ∂φ

∂z′

)
, (2.2a)

(1 − φ)

(
∂C ′

j

∂t ′ − V ′ ∂C ′
j

∂z′

)
+ u′ · ∇C ′

j = ∇ ·
(
D̄j (φ)∇C ′

j

)
+ (1 − kj )C

′
j

(
∂φ

∂t ′ − V ′ ∂φ

∂z′

)
,

for j = 1, 2, (2.2b)

T ′ = T ′
0 + m′

1C
′
1 + m′

2C
′
2, (2.2c)

u′ = −�′(φ)

μ

(
∇p′ + ρ ′g k̂

)
, (2.2d)

∇ · u′ = 0, (2.2e)

where c̄(φ) = φcs +(1−φ)cl is the effective specific heat of the mushy layer with cs and
cl being the constant specific heat in the solid and liquid phases; k̄(φ) = φks +(1−φ)kl

is the effective thermal conductivity of the mushy layer with ks and kl denoting the
constant thermal conductivities in the solid and liquid phases; D̄j = (1 − φ)Dj is the
solutal diffusivity of the mushy layer with a constant solutal diffusivity Dj in the liquid
for species j (diffusion of solute in the solid is neglected); T ′

0 is the melting temperature
of the pure material; �′(φ) is the permeability of the mushy layer; μ is the fluid

viscosity; g is the gravitational acceleration; and k̂ is a unit vector in the z′ direction.
We assume that the segregation coefficients kj are constant and that the liquidus
slopes m′

j are constant. These equations are the ternary alloy analogues of the ideal
binary mushy layer equations described by Worster (1992b, 1997).

In general these equations would be coupled with the dynamics of an adjacent liquid
layer and/or other solid or mushy layers. In our simple model, the aim is to isolate
the dynamics of the primary mush, and therefore we assume that the composition
fields are on a single liquidus surface away from any cotectic or eutectic point. We
correspondingly use the boundary conditions

T ′ = T ′
top, C ′

1 = C ′
1top, φ = φ0, u′ · k̂ = 0, at z′ = H ′, (2.3a)

T ′ = T ′
bot , C ′

1 = C ′
1bot , u′ · k̂ = 0, at z′ = 0, (2.3b)

where T ′
top , T ′

bot , C ′
1top , C ′

1bot and φ0 are given constants. Note that since T ′, C ′
1 and C ′

2

are coupled by the liquidus constraint (2.2c) we do not impose independent values for
composition C ′

2. This reduced model will allow convective modes of instability driven
from within the primary mushy layer to be examined without the added complication
of other convecting layers. This simplifies the mathematical development and, more
importantly, allows for a clearer physical interpretation of the instabilities that
arise.
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2.1. Non-dimensionalization

Here we introduce dimensionless forms of the above-given equations. Lengths are
scaled with the layer thickness H ′, time with H ′2/κ , where κ = kl/cl is the thermal
diffusivity, and velocity with κ/H ′. We introduce the dimensionless temperature and
composition variables

T =
T ′ − T ′

bot

�T
, Cj =

C ′
j

�Cj

, (2.4)

where �T = T ′
top − T ′

bot and �Cj = C ′
j top

− C ′
j bot

for j = 1, 2. For a dimensionless

pressure variable we introduce

p =
�0

κμ

[
p′ + ρRgz′], (2.5)

where �0 is a reference permeability.
The dimensionless governing equations become

c(φ)

(
∂T

∂t
− V

∂T

∂z
+ u · ∇T

)
= ∇ · (k(φ)∇T ) + S

(
∂φ

∂t
− V

∂φ

∂z

)
, (2.6a)

(1 − φ)

(
∂Cj

∂t
− V

∂Cj

∂z

)
+ u · ∇Cj =

1

Lej

∇ ·
[
(1 − φ)∇Cj

]
+ (1 − kj )Cj

×
(

∂φ

∂t
− V

∂φ

∂z

)
, for j = 1, 2, (2.6b)

T = T0 + m1C1 + m2C2, (2.6c)

u = −�(φ)
(

∇p + �ρ k̂
)
, (2.6d)

∇ · u = 0, (2.6e)

where c(φ) = (cs/cl)φ + 1 − φ, k(φ) = (ks/kl)φ + 1 − φ, �(φ) = �′(φ)/�0 and �ρ

represents a density change related to temperature and composition by

�ρ = −Ra(T − T R) − Ra1

(
C1 − CR

1

)
− Ra2

(
C2 − CR

2

)
. (2.7)

In the current work we take �(φ) = (1−φ)3 unless noted otherwise. The dimensionless
parameters that appear are

V =
V ′H ′

κ
, S =

Lv

cl�T
, Lej =

κ

Dj

, T0 =
T ′

0 − T ′
bot

�T
, T R =

T ′
R − T ′

bot

�T
, (2.8a)

Ra =
α�Tg�0H

′

κν
, Raj =

αj�Cjg�0H
′

κν
, mj =

m′
j�Cj

�T
, CR

j =
C ′

j R

�Cj

, (2.8b)

for j = 1, 2, where ν =μ/ρR . Note that from the liquidus constraint �T = m′
1�C1 +

m′
2�C2, or in dimensionless form 1 =m1 + m2. The boundary conditions are

T = 1, C1 = C1
top ≡ C1

bot + 1, φ = φ0, u · k̂ = 0, at z = 1, (2.9a)

T = 0, C1 = C1
bot , u · k̂ = 0, at z = 0, (2.9b)

where C1
bot = C ′

1bot/�C1. In place of the boundary conditions on T we could

equivalently impose C2(z = 0) = C2
bot , where C2

bot = −(T0 + m1C1
bot )/m2 and

C2(z = 1) = C2
top ≡ C2

bot + 1.
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The density in (2.7) depends on T , C1 and C2, but these quantities are not all
independent owing to the liquidus contraint (2.6c). If we define a density gradient

Gρ = ∇(�ρ) = −Ra∇T − Ra1∇C1 − Ra2∇C2 (2.10)

and note that by (2.6c) we can eliminate C2, then

Gρ = −RaT ∇T − RaC∇C1. (2.11)

Therefore we can quantify buoyant effects through the two effective Rayleigh numbers

RaT ≡ Ra +
1

m2

Ra2, RaC ≡ Ra1 − m1

m2

Ra2. (2.12)

Note that RaT + RaC = Ra + Ra1 + Ra2.

3. Linear stability analysis
3.1. Steady base state solution

Steady, one-dimensional non-convecting solutions to (2.6) satisfy

−c(φ̄)V
dT̄

dz
=

d

dz

(
k(φ̄)

dT̄

dz

)
− V S

dφ̄

dz
, (3.1a)

−V (1 − φ̄)
dC̄j

dz
=

1

Lej

d

dz

[
(1 − φ̄)

dC̄j

dz

]
− V (1 − kj )C̄j

dφ̄

dz
, for j = 1, 2, (3.1b)

T̄ = T0 + m1C̄1 + m2C̄2, (3.1c)

subject to boundary conditions T̄ = 1, C̄1 = C1
bot + 1, φ̄ = φ0 at z =1 and T̄ = 0,

C̄1 = C1
bot at z = 0. Again note that in place of the boundary conditions on T̄ we

could equivalently impose C̄2(z = 0) = C2
bot , where C2

bot = −(T0 + m1C1
bot )/m2 and

C̄2(z = 1) = C2
bot + 1. The equation for p̄ will not be needed in the analysis.

3.1.1. Base state solution

We solve the equations for the base-state solution numerically by using a shooting
method. In particular, we rewrite the base-state equations as a system of first-order
differential equations for quantities φ̄, C̄1, C̄2, Q1 and Q2, where

Qj ≡ (1 − φ̄)
dC̄j

dz
, for j =1, 2. (3.2)

These equations are

m1

dQ1

dz
+ m2

dQ2

dz
= − c(φ̄)

k(φ̄)
V (m1Q1 + m2Q2) + f (Q1, Q2, φ̄)

dφ̄

dz
, (3.3a)

1

Le1

dQ1

dz
= −V Q1 + V (1 − k1)C̄1

dφ̄

dz
, (3.3b)

1

Le2

dQ2

dz
= −V Q2 + V (1 − k2)C̄2

dφ̄

dz
, (3.3c)

dC̄1

dz
=

Q1

1 − φ̄
, (3.3d)

dC̄2

dz
=

Q2

1 − φ̄
, (3.3e)
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Figure 1. The figure shows a typical base-state solution for the ternary alloy model. The
parameter values used here are m1 = m2 = 0.5, k1 = k2 = 0.1, Le1 = Le2 = 100, S = 37, ks/kl = 1,
cs/cl =1, V = 0.1, φ0 = 0.1, Cbot

1 = −3.5 and Cbot
2 = −3.

where

f (Q1, Q2, φ̄) = −m1Q1 + m2Q2

1 − φ̄
+

V S(1 − φ̄)

k(φ̄)
− 1

k(φ̄)

dk

dφ̄
(m1Q1 + m2Q2). (3.4)

Using (3.3b) and (3.3c) we find that (3.3a) can be written in the form

dφ̄

dz
= −

V
[
m1Le1Q1 + m2Le2Q2 − (c(φ̄)/k(φ̄))(m1Q1 + m2Q2)

]
f − V

[
m1Le1(1 − k1)C̄1 + m2Le2(1 − k2)C̄2

] . (3.5)

The shooting procedure involves integrating (3.3b)–(3.3e) and (3.5) subject to the
conditions C̄1 = C

top

1 , C̄2 =C
top

2 , φ̄ = φ0 and Qj = Q
top
j for j =1, 2 at z = 1. The

conditions on Qj are used as shooting parameters iteratively chosen to satisfy
the conditions C̄1 = Cbot

1 and C̄2 =Cbot
2 at z = 0. These calculations are done using

Matlab with ode23s for the integration and fsolve to solve the nonlinear system for
the two unknowns Q

top
j . For use in the pseudo-spectral linear stability calculations to

follow, the base-state solution is output at NP Chebyshev points. A typical base-state
solution, which reveals nonlinear temperature, composition and solid fraction profiles,
is shown in figure 1. Figure 1(d ) shows a projection of the solution on to the C1–C2

plane (other examples are shown in figure 7). While the composition profiles shown
here are monotonic throughout the layer, we show in more detail below that for other
sets of parameters the composition profiles can be non-monotonic.

3.2. Linearized disturbance equations

In order to study the linear stability of the base-state solutions given above we
introduce perturbations of the form

T = T̄ (z) +
[
T̂ (z)eσ t+iax + c.c.

]
, (3.6a)
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Cj = C̄j (z) +
[
Ĉj (z)e

σ t+iax + c.c.
]
, (3.6b)

u = 0 +
[
(û(z), 0, ŵ(z))eσ t+iax + c.c.

]
, (3.6c)

φ = φ̄(z) +
[
φ̂(z)eσ t+iax + c.c.

]
, (3.6d)

p = p̄(z) +
[
p̂(z)eσ t+iax + c.c.

]
, (3.6e)

where σ is a complex growth rate and a is a horizontal wavenumber.
After eliminating the variables û, p̂ and Ĉ2 the linear disturbance equations are[

k(φ̄)
]
D2T̂ +

[
k′(φ̄)Dφ̄ + c(φ̄)V

]
DT̂ −

[
a2k(φ̄)

]
T̂ −

[
c(φ̄)DT̄

]
ŵ +

[
k′(φ̄)DT̄

−SV
]
Dφ̂ +

[
k′(φ̄)D2T̄ + k′′(φ̄)Dφ̄DT̄ + V c′(φ̄)DT̄

]
φ̂ = σ{c(φ̄)T̂ − Sφ̂}, (3.7a)[

1 − φ̄

Le1

]
D2Ĉ1 +

[
V (1 − φ̄) − Dφ̄

Le1

]
DĈ1 −

[
a2(1 − φ̄)

Le1

+ V (1 − k1)Dφ̄

]
Ĉ1

−
[
DC̄1

]
ŵ −

[
DC̄1

Le1

+ V (1 − k1)C̄1

]
Dφ̂ −

[
D2C̄1

Le1

+ V DC̄1

]
φ̂

= σ{(1 − φ̄)Ĉ1 − (1 − k1)C̄1φ̂}, (3.7b)

1

m2

[
1 − φ̄

Le2

]
D2T̂ +

1

m2

[
V (1 − φ̄) − Dφ̄

Le2

]
DT̂ − 1

m2

[
a2(1 − φ̄)

Le2

+ V (1 − k2)Dφ̄

]
T̂

− m1

m2

[
1 − φ̄

Le2

]
D2Ĉ1 − m1

m2

[
V (1 − φ̄) − Dφ̄

Le2

]
DĈ1 +

m1

m2

[
a2(1 − φ̄)

Le2

+ V (1 − k2)Dφ̄

]
Ĉ1 −

[
DC̄2

]
ŵ −

[
DC̄2

Le2

+ V (1 − k2)C̄2

]
Dφ̂

−
[
D2C̄2

Le2

+ V DC̄2

]
φ̂ = σ{1 − φ̄

m2

(T̂ − m1Ĉ1) − (1 − k2)C̄2φ̂}, (3.7c)

D2ŵ −
(

1

�(φ̄)

d�

dφ̄
Dφ̄

)
Dŵ − a2ŵ + a2�(φ̄)

[
RaT T̂ + RaCĈ1

]
= 0, (3.7d)

where D = d/dz. These disturbance equations are subject to the boundary conditions

T̂ = Ĉ1 = ŵ = φ̂ = 0, at z =1, (3.8a)

T̂ = Ĉ1 = ŵ = 0, at z = 0. (3.8b)

The governing equations can be interpreted as (i) an equation for temperature (3.7a),
(ii) an equation for composition Ĉ1 (3.7b), (iii) an equation for solid fraction (3.7c) and
(iv) an equation for the vertical flow (3.7d). Note that the buoyancy terms in (3.7d)
involve two independent Rayleigh numbers: an effective thermal Rayleigh number
multiplying T̂ and an effective solutal Rayleigh number multiplying Ĉ1, all coupled
with the solidification via the solid fraction perturbation φ̂.

3.3. Ternary alloy stability results

The above-given linear disturbance equations are solved with a pseudo-spectral
Chebyshev method (Canuto et al. 1988; Trefethen 2000) in which we discretize
the vertical direction through the layer with NP Chebyshev points. This leads to a
generalized eigenvalue problem that determines the growth rate σ and eigenfunctions
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in terms of the perturbation wavenumber and the system parameters. Such an
approach was also used in the linear stability calculations of Anderson & Schulze
(2005). We have validated this approach by implementing another numerical scheme
based on a shooting-type method of Keller (1976) in which the resulting boundary-
value problems are integrated using the SUPORT code (Scott & Watts 1977). Our
numerical approach has also been validated by comparison with the analytical
formulas presented later in § 4.

There is a large body of work on binary mushy layer models, and it is instructive
to understand under what conditions the present ternary system (2.6) reduces to
an effective binary one. Specifically, we shall outline briefly here conditions under
which the density gradient, using the liquidus constraint, can be expressed in terms
of the gradient of a single independent variable (e.g. temperature). In particular,
we identify two scenarios. (i) Our ternary alloy system reduces to an effective
binary one when Le1 =Le2, k1 = k2 and m′

2α1 = m′
1α2. The latter assumption can

also be expressed as the condition m2Ra1 = m1Ra2 or from (2.12) that RaC = 0. This
leads to a system of equations equivalent to those described in Worster (1992b) in
which the density gradient can be expressed explicitly in terms of the temperature
gradient, Gρ = −RaT ∇T . (ii) A second scenario in which a binary alloy model can
be recovered involves the assumptions Le1 =Le2, k1 = k2 as well as the condition
that the composition boundary values are equal Cbot

1 =Cbot
2 ≡ Cbot . In this case, the

density gradient can again be expressed exclusively in terms of a thermal gradient,
Gρ = −(RaT + RaC)∇T , and the system again is equivalent to the binary alloy model
of Worster (1992b).

Two key observations regarding binary mushy layer instabilities most relevant for
the understanding of the ternary alloy instabilities are (i) no binary alloy instabilities
occur in a statically stable region and (ii) both real and oscillatory modes are
present, and either type can be the most dangerous. Such oscillatory modes have
been observed and documented in a study of convection in a single-layer binary
mushy layer by Anderson & Worster (1996). These oscillatory modes are not double
diffusive in nature; the temperature and composition cannot diffuse independently in
the binary system (or effective binary system derived from the ternary model under
assumptions (i) or (ii)) owing to the direct coupling through the binary liquidus
constraint.

With the above-mentioned points in mind, we now examine the full ternary model.
Figure 2 shows C1 and C2 profiles for five numerically computed base-state solutions
with different boundary values Cbot

1 and Cbot
2 . The dashed line shows cases in which

C1 = C2 throughout the layer corresponding to the effective binary case (ii). Regions
2 and 4 between the solid and dashed lines show where the C1 and C2 profiles are
both monotonically increasing functions of z throughout the layer. Region 1 shows
where the C2 profile varies non-monotonically in space and exhibits a boundary layer
near z = 0. Similarly, region 5 shows where the C1 profile varies non-monotonically.
The thermal profile is in all cases monotonically increasing. Owing to the symmetry
with respect to compositions C1 and C2 we shall focus our attention primarily on
base-state solutions 4 and 5. This figure provides a means of anticipating modes
of instability associated with individual solute components by identifying where
the solute contributes towards a positive density gradient (e.g. where −RajdC̄j/dz is
positive in (2.10)). If one examines base-state solution 5 one would expect, for example,
two standard modes of buoyant instabilities with respect to the C1 profile: one with
Ra1 < 0 in which the upper portion of the layer, where dC̄1/dz > 0, is gravitationally
unstable and one with Ra1 > 0 in which the lower boundary layer, where dC̄1/dz < 0,
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Figure 2. This plot shows five characteristic base-state composition profiles (z versus
composition) and the regions in the Cbot

1 -versus-Cbot
2 plane in which they occur. The parameter

values used are m1 = m2 = 0.5, Le1 = Le2 = 100, k1 = k2 = 0.1, S = 37, ks/kl = 1, cs/cl = 1 V = 0.1,
φ0 = 0.1 and NP = 32 with values Cbot

1 and Cbot
2 as shown.

is gravitationally unstable. Similarly, for base-state solution 4 one might anticipate
that only Ra1 < 0 would give rise to a gravitationally unstable density profile with
respect to C1. Surprisingly, however, we find additional modes of instability associated
with different mechanisms.

Examples of neutral stability curves RaT versus a with fixed RaC are shown in
figure 3 for base-state solution 4. The lower curve with RaC = −21.2 shows the
structure of the neutral stability curve near the transition between a real mode
(indicated by ◦) and an oscillatory mode (indicated by ×). Indicated are the regions
in which one unstable real mode is present (denoted by A), two unstable oscillatory
modes are present (denoted by B) and two unstable real modes are present (denoted
by C, located in a very narrow region between a boundary marked with circles
that extends the real neutral curve and another with triangles). The same underlying
structure occurs for the upper curve with RaC = −21.3 in figure 3, but only the most
dangerous portions are shown for clarity. These two values of RaC were chosen to
demonstrate the transition in the most dangerous mode from real to oscillatory that
occurs along with a discontinuous jump in the critical wavenumber. This basic modal
structure was also identified in the binary alloy model of Anderson & Worster (1996).
While the oscillatory mode shown here appears to be an extension of this binary
oscillatory mode into the ternary regime we also note that in a simplified ternary
model presented in the next section, a ternary oscillatory mode is present even when
the required elements (such as non-zero pulling speed V and non-zero latent heat) of
the binary oscillatory mode of Anderson & Worster (1996) are absent.
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Figure 3. This plot shows neutral stability curves for two different values of RaC near
the transition between real (�) and oscillatory (×) modes. The lower curves also indicate
further structure of these modes and the regions with one unstable real mode (denoted by
A), two unstable oscillatory modes (denoted by B) and two unstable real modes (denoted
by C). The parameter values used here (corresponding to solution 4 shown in figure 2)
are m1 = m2 = 0.5, Le1 = Le2 = 100, k1 = k2 = 0.1, S = 37, ks/kl = 1, cs/cl = 1, V =0.1, φ0 = 0.1,
Cbot

1 = −3.5, Cbot
2 = −3 and NP = 32.

Neutral stability boundaries RaC versus a (fixed RaT ) shown in figure 4 reveal
a more striking view of the instabilities associated with base-state solution 4. Two
distinct neutral stability branches occur for RaT = 0 that separate linearly unstable
regions (above the upper curve and below the lower curve) from a linearly stable
region in between. Note that along the lower RaT = 0 curve as well as on other
curves in figure 4 we have again shown only the most dangerous portion of the
neutral stability curve (as in the upper curve of figure 3). This result indicates that
an instability is possible for either sufficiently positive or sufficiently negative values
of RaC . Interestingly, one possible combination of Ra, Ra1 and Ra2 corresponding
to RaT = 0 is Ra = Ra2 = 0 and Ra1 either positive or negative depending on the
solution branch. For Ra1 > 0 this identifies a base-state solution that is statically
stable (Gρ = −Ra1dC̄1/dz < 0) but is apparently dynamically unstable. While modes
with Ra1 > 0 and modes with Ra1 < 0, driven by a standard buoyant fluid mechanism,
would be expected to occur when a non-monotonic composition profile such as
that in base-state solution 5 is present, the presence of a mode with Ra1 > 0 for
base-state solution 4 is not explained by this mechanism. A new mechanism, which
will be described in the next section, is needed. Similar neutral curves are shown
for RaC = −15 and −30 where again two distinct unstable regions are separated by
an intermediate stable region. Between RaT = −30 and RaT = −40 the upper and
lower neutral branches meet at a saddle point, and for RaT = −40 two regions of
linear stability are separated by a region of linear instability; there is a window of
wavenumbers between which the system is linearly unstable for any value of RaC .
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Figure 4. This figure shows the most dangerous portions of four sets of neutral stability
curves RaC versus a for different fixed values of RaT as shown. For the case RaT = 0 the
two boundaries separate linearly unstable regions above the upper curve and below the lower
curve from a linearly stable region in between the two curves. For RaT = −15 and RaT = −30
the stable and unstable regions are similarly positioned. For the case RaT = −40 an unstable
region now separates two stable regions on the left and the right. The parameter values
used here (corresponding to solution 4 shown in figure 2) are m1 = m2 = 0.5, Le1 = Le2 = 100,
k1 = k2 = 0.1, S = 37, ks/kl = 1, cs/cl = 1, V = 0.1, φ0 = 0.1, Cbot

1 = −3.5, Cbot
2 = −3 and NP = 32.

Figures 5 and 6 show a broader view of the stability boundaries for base-state
solutions 4 and 5 in which we track the critical point of the neutral stability curves
(e.g. the points marked by the solid boxes in figure 3) in the RaC-versus-RaT space.
In figure 5, for base-state solution 4, the stability boundary separating stable regions
(on the right) from unstable regions (on the left) comprise both real (◦) and complex
(×) portions. The shaded regions (either yellow or cyan) indicate where the base-state
solution is statically stable. The cyan-coloured region further indicates where it is
possible for Ra, Ra1 and Ra2 to be all simultaneously positive. The dashed lines
show the directions in which Ra varies with Ra1 and Ra2 fixed (horizontal line), Ra1

varies with Ra and Ra2 fixed (vertical line) and Ra2 varies with Ra and Ra1 fixed
(diagonal dash-dotted line). Of particular note is that the real portion of the stability
boundary extends both into the statically stable region, as could be anticipated for
a double-diffusive instability, and into the region in which Ra, Ra1 and Ra2 all
positive is possible. The latter fact suggests an instability mechanism that can drive
convection even when the thermal and solute fields are individually stably stratified.
The upper inset shows the streamfunction perturbation at the point with RaC =60 in
the main plot. This is a real mode with relatively small-scale convection cells localized
near the bottom of the mushy layer and has ω = 0, a = 12.34 and RaT = −12.48.
The lower inset shows a snapshot in time of the streamfunction perturbation for an
oscillatory mode at the point with RaC = −40 in the main plot. This oscillatory mode
has ω = 0.2711, a = 3.41 and RaT = 35.57.
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Figure 5. This figure shows the critical set of RaT and RaC values at neutral stability (� for
real portions and × for oscillatory portions) for base-state solution 4 in figure 2. The shaded
regions show where the base-state solution is statically stable. The cyan-coloured region shows
where it is possible for Ra, Ra1 and Ra2 to be all simultaneously positive. The dashed lines
show the directions in which Ra varies with Ra1 and Ra2 fixed (horizontal line), Ra1 varies with
Ra and Ra2 fixed (vertical line) and Ra2 varies with Ra and Ra1 fixed (diagonal dash-dotted
line). The parameter values used here are m1 = m2 = 0.5, Le1 =Le2 = 100, k1 = k2 = 0.1, S = 37,
ks/kl = 1, cs/cl =1, V = 0.1, φ0 = 0.1, Cbot

1 = −3.5, Cbot
2 = −3 and NP = 32.

Figure 6 shows the stability boundary for base-state solution 5. In contrast with
base state 4, there is no (cyan) region in which the density is stably stratified with
respect to all fields; that is to say while the region in the RaC-versus-RaT plane
where Ra, Ra1 and Ra2 are all positive is the same as before, for this particular
base state dC̄1/dz changes signs in the layer, and hence any non-zero value of Ra1

would imply the existence of a potentially unstable configuration with respect to
C1 based on a standard buoyancy argument. Along the vertical dashed line, which
could be interpreted as modes with Ra = Ra2 = 0 and Ra1 non-zero, two neutral
modes of instability occur outside the region of static stability and correspond to the
destabilization of either the boundary layer region near the bottom of the layer or
the main portion of the layer. The upper inset shows the streamfunction perturbation
at the point with RaC = 15 in the main plot. This is a real mode with relatively small-
scale convection cells localized near the bottom of the mushy layer and has ω =0,
a =13.42 and RaT =65.78. The lower inset shows the streamfunction perturbation
at the point with RaC = −40 in the main plot. This is an oscillatory mode that has
ω = 0.65, a =3.37 and RaT = 44.12.

The set of calculations shown here indicates the presence of modes of instability
that cannot be described by known mechanisms. In the next section we present a
simplified model, derived from our original one, that admits analytical solutions.
More importantly, these solutions reveal a new mechanism for instability that occurs
in ternary mushy layers.
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Figure 6. This figure shows the critical set of RaT and RaC values at neutral stability (marked
by � for real portions and × for oscillatory portions) for base-state solution 5 in figure 2. The
parameter values used here are m1 =m2 = 0.5, Le1 = Le2 = 100, k1 = k2 = 0.1, S = 37, ks/kl = 1,
cs/cl = 1, V =0.1, φ0 = 0.1, Cbot

1 = −6, Cbot
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4. A new mechanism for instability
The disturbance equations (3.7a)–(3.7d), while simplified considerably from a full

ternary alloy model in which a liquid layer and secondary mushy layer are also present
(e.g. Anderson & Schulze 2005; Flynn 2009), are still too difficult to solve analytically.
In this section we identify a special case in which an analytical solution is possible.
More importantly, the scenarios examined here allow for a clear identification of a
new mechanism for instability that is much better disguised in results of the full
model.

Consider (3.7a)–(3.7d) under the assumptions that c(φ̄) = k(φ̄) = �(φ̄) = 1 and
V = S =1 − kj = 0. The corresponding base-state solution is T̄ = z, C̄j = Cbot

j + z

for j =1, 2 and φ̄ = φ0 (constant solid fraction). In order to explicitly maintain
the symmetry between components 1 and 2 and to exploit this symmetry in our
interpretation of the results we reintroduce here the Ĉ2 variable. The disturbance
equations are then

D2T̂ − a2T̂ − ŵ = σ T̂ , (4.1a)

1 − φ0

Lej

(D2Ĉj − a2Ĉj ) − ŵ − 1

Lej

Dφ̂ = σ (1 − φ0)Ĉj , for j = 1, 2, (4.1b)

T̂ − m1Ĉ1 − m2Ĉ2 = 0, (4.1c)

D2ŵ − a2ŵ + a2[RaT̂ + Ra1Ĉ1 + Ra2Ĉ2] = 0, (4.1d)

subject to T̂ = Ĉj = ŵ = 0 at z =0, 1 and φ̂ = 0 at z = 1. While these equations omit
a number of interactions associated with solidification – notably the effects of latent
heat and solute rejection – the result is a set of disturbance equations whose linear
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stability can be assessed analytically and interpreted more clearly. Note that the only
remaining influence of solid fraction perturbations is through solute diffusion.

The disturbance equations given above differ in a number of ways from the
classical ones describing double-diffusive convection in a non-reactive porous layer
(e.g. Nield 1968; Nield & Bejan 1998). In this system there are two solute equations
coupled by the solid fraction perturbation; this is a reactive porous layer in which
phase transformation influences the overall solute balance. Here this influence occurs
only through solute diffusion; in our more general model other effects such as
solute rejection and latent heat release also play a role. Further, in the mushy layer
context the solute fields are coupled with the thermal field directly through the
liquidus constraint (4.1c). Alternatively, if we omit completely the variable Ĉ2 and its
equation in (4.1b) and drop the Dφ̂ term in the Ĉ1 equation and omit the liquidus
constraint (4.1c) these equations reduce exactly to the classical double-diffusive ones.
In the classical non-reactive porous case, while both real modes and oscillatory modes
exist, only real modes are possible in a region of static stability. Further, for these
instabilities occurring under statically stable conditions the system must be unstable
with respect to the slower diffusing field. We shall see shortly in the present ternary
mushy layer model that static instability with respect to an individual component (T ,
C1 or C2) is, remarkably, not a requirement for instability.

Solutions for the system of disturbance equations given in (4.1) take the form
T̂ = T ∗ sin(nπz), Ĉj = C∗

j sin(nπz), ŵ = w∗ sin(nπz) and φ̂ = φ∗[(−1)n − cos(nπz)]/(nπ).
The resulting characteristic equation is

0 = (1 − φ0) [J + σ (m2Le1 + m1Le2)]
[
J (J + σ ) + a2Ra

]
+ a2Ra1 [m2(Le1 − Le2)(J + σ ) + (1 − φ0)(J + σLe2)]

+ a2Ra2 [m1(Le2 − Le1)(J + σ ) + (1 − φ0)(J + σLe1)] , (4.2)

where J = n2π2 + a2. The corresponding eigenfunction coefficients are given in the
Appendix. With σ = 0+iω the real and imaginary parts of the characteristic equation
are

0 = J 2 − ω2(m2Le1 + m1Le2) + a2Ra + a2Ra1

[
1 +

m2

1 − φ0

(Le1 − Le2)

]

+ a2Ra2

[
1 +

m1

1 − φ0

(Le2 − Le1)

]
, (4.3a)

0 = ω

{
J 2(1 + m2Le1 + m1Le2) + a2Ra(m2Le1 + m1Le2) + a2Ra1

×
[
Le2 +

m2

1 − φ0

(Le1 − Le2)

]
+ a2Ra2

[
Le1 +

m1

1 − φ0

(Le2 − Le1)

] }
. (4.3b)

Therefore, neutrally stable real modes (ω = 0) satisfy

Ra + Ra1 + Ra2 +
Le1 − Le2

1 − φ0

(m2Ra1 − m1Ra2) = −J 2

a2
. (4.4)

Also, neutrally stable oscillatory modes satisfy

Ra + Ra1 + Ra2 +
φ0(Le1 − Le2)(m2Ra1 − m1Ra2)

(1 − φ0)(m2Le1 + m1Le2)
= −J 2

a2

(
1 +

1

m2Le1 + m1Le2

)
,

(4.5)
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as long as ω2 > 0, where

ω2 =
a2

m2Le1 + m1Le2

[
J 2

a2
+ Ra + Ra1 + Ra2 +

Le1 − Le2

1 − φ0

(m2Ra1 − m1Ra2)

]
. (4.6)

For the case under consideration, the base-state temperature and composition
profiles have DT̄ =DC̄j = 1 for j = 1, 2. Therefore, the condition representing static
stability is

Ra + Ra1 + Ra2 = RaT + RaC > 0. (4.7)

Consequently, (4.4) shows that except when Le1 = Le2 it is possible for neutrally
stable real modes to exist in the statically stable region. That is to say (4.4) shows
that neutrally stable real modes with Ra + Ra1 + Ra2 > 0 can exist with a sufficiently
negative value of (Le1 − Le2)(m2Ra1 − m1Ra2). Such modes could include cases in
which up to two of the Rayleigh numbers are negative and would be suggestive
of classical double-diffusive convection in which, taken individually, some fields are
stabilizing and others are destabilizing. Even more interesting, however, is the fact
that neutrally stable real modes can exist with each Rayleigh number individually
positive. To demonstrate this possibility, consider the case Le1 > Le2 and fix positive
values of Ra and Ra1. Then, for a neutrally stable real mode a positive value Ra2 is
given by

Ra2 =

J 2

a2
+ Ra + Ra1 +

m2

1 − φ0

(Le1 − Le2)Ra1

m1

1 − φ0

(Le1 − Le2) − 1
, (4.8)

as long as Le1 is sufficiently large (i.e. Le1 >Le2 + (1 − φ0)/m1). A similar argument
can be made if Le1 <Le2. Recall that a positive Ra along with DT̄ = 1 represents
a stably stratified thermal field (and similarly for Raj and DC̄j ), and so modes
of instability with Ra, Ra1 and Ra2 all positive could not be characterized as
standard buoyant modes of instability. Further, they are also different from classical
double-diffusive modes that occur in statically stable regions; such modes require
instability with respect to one of the two diffusing components. Our results here
indicate the presence of a novel mode of convective instability that can exist even
when the system is stably stratified with respect to all thermal and solutal fields
individually.

A simple example that highlights the interactions and essential mechanism of this
instability is the case with Ra =Ra1 = 0. Here T and C1 make no contribution to
buoyancy. Further, since DC̄2 = 1 the system is arguably stably stratified with respect
to C2 when Ra2 > 0. Equation (4.4) shows that a real mode of instability exists when

Ra2

[
1 + m1

Le2 − Le1

1 − φ0

]
= −J 2

a2
. (4.9)

When Le1 =Le2 a standard buoyant mode of instability (with Ra2 < 0) is predicted.
However, when Le1 is sufficiently large (specifically, Le1 > Le2 + (1 − φ0)/m1)
the neutrally stable modes have Ra2 > 0. Thus, despite an apparently statically
stable C2 profile (and no buoyant effects associated with T or C1) an instability
occurs.
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The above-given example suggests the following parcel argument, which for physical
interpretation we give in terms of original unscaled temperature and composition
variables. Consider a setting in which a layer of fluid is cool and rich with respect
to both solute fields at the bottom and warm and fresh with respect to both
solute fields at the top. For simplicity we shall assume that there are no buoyant
effects associated with the temperature field or composition 1 (i.e. α = α1 = 0 or
Ra = Ra1 = 0) and that fluid rich in composition 2 is denser (i.e. α2 < 0 in (2.7) which
also corresponds to Ra2 > 0, since �C ′

2 < 0 in this case). Arguably this is a stably
stratified layer from a static point of view. Further, suppose that Le1 � Le2 � 1 so
that composition 1 is the slowest diffusing field and the temperature is the fastest
diffusing field. Now we displace a parcel of fluid upwards. This fluid parcel rapidly
equilibrates to its new (warmer) thermal environment. In contrast the solute field
C ′

1 diffuses extremely slowly and hence remains richer than its environment. The
solute field C ′

2 meanwhile is forced to maintain thermodynamic equilibrium (via the
liquidus constraint) and with the help of changes in solid fraction via freezing or
dissolution must overcompensate for the sluggishness of the C ′

1 field in order to
keep up with the efficiently diffusing thermal field. The net effect is for the parcel
to become correspondingly fresher in C ′

2 than its local environment. This reduced
value of C ′

2 makes the parcel lighter than its surroundings (recall that only C ′
2

contributes to buoyancy in this simple example) and provides an upward buoyant
force, thus generating a direct mode of instability. This argument suggests that the
instability is a manifestation of an interplay between the rapidly diffusing thermal
field, the slowest diffusing solute field and the buoyant response of the other solute
field as well as the constraint of thermodynamic equilibrium. A similar argument
would apply if Le2 � Le1; here a positive value of Ra1 would be required (see also
(4.8)).

Figure 7 gives a visual description of the new instability and the corresponding
parcel argument. On the left are shown sketches of five typical base-state solidification
paths (heavy solid lines) similar to the five base-state solutions in figure 2. The layer
is colder and richer in the two compositions at the bottom. The heavy dashed lines
show lines of constant density chosen here to represent the case with Ra = Ra1 = 0
and Ra2 > 0. The heavy dash-dotted lines show representative isotherms (corner 3 is
the warmest). Lines parallel to the 1–3 side of the diagram correspond to lines of
constant C ′

2. Similarly, lines parallel to the 2–3 side correspond to lines of constant
C ′

1. Here only base state 1 has a non-monotonic density profile; there is a region
of heavy fluid between regions of light fluid above and below. The four other base-
state solutions shown are stable from a static point of view; the density decreases
from bottom to top. Note that changing the three Rayleigh numbers has the effect
of rotating the lines of constant density relative to the solidification paths shown,
and so, with the exception of base state 3, any base-state solution can have a non-
monotonic density profile depending on the Rayleigh numbers. The diagram on the
right presents another view of the parcel argument given above for the real mode of
instability and demonstrates how a statically stable base-state solution can be linearly
unstable to perturbations. Consider a parcel initially at point P that is displaced
from its original isotherm to a new isotherm associated with points Q and R. The
parcel quickly adjusts to the new local temperature, but owing to the slow diffusing
C ′

1 field, it remains (at least approximately) on a horizontal line corresponding to
fixed C ′

1. In order to maintain this C ′
1 and remain on the isotherm, the parcel

adjusts its C ′
2 value, and its new composition corresponds to point R. However,

fluid with composition R is less dense than the surrounding fluid, whose base-state
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Figure 7. The figure shows a sketch of five typical solidification paths in the composition
plane of the ternary phase diagram. The heavy dashed lines indicate lines of constant density
chosen here for simplicity to correspond to lines of constant C2. The heavy dash-dotted lines
correspond to isotherms. The diagram on the right shows that when a parcel initially at point
P is displaced to a new isotherm (containing points Q and R) a slowly diffusing C1 field forces
the parcel to maintain composition of point R whose density is less than its local density of
point Q. When the density trend is reversed (exchange ‘heavy’ with ‘light’) a fluid parcel can
oscillate between point R at which the parcel is relatively heavy and point R′ at which the
parcel is relatively light.

composition and density correspond to point Q, and hence a direct mode of instability
occurs.

The instability observed here shares some of its unusual traits with the so-called anti-
convection first identified theoretically by Welander (1964). In the work of Welander
(1964) and more recent work by Gershuni & Zhukhovitskii (1980) and Perestenko &
Ingel (1995) a convective instability is predicted in a system of two horizontal fluid
layers heated from above, which from a static point of view would appear to be
stably stratified. Surface tension or Marangoni-driven flows were not included in
these models, although the later work of Perestenko & Ingel (1995) did introduce
effects of evaporation. This ‘anti-convection’ is predicted to occur when the fluid in the
upper layer has small thermal diffusivity and thermal expansion coefficient relative to
those of the fluid in the lower layer. For this situation, when a fluid parcel in the upper
layer near the interface is displaced downwards, its temperature is slow to respond
owing to the small thermal diffusivity, and it experiences little restoring force owing
to the weak buoyant response of the upper layer. At the same time, a local region of
fluid in the lower layer warms relatively quickly in response to the above nearby warm
parcel. This generates a density differential in the lower layer that owing to the strong
buoyant response of the lower layer drives convection outwards along the interface.
The upper fluid responds to the resultant shear force and generates convection in the
upper layer that enhances the motion of the displaced parcel, driving the instability.
Thus, despite an overall stabilizing thermal gradient a convective instability related
to a non-trivial interaction between diffusion and buoyancy is predicted.
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We return to the oscillatory mode in our simplified ternary model and note that by
using (4.5) two additional forms for ω2 given in (4.6) are

ω2 = − a2

m2Le1 + m1Le2

[
J 2

a2

(
m2Le1 + m1Le2 + 1 − φ0

φ0

)

+ (Ra + Ra1 + Ra2)

(
m2Le1 + m1Le2

φ0

− 1

)]
=

a2

(m2Le1 + m1Le2)2

×
[

− J 2

a2
+

(m2Le1 + m1Le2 − φ0)(Le1 − Le2)(m2Ra1 − m1Ra2)

1 − φ0

]
. (4.10)

The first form for ω2 shows that under typical conditions with m2Le1 + m1Le2 >φ0,
it is not possible to have an oscillatory mode (i.e. ω2 > 0) unless Ra + Ra1 + Ra2

is sufficiently negative; no oscillatory mode is expected in the statically stable region
Ra + Ra1 + Ra2 > 0. The second form for ω2 shows that the oscillatory mode cannot
exist unless (Le1 − Le2)(m2Ra1 − m1Ra2) is sufficiently positive. For example, if
Le1 >Le2, then for an oscillatory mode to exist m2Ra1 − m1Ra2 = m2RaC must be
positive. Furthermore, since Ra +Ra1 +Ra2 =RaT +RaC is required to be sufficiently
negative, RaT must be negative. One possible combination of Ra, Ra1 and Ra2 that
gives rise to the case RaT < 0 and RaC > 0 is with Ra2 = 0, Ra < 0 and Ra1 > 0. This
is similar to the standard double-diffusive oscillatory mode in a non-reactive porous
layer where the faster diffusing thermal field is destabilizing and the slower diffusing
solute field is stabilizing. However, other combinations of Ra, Ra1 and Ra2 give rise
to an oscillatory mode and as described below can be interpreted through a different
mechanism.

Consider again the case with no buoyancy associated with T and C1

(i.e. Ra =Ra1 = 0) and Le1 � Le2. Here an oscillatory mode is possible for a
sufficiently negative value of Ra2. In the diagram given in figure 7 with warmer and
fresher fluid above colder and richer fluid, negative Ra2 (along with Ra = Ra1 = 0)
is consistent with exchanging the labels ‘heavy’ and ‘light’. Then, a parcel displaced
from point P to the isotherm associated with points Q and R will again take on the
composition of point R by the same argument given earlier for the real mode. Now the
parcel at R is heavier than that of its surrounding fluid at composition Q. This creates
an oscillatory motion in which the fluid parcel has additional gravitational mass at
the top of its cycle (point R), is forced back down past its original position to the
bottom of its cycle (point R′) where it is correspondingly lighter than the surrounding
fluid at composition Q’ and is consequently forced back up. This oscillatory mode is
novel in the sense that there is no statically stable thermal or solute field present to
support an oscillation. Rather, the constraint of thermodynamic equilibrium in the
mushy layer along with a slowly diffusing C1 field and a rapidly diffusing thermal
field both supports the oscillations and allows them to grow.

Owing to the liquidus constraint, the three Rayleigh numbers Ra, Ra1 and Ra2

influence the stability of the system only through the two effective Rayleigh numbers
RaT and RaC . This highlights a degeneracy in which more than one combination
of Ra, Ra1 and Ra2 gives rise to a single coordinate point (RaT , RaC). With this
in mind, we show graphically a set of stability boundaries in the RaC-versus-RaT

plane in figure 8 representing the most dangerous neutral modes (n= 1) given by (4.4)
and (4.5). We identify several notable regions in these plots. First, the boundaries
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Figure 8. The figure shows four stability plots indicating the most dangerous neutral modes
(n= 1) from (4.4) and (4.5) for Le2 = 100, m1 = m2 = 0.5 and φ0 = 0.1 and (a) Le1 = 105, (b)
Le1 = 100, (c) Le1 = 99 and (d ) Le1 = 95.

marked with ‘◦’ indicate real modes, while the boundaries marked with ‘×’ indicate
oscillatory modes and separate stable regions (on the right) from unstable regions (on
the left). These boundaries correspond to critical points, which in this simplified model
always occur at wavenumber a = π, along neutral stability curves in the Rayleigh-
number-versus-wavenumber space. Second, the shaded regions (either yellow or cyan)
indicate as before where the base-state solution is statically stable; that is to say the
base state has Gρ < 0 when RaT + RaC = Ra + Ra1 + Ra2 > 0. Additionally, following
from (2.12), the cyan-shaded region, defined by RaT > 0 and RaC > −m1RaT , indicates
where it is possible for Ra, Ra1 and Ra2 to be simultaneously positive. For example,
in figure 8(d ) one could identify an unstable mode corresponding to positive values of
Ra, Ra1 and Ra2 at the point RaT =25, RaC = 50 (namely Ra1 = (m1/m2)Ra2+50 and
Ra = 25 − Ra2/m2 for a sufficiently small but positive Ra2 value). Similar regions are
shown in figure 8(a). This once again displays the surprising result that scenarios exist
for which a real mode of instability is present despite the fact that all thermal and
solute fields are individually stabilizing. It is of course also possible for combinations
with Ra, Ra1 and Ra2 not all positive to correspond to points in these shaded regions.
These plots also show that an oscillatory mode is always present when Le1 �= Le2 but
never occurs in the statically stable region. The results of the previous section show
that while oscillatory modes can exist for more general cases with Le1 = Le2 they still
do not occur in the statically stable region.

We briefly return to (4.1) to make a final observation associated with the above-
mentioned instabilities. If one eliminates the variable Ĉ2 in (4.1) using the liquidus
constraint, a reduced system becomes

D2T̂ − a2T̂ − ŵ = σ T̂ , (4.11a)
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1 − φ0

Le1

(D2Ĉ1 − a2Ĉ1) − ŵ − 1

Le1

Dφ̂ = σ (1 − φ0)Ĉ1, (4.11b)

Dφ̂ + [m1Le1 + m2Le2 − (1 − φ0)] ŵ = −σ (1 − φ0)
[
m1(Le1 − Le2)Ĉ1 + (Le2 − 1)T̂

]
,

(4.11c)

D2ŵ − a2ŵ + a2[RaT T̂ + RaCĈ1] = 0. (4.11d)

Further noting that the term Dφ̂ can be eliminated from these equations leads to a
set of equations for T̂ , Ĉ1 and ŵ given by (4.11a), (4.11d) and

1 − φ0

Le1

(
D2Ĉ1 − a2Ĉ1

)
−

{
m2(Le1 − Le2) + 1 − φ0

Le1

}
ŵ = σ (1 − φ0)

×
{

m2Le1 + m1Le2

Le1

Ĉ1 − Le2 − 1

Le1

T̂

}
. (4.12)

In contrast with the classical problem of double-diffusive convection in a non-reactive
porous layer in which a linear composition profile leads to a constant coefficient on
the advective term, the Ĉ1 equation (4.12) has a ŵ coefficient whose sign depends
on the relative size of Le1 and Le2 as well as m2 and φ0. The broken symmetry
between indices 1 and 2 here reflects the asymmetry with respect to these indices in
the effective Rayleigh numbers as well as the elimination of Ĉ2 from the equations.
A change in sign of this coefficient has a dynamic effect similar to a change in the
sign of the base-state gradient dC̄1/dz. For a neutrally stable real mode with σ = 0
one can deduce from these equations that a sign change of the ŵ term in (4.12) leads
to a sign change in Ĉ1, which from (4.11d) leads to a sign change in RaC .

5. Conclusions
We have investigated convective instabilities in a ternary alloy mushy layer model

that includes diffusion of heat and solute as well as thermodynamic equilibrium
constraints associated with mushy layer solidification. Our results reveal that double-
diffusive-type convection can occur in these systems. Additionally, new novel modes
of instability – both real and oscillatory – are predicted. These modes have been
identified analytically as well as numerically and appear to be robust features of our
model.

Parcel arguments for these real and oscillatory modes suggest that they both result
from interactions between the coupling of the fluid with solidification processes within
the mushy layer (linking the thermal and solute fields through the thermodynamic
equilibrium constraint) and the independent nature of the fluid temperature and
composition as dictated by the disparate rates at which diffusion of these fields
occur. The solidification and diffusion processes can thus be at odds with each other
and conspire to generate instabilities under unexpected conditions. A real mode of
instability, driven by these interactions, is predicted even in the absence of static
instability with respect to any of the individual thermal or compositional profiles.
Alternately, an oscillatory instability can be identified under conditions in which there
are no other statically stable solute or thermal gradients to support it.

Work attempting to further quantify these instabilities in full multi-layer ternary
systems is currently underway. We hope that our results will inspire investigation to
see how and if these instabilities manifest themselves in laboratory settings. More
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generally, we hope that the novel interactions identified here will lead to further
understanding of convective phenomena in fluid–solidification coupled systems.

We would like to acknowledge many beneficial discussions with Stephen Davis on
fluid dynamics and materials science phenomena. The authors thank Peter Guba for
comments on an earlier draft of this paper. DMA would like to acknowledge support
from the US National Science Foundation (DMS-0709095).

Appendix. Eigenfunction coefficients
The eigenfunction coefficients in the simplified ternary alloy model are T ∗ = 1 and

w∗ = −(σ + J ), (A 1a)

C∗
1 =

m2(Le1 − Le2)(σ + J ) + (1 − φ0)(σLe2 + J )

(1 − φ0)[J + σ (m2Le1 + m1Le2)]
, (A 1b)

C∗
2 =

m1(Le2 − Le1)(σ + J ) + (1 − φ0)(σLe1 + J )

(1 − φ0)[J + σ (m2Le1 + m1Le2)]
, (A 1c)

φ∗ = (m1Le1 + m2Le2)(σ + J ) − (1 − φ0)J

− σm1Le1

[
m2(Le1 − Le2)(σ + J ) + (1 − φ0)(σLe2 + J )

J + σ (m2Le1 + m1Le2)

]

− σm2Le2

[
m1(Le2 − Le1)(σ + J ) + (1 − φ0)(σLe1 + J )

J + σ (m2Le1 + m1Le2)

]
. (A 1d)
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