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We examine the effects of capillarity and gravity in a model of one-dimensional imbibition of an
incompressible liquid into a deformable porous material. We focus primarily on a capillary rise
problem but also discuss a capillary/gravitational drainage configuration in which capillary and
gravity forces act in the same direction. Models in both cases can be formulated as nonlinear
free-boundary problems. In the capillary rise problem, we identify time-dependent solutions
numerically and compare them in the long time limit to analytically obtain equilibrium or steady
state solutions. A basic feature of the capillary rise model is that, after an early time regime governed
by zero gravity dynamics, the liquid rises to a finite, equilibrium height and the porous material
deforms into an equilibrium configuration. We explore the details of these solutions and their
dependence on system parameters such as the capillary pressure and the solid to liquid density ratio.
We quantify both net, or global, deformation of the material and local deformation that may occur
even in the case of zero net deformation. In the model for the draining problem, we identify
numerical solutions that quantify the effects of gravity, capillarity, and solid to liquid density ratio
on the time required for a finite volume of fluid to drain into the deformable porous material. In the
Appendix, experiments on capillary rise of water into a deformable sponge are described and the
measured capillary rise height and sponge deformation are compared with the theoretical
predictions. For early times, the experimental data and theoretical predictions for these interface
dynamics are in general agreement. On the other hand, the long time equilibrium predicted
theoretically is not observed in our experimental data. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3068194�

I. INTRODUCTION

In this article we develop a model for capillary rise into
a deformable porous material. Capillary rise phenomena oc-
cur in both rigid and deformable materials in a wide variety
of scientific fields such as oil recovery, inkjet printing, textile
engineering, and flows in biological tissues. There is interest
in this subject from the point of view of both industrial re-
search and fundamental science. The present work addresses
modeling and solutions of this problem that contribute to a
better understanding of capillary rise into deformable porous
materials.

The pioneering study of Washburn1 described fluid flow
into a rigid porous material. This model was based on the
assumption that the porous material was a collection of small
cylindrical capillaries, and the flow through these capillaries
was Poiseuille flow subject to a pressure difference acting to
force the liquid in the capillaries. In the absence of gravity,
the volume of the liquid that penetrates into the porous ma-
terial in a time t is proportional to �t. In contrast, when
gravity is present the liquid rises to a finite, equilibrium
height. The Washburn model has been widely used to de-
scribe capillary rise phenomena in rigid nondeformable po-
rous materials.

Recently, Zhmud et al.2 studied the dynamics of capil-
lary rise in rigid porous materials. They showed that a num-

ber of models, including the Washburn model, describing
dynamics of capillary rise can be obtained as particular lim-
iting cases of a more general equation based on Newtonian
dynamics. They also showed that these general equations
were in qualitative agreement with their experimental results.

However, other recent experimental investigations have
revealed capillary rise behavior in rigid porous materials that
departs notably from the Washburn predictions. Delker et al.3

performed experiments on capillary rise of water through a
packing of glass beads. Their early time data for capillary
rise height follow a t1/2 power law, but for longer times the
advancing front rises beyond the Washburn equilibrium
height. Lago and Araujo4 also observed similar dynamics in
their experiments of capillary rise in an array of packed
spheres. Both studies identified a new power law scaling for
this longer time regime that was close to t1/4.

Davis and Hocking5,6 considered a variety of models for
liquid spreading and imbibition into a rigid porous base. In
their first model5 they assumed that the porous material was
uniform and isotropic in structure. The flow in the porous
substrate was described by Darcy’s law. In this model they
considered the partially saturated case in which the wetted
portion of the substrate was assumed to extend to the bottom
of the porous substrate. In their second model6 they extended
their previous work to include spreading above an initially
dry porous substrate. In this model they assumed that there
was no cross linking of the capillaries in the substrate which
was also the case in the Washburn model. They calculated
the penetration shapes as a function of time.
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The above discussion outlines briefly some of the clas-
sical as well as more recent studies involving flows in rigid
porous materials. Here we turn our attention to porous ma-
terials which deform when liquid passes through them, e.g.,
spongelike materials. Deformable porous materials arise in
various fields, including geophysics,7 soil science,8–10

infiltration,11–15 snow physics,16 paper and printing,17,18 and
medical science.19–27 In such cases, the flow through the de-
formable porous media deforms the material due to the
forces associated with flow. The material deformation in turn
influences the flow. Models that account for both flow and
deformation are required to analyze the dynamics of these
materials.

Early models of flows in deformable porous media were
developed to study soil consolidation. Biot28 described a
problem involving deformable porous media in which
Darcy’s law, used to describe the fluid flow, was coupled to a
linear elasticity model for the solid deformation. He pre-
sented the solutions for soil consolidation in one dimension
as well as two dimensions under permeable29 and
impermeable30 rectangular loads.

Our approach follows more recent work in which the
porous material is modeled as a mixture of solid and fluid. In
mixture theory each component is treated as a single con-
tinuum and every point in space is considered to be occupied
by a particle belonging to each component of the mixture at
each instant of time. A detailed mixture theory description is
presented by several authors.31,32

Barry and Aldis25,26 examined a variety of different mod-
els of deformable porous media based on mixture theory.
These models include cases of flow induced deformation
from pressurized cavities in absorbing porous tissues and ra-
dial flow through deformable porous shells. In their flow
induced deformation model, biological tissues are modeled
as nonlinear deformable porous media where the deforma-
tion of the tissues in turn alters the flow. In the case of radial
flow, a governing system of equations was developed for
cylindrical and spherical geometries.

Hou et al.24 studied the formulation of boundary condi-
tions between a viscous fluid and a biphasic mixture. They
used binary mixture theory to develop a set of boundary
conditions based on conservation laws. These conditions
were validated by applying them to Poiseuille flow and
Couette flow problems.

Barry et al.27 revisited the work of Hou et al.24 for fluid
flow over a thin deformable porous layer. Binary mixture
theory was used to obtain the governing system of equations
with assumptions that solid deformation was infinitesimal
and the predominant displacement was along the axis of the
channel. Wang and Parker33 examined the effect of deform-
able porous surface layers on the motion of a sphere in a
narrow cylindrical tube. They also used binary mixture
theory for solid and liquid constituents to model the porous
layer on both the surface of the tube and the sphere. They
applied lubrication theory in the region between the sphere
and the wall in order to study the effects of deformable lay-
ers on the motion of the sphere.

Sommer and Mortensen11 considered the forced unidi-
rectional infiltration in an initially dry deformable porous

material. A constant applied pressure drove the fluid flow in
the porous material. Agreement between their model and the
experimental results was reported.

Preziosi et al.12 studied the infiltration of a liquid into a
deformable porous material. In this model, an initially dry
and compressed porous material was infiltrated by an incom-
pressible liquid which caused the porous material to deform
and relax.

Following this work, Anderson34 presented a model for
the imbibition of a liquid droplet on a deformable porous
substrate using the deformation model of Preziosi et al. For
the assumed one-dimensional material deformation, a model
for the imbibition of liquid into the porous material and also
for the porous material deformation was developed. Ander-
son’s model, which did not include gravitational effects, pre-
dicted that during the imbibition of liquid into the deform-
able porous substrate, swelling, swelling relaxation, and
shrinking of the porous material could occur.

The ideas used for modeling deformable spongelike ma-
terials also have application to problems involving suspen-
sions and gels. Manley et al.35 performed experiments and
examined a model for gravitational collapse of colloidal gels.
Their model was based on a Darcy’s equation similar to the
one we use here. Approximations, such as negligible fluid
velocity relative to the solid velocity and constant solid vol-
ume fraction, lead to a gel height that decays exponentially
in time to an equilibrium height determined by a balance of
gravitational and elastic forces. Kim et al.36 examined a
similar problem that addresses gravitational collapse and sta-
bilization of a suspension of attractive colloidal particles.
Their mathematical model is very similar to ours but differs
in details including boundary conditions as we discuss fur-
ther in the next section.

Dufresne et al.37,38 studied related systems involving the
flow and fracture in drying nanoparticle suspensions. Here
the compaction of the material is driven by evaporation and
fluid flow at the drying surface. The dynamics of the com-
paction front, crack formation in the drying suspension, and
long time crack propagation were investigated.

In the present work, we consider capillary rise of a fluid
into a deformable porous material. Our model is an analog of
the Washburn model1 of capillary rise into a rigid porous
material. The basic governing equations for flow in deform-
able material follow those of several previous
authors.11,12,21,25,26,34 Our model follows most closely that of
Preziosi et al.,12 Barry and Aldis,25,26 and Anderson.34 We are
interested in examining gravitational effects; these have been
included in previous models,12,25,26 but the corresponding so-
lutions have not been addressed. Additionally, with the
Washburn model and the experiments of Delker et al.3 and
Lago and Araujo4 in mind, in the Appendix we compare our
work with experiments on capillary rise of water into de-
formable porous sponges.

In Sec. II, we present the one-dimensional capillary rise
problem and then nondimensionalize the governing system
of equations. In Sec. III, we present equilibrium and time-
dependent solutions of the capillary rise problem. In Sec. IV
results and discussion of the capillary rise problem are given.
In Sec. V we discuss the drainage problem and its solutions.
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Section VI contains the conclusions. Finally, the Appendix
gives details of experiments on the dynamics of capillary rise
of water into deformable porous sponges and makes com-
parisons with the theory.

II. ONE-DIMENSIONAL MODEL

We consider a one-dimensional deformable spongelike
material in contact with a liquid. The upper end of the de-
formable material is fixed. At time t=0, the contact position
of the deformable material and liquid is defined by z=0. It is
assumed that the imbibition of fluid occurs from an infinite
bath of fluid whose upper surface at z=0 remains open to
atmospheric pressure �i.e., p= pA at z=0 for all time�. For t
�0 the liquid rises into an initially dry porous material due
to capillary suction in the pore space of the porous material
assuming the capillary pressure pc�0, which results in de-
formation of the porous material. The upper interface of the
wet porous material region is defined by z=h��t� and the
lower interface formed after the deformation is defined by
z=hs�t� as shown in Fig. 1. We have assumed that the pres-
sure in the fluid bath is hydrostatic. This implies that p= pA

−��ghs at z=hs�t�. The dry porous material is rigid and has
uniform solid fraction �0.

As a result of the above assumptions, the only remaining
unknowns are those in the wet material and the boundary
positions hs and h�. The variables of interest in the wet re-
gion are the solid fraction �, the vertical velocity component
of the liquid phase w�, the vertical velocity component of
solid phase ws, the liquid pressure p, and the stress in the
solid � where �=�I. The set of equations for the one-
dimensional material deformation can be written as

��

�t
+

�

�z
��ws� = 0, �1�

��

�t
−

�

�z
��1 − ��w�� = 0, �2�

w� − ws = −
K���

�1 − ���� �p

�z
+ ��g� , �3�

0 = −
�p

�z
+

��

�z
− g��s� + ���1 − ��� , �4�

where �s and �� are the true intrinsic densities of solid and
liquid, respectively, and are assumed to be constant. The per-

meability K��� and solid stress ����, whose forms we
specify below, are functions of the local solid volume frac-
tion, � is the dynamic viscosity, and g is the gravitational
acceleration. Equations �1�–�4� are consistent with those of
previous authors.12,25,26 More specifically, Eqs. �1� and �2�
are the mass balance equations for solid and liquid phases,
respectively, where the assumption of constant density has
been taken into account. Equations �3� and �4� are reduced
from general solid and liquid momentum balances �e.g., see
Eqs. �3� and �4� of Preziosi et al.�. In particular, our Eq. �4�
represents a combined momentum balance of the fluid-solid
mixture. Note that we have assumed that inertial terms and
viscous stresses are negligible and that stress tensors and
frictional forces between phases take forms standard in mix-
ture theory �e.g., see Eqs. �16� and �17� of Barry and
Aldis26�. In this case the only velocity terms in the momen-
tum balances appear in the relative velocity of the modified
Darcy equation �3�. Our new contribution is to examine in
detail solutions of these equations and boundary conditions
we specify below in order to assess gravitational effects on
the flow and deformation.

Equations �1�–�4� can be reduced to a single partial dif-
ferential equation for the solid fraction �, as in Ref. 34.
Subtracting Eq. �2� from Eq. �1� and integrating once gives

�ws + �1 − ��w� = c�t� , �5�

where c�t� is a function determined by the boundary condi-
tions. Equations �3� and �5� allow us to write formulas for
liquid and solid velocities as follows:

w� = c�t� −
�K���

�1 − ���� �p

�z
+ ��g� , �6�

ws = c�t� +
K���

�
� �p

�z
+ ��g� . �7�

Since the stress is a function of the solid volume fraction �
=����, Eq. �4� can be written as follows:

�p

�z
= �����

��

�z
− g��s� + ���1 − ��� . �8�

After combining Eqs. �1�, �7�, and �8�, we get the equation
for �,

��

�t
+ c�t�

��

�z
= −

�

�z
��K���

�
	�����

��

�z
− g��s − ����
� ,

�9�

on hs�t��z�h��t�. When gravity is absent, Eq. �9� is equiva-
lent to Eq. �44� of Prezoisi et al.12 and Eq. �20� of
Anderson.34 The same partial differential equation �PDE� for
� can be seen in the work of Kim et al.36 by interpreting our
K��� as their ����, our � as their �, our ����� as their
−K��� /�, and our c�t�=0. The case c�t�=0 follows if the
solid and liquid velocities are zero at the bottom boundary, as
in Ref. 36. While their final equation is the same as ours, we
note that their stress balance �their Eq. �5�� and continuity
equation �their Eq. �6�� involve �p /�z rather than
�p /�z+��g.

p = pA + pc

← p(z = 0) = pAWet Porous→
p = pA − ρ�ghs

←Liquid

hs(t)

h�(t)

←Dry Porous

FIG. 1. �Color online� This figure shows the one-dimensional capillary rise
configuration.
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The boundary conditions applied at the liquid–wet ma-
terial interface z=hs�t� are

ws�hs
+,t� =

�hs

�t
, �10�

p�hs
+,t� = pA − ��ghs�t� , �11�

��hs
+,t� = 0, �12�

where pA is atmospheric pressure. Equations �10�–�12� are
the kinematic condition, hydrostatic pressure assumption in
the liquid bath, and zero stress condition, respectively.

The boundary conditions applied at the wet material–dry
material interface z=h��t� are

w��h�
−,t� =

�h�

�t
, �13�

p�h�
−,t� = pA + pc, �14�

where pc is a constant capillary pressure. Here Eqs. �13� and
�14� are the kinematic and capillary pressure conditions,
respectively.

Following Prezoisi et al. and Anderson, an expression
for the c�t� can be written as

c�t� = �−
�1 − �0�

�0
� �K���

��1 − ��������
��

�z
− g��s − �������

h
�
−
.

�15�

The combination of Eqs. �6�–�8� with Eqs. �10� and �13�
yields equations for interface positions,

�hs

�t
= �c�t� +

K���
�

������
��

�z
− g��s − ������

hs
+
, �16�

�h�

�t
= �c�t� −

�K���
��1 − ��������

��

�z
− g��s − ������

h
�
−
.

�17�

To summarize, we need to solve Eqs. �8� and �9� subject to
Eqs. �11�, �12�, and �14� where the free surface positions are
determined by Eqs. �16� and �17� along with appropriate ini-
tial conditions. Note that Eq. �9� is coupled to Eq. �8� and the
pressure via the boundary conditions.

A. Nondimensionalized system of equations

Before solving the time-dependent problem we introduce
the following dimensionless quantities for space, time, inter-
face positions, and pressure:

z̄ =
z − hs�t�

h��t� − hs�t�
, t̄ =

t

T
, h̄s =

hs

L
, h̄� =

h�

L
, p̄ =

p

m
,

�18�

where L=m /��g and T=L2� /mK0. Here K0 and m are the
permeability and stress scales defined below. These choices
of dimensionless variables allow us to transform the moving
boundary problem to a fixed domain problem.

Our choices for permeability K��� and stress ����,
which are consistent with physically realistic trends, are
K���=K0 /�, where K0�0 and ����=m��r−��.34 We take
m�0 so that �����=−m�0. The assumed form of the stress
function is suitable for our one-dimensional deformation
model; in higher dimensions, this would need to be general-
ized to account for effects such as shear deformation. Note
that � is positive for ���r �i.e., expansion relative to the
relaxed state� and negative for ���r �i.e., compression rela-
tive to the relaxed state�. According to this choice, when
solid fraction is at a constant relaxed value �r, the stress
function is zero.

Introducing these choices and dimensionless variables,
the PDE for � can be written as

��

� t̄
+ � �z̄ − 1�

�h̄� − h̄s�

dh̄s

dt̄
−

z̄

�h̄� − h̄s�

dh̄�

dt̄
� ��

� z̄
+

c̄�t̄�

�h̄� − h̄s�

��

� z̄

=
1

�h̄� − h̄s�2

�2�

� z̄2 +
�

�h̄� − h̄s�

��

� z̄
, �19�

where �= ��s /��−1�. Boundary conditions for solid volume
fraction can be derived from the zero stress and stress equi-
librium conditions as follows:

� = �r at z̄ = 0, �20�

� = ��
� − �h̄� − h̄s�

0

1

��� + 1�dz̄ − h̄s at z̄ = 1, �21�

where ��
�=�r− pc /m. The boundary condition �21� is ob-

tained by integrating Eq. �8� and applying the pressure
boundary conditions �11� and �14�. Note that in the absence
of gravity Eq. �21� reduces to �=��

�. The function c̄�t̄� is
given by

c̄�t̄� = � 1 − �0

�0
� 1

�1 − ���h̄� − h̄s�

��

� z̄
+

��

�1 − ����
z̄=1

,

�22�

and dimensionless interface positions satisfy the ordinary
differential equations �ODEs�

dh̄s

dt̄
= �c̄�t̄� − � 1

��h̄� − h̄s�

��

� z̄
+ ���

z̄=0

, �23�

dh̄�

dt̄
= �c̄�t̄� + � 1

�1 − ���h̄� − h̄s�

��

� z̄
+

��

�1 − ����
z̄=1

.

�24�

The initial conditions for the interface positions are

h̄��t̄ = 0� = 0, h̄s�t̄ = 0� = 0. �25�
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III. CAPILLARY RISE SOLUTIONS

The time-dependent free-boundary problem �19�–�25�
can be solved numerically. First, however, we will identify
the equilibrium state solution which will be compared with
the time-dependent solution later in Sec. IV.

A. Steady state solution

The steady state solution for solid volume fraction and
pressure can be written as follows:

��z̄� = �re
��h̄s

	−h̄�
	�z̄ �26�

and

p̄�z̄� = �r − ��
� + �h̄�

	 − h̄s
	��1 − z̄� + p̄A �27�

where h̄s
	 and h̄�

	 are the equilibrium heights of solid and
liquid, respectively, to be determined. Here p̄A is the dimen-
sionless atmospheric pressure. This pressure corresponds to
hydrostatic pressure and quantity �r−��

� can be interpreted
as a dimensionless capillary pressure.

To find the steady state solid interface position h̄s
	, we

use a global mass conservation argument which can be stated
as follows. The mass of the solid before liquid is imbibed
into the material is equal to the mass of the solid after liquid
is imbibed into the material. In dimensionless form, this is

�0h̄�
	 = �h̄�

	 − h̄s
	�

0

1

��z̄�dz̄ . �28�

The solution of Eq. �28� after using Eq. �26� yields a steady
state solid interface position,

h̄s
	 =

1

�
ln�1 − �h̄�

	�0

�r
� + h̄�

	. �29�

Also the steady state liquid interface position can be written
as

h̄�
	 = ��

� − �r. �30�

Note that in dimensional form h�
	=−pc /��g, which is the

same as that for capillary rise in a rigid porous material given
the same capillary pressure pc. Using Eqs. �26� and �29� we
can define

��
	 = �r − ����

� − �r��0, �31�

where ��
	 is the solid volume fraction at the wet material–dry

material interface evaluated in the limit t→	. Further dis-
cussion of these solutions will be given in Sec. IV. In the
following section we will solve the time-dependent capillary
rise problem.

B. Time-dependent solution

The coefficients of Eqs. �19�, �23�, and �24� are singular
at time t=0. However, in the asymptotic limit t→0 these
equations and the boundary condition �21� reduce to the zero
gravity case. In this case, Eq. �19� with the associated bound-
ary conditions can be solved using the similarity variable �

=z /2�Dt, where D=L2 /T=K0m /� has units of length
squared per unit time �see Ref. 34 for details�. Here the in-
terface positions can be expressed as

h̄s�t̄� = 2
s
�t̄, h̄��t̄� = 2
�

�t̄ . �32�

The zero gravity solution, denoted by �s, can be written in
terms of the error function as follows:

�s =
erf�
s − B� − erf�� − B�
erf�
s − B� − erf�
� − B�

���
� − �r� + �r, �33�

where

B = �1 − �0�
� �34�

and


s =
���

� − �r�
���erf�
s − B� − erf�
� − B��

	 1

�r
exp�− �
s − B�2�

−
�1 − �0�

�0�1 − ��
��

exp�− �
� − B�2�
 , �35�


� = −
���

� − �r�exp�− �
� − B��

�0�1 − ��
�����erf�
s − B� − erf�
� − B��

. �36�

This is the solution given by Anderson,34 Eqs. �46�–�49�. We

avoid the singularity at t̄=0 �when h̄s�t̄�= h̄��t̄�=0� numeri-
cally when solving Eqs. �19�–�24� by using this similarity
solution as an initial condition at time t̄= t̄I�0. Specifically,
the initial condition for � can be derived from the similarity
solution ��z̄ , t̄I�=�s���, where t̄I is chosen to be sufficiently
small so that the solution is independent of any further re-
duction in t̄I. Noting that

� = 
s + z̄�
� − 
s� , �37�

the initial condition for � in dimensionless form becomes

��z̄, t̄ = tI� = �s�
s + z̄�
� − 
s�� . �38�

The initial conditions for h̄s and h̄� are

h̄s�t̄I� = 2
s
�t̄I, h̄��t̄I� = 2
�

�t̄I. �39�

The above system of equations �19�–�24� is solved numeri-
cally subject to the initial conditions �39� and also by using
the similarity solution �38� as an initial condition for �. To
compute the numerical solution, we use a method of lines
approach with a second order accurate finite difference
scheme in space. This converts the PDE to a system of
ODEs. These ODEs along with Eqs. �23� and �24� are solved
numerically using MATLAB’s ode23s solver.

IV. CAPILLARY RISE RESULTS AND DISCUSSION

Figure 2 shows the evolution of interface positions h̄s�t�
�g=0,g�0 cases� and h̄��t� �g=0,g�0 cases�. In the ab-

sence of gravity, h̄s�t� evolves downward and h̄��t� evolves
upward following a square root in time trend. This is the
similarity solution of Anderson.34 For the nonzero gravity
case, initially both curves follow the similarity solution but

ultimately reach steady state values h̄s
	 and h̄�

	. In the Appen-
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dix we compare predictions for these interface positions to
the experimental data obtained for the capillary rise of water
into deformable sponges for the same configuration exam-
ined in the model.

The steady state values for h̄s
	, h̄�

	 that can be observed in
Fig. 2 depend on various parameters. In the next several
figures we explore this dependence. We first note that the

dimensionless h̄�
	 is independent of � �see Eq. �30��. How-

ever, it is important to point out that the length scale L and
the dimensional h�

	 do depend on ��. Therefore, we interpret
� as a dimensionless quantity measuring solid density.

In Fig. 3, the ratio of h̄s
	 and h̄�

	 is plotted as a function of

�. The solid curve represents the analytical solution of h̄s
	

and h̄�
	 for � values ranging from �0.5 to 1. Four numeri-

cally computed values of h��t� and hs�t� for sufficiently large

times are also indicated along this curve, indicating agree-
ment between numerical and analytical results. Three differ-
ent one-dimensional deformable material figures are also
shown in this plot to represent the dependence of deforma-
tion on �. In particular, we observe that solid deformation
increases with increasing �.

In Fig. 4 we explore the dependence of the interface
positions on the capillary pressure. First observe that when
��

� is equal to �r �i.e., capillary pressure is zero�, no fluid is

imbibed by the porous material; here h̄s
	, h̄�

	 equal zero. As
the capillary suction increases �i.e., ��

� increases� the porous
material starts deforming. This rate of deformation depends
on the value of �. For �=−0.1, the deformation in the porous
material is smaller compared to �=0.1. As mentioned in the

discussion of Fig. 3, the height of fluid h̄�
	 depends linearly

on ��
� �see also Eq. �29��.

Figure 5 shows a plot of h̄s
	, h̄�

	 versus �r for different
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values of �0. Note that h̄�
	, indicated by the dashed line, is

independent of �0. Situations of net compression �h̄s
	 posi-

tive� generally correspond to relatively small values of �0. In
order for this to be physically realistic, we assume that the
liquid bath remains in contact with the solid even in cases

with h̄s�0. On the other hand, net expansion �h̄s
	 negative�

generally corresponds to relatively large values of �0. For
the intermediate values of �0, details of other parameter val-
ues determine the nature of the final configuration. This sug-
gest that materials with relatively high porosity tend to
shrink while those with sufficiently low porosity tend to
expand.

Figure 6 shows the interface positions �h̄s , h̄�� as a func-
tion of time for a particular choice of parameter values for

which h̄s
	=0. Initially, the porous solid material shrinks,

marked by positive hs. Again, in order for h̄s�0 to be physi-
cally realistic, we assume that the liquid bath remains in
contact with the solid for all times. The overall behavior is
that fluid rises to an equilibrium height and the wet solid
interface rises initially but then returns to z̄=0 �no net defor-
mation�. However, as we show in the next plot there is local
compression �relative to �0� near the bottom of the wet ma-
terial and local expansion �relative to �0� near the top of the
wet material. The opposite trend to that shown in Fig. 6 can
also be observed where initially the porous material expands
�hs�0� before the solid interface position returns to z̄=0.

Figure 7 shows a plot of solid volume fraction � as a
function of z̄ for both steady state and unsteady cases. Good
agreement between the numerical and steady state solution is
found. Both are compared with a constant solution �0 indi-
cated by dashed line. In this plot we have used a special

value of �0 such that h̄s
	=0. When ���0 the solid material

is in a state of relative compression. When ���0 the solid
material is in a state of relative expansion. When ��0, the
local expansion ����0� occurs near the top while the local
compression ����0� occurs near the bottom. Note in this

case that there is local deformation as described but no net
deformation �i.e., hs

	=0�. This behavior is in fact true in gen-
eral, as can be seen from a derivative of the equilibrium solid
fraction,

d�

dz̄
= − ��r�h̄�

	 − h̄s
	�e��h̄s

	−h̄�
	�z̄, �40�

from Eq. �26�. That is, when ��0 the solid fraction de-
creases with increasing vertical position. The opposite trend
occurs when ��0; namely, the solid fraction increases with
increasing vertical position. Finally, when �=0 this equation
shows that the equilibrium solid fraction is uniform through-
out the solid, with value �=�r. Physically, when �s��� the
solid material tends to preferentially accumulate near the
bottom and when ����s liquid tends to preferentially accu-
mulate near the bottom.

V. DRAINAGE INTO A DEFORMABLE
POROUS MATERIAL

In the previous problem capillarity drove fluid flow in
opposition to gravity. In this section we consider the opposite
scenario in which capillary and gravitational forces act in the
same direction. In this setting, at time t=0 we consider a
finite amount of liquid with thickness H0 in contact with the
deformable porous material. The pressure at z=H�t� is atmo-
spheric pressure. The initial contact position of the liquid and
porous material is defined by z=0. For time t�0 the liquid
starts penetrating into the porous material. The upper inter-
face of the porous material after deformation is defined by
z=hs�t� and the lower interface formed due to liquid penetra-
tion is defined by z=h��t� as shown in Fig. 8.

The governing equations �1�–�4� are the same as before
in the wet region. Similarly, after combining Eqs. �1�, �7�,
and �8� we get the same PDE for � �Eq. �9�� on h��t��z
�hs�t�.
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The boundary conditions applied at the liquid–wet ma-
terial interface z=hs�t� are

ws�hs
−,t� =

�hs

�t
, �41�

p�hs
−,t� = pA − ��g�hs�t� − H�t�� , �42�

��hs
−,t� = 0. �43�

Here we have neglected inertial effects in the liquid region to
get the hydrostatic pressure condition �42�. The boundary
conditions applied at the wet material–dry material interface
z=h��t� are

w��h�
+,t� =

�h�

�t
, �44�

p�h�
+,t� = pA + pc. �45�

We introduce the same dimensionless quantities as be-
fore to nondimensionalize Eq. �9� on h��t��z�hs�t� except
that here we take

z̄ =
z − h��t�

hs�t� − h��t�
. �46�

The dimensionless PDE for � can be written as

��

� t̄
+ � �z̄ − 1�

�h̄s − h̄��

dh̄�

dt̄
−

z̄

�h̄s − h̄��

dh̄s

dt̄
� ��

� z̄
+

c̄�t̄�

�h̄s − h̄��

��

� z̄

=
1

�h̄s − h̄��2

�2�

� z̄2 +
�

�h̄s − h̄��

��

� z̄
, �47�

where the function c�t̄� is given by

c̄�t̄� = � 1 − �0

�0
� 1

�1 − ���h̄s − h̄��

��

� z̄
+

��

�1 − ����
z̄=0

.

�48�

The PDE �47� is subject to the boundary conditions

� = �r at z̄ = 1, �49�

� = ��
� + H̄ − h̄s + �h̄s − h̄��

0

1

��� + 1�dz̄ at z̄ = 0.

�50�

Note that if g=0, condition �50� reduces to �=��
�. The

boundary condition �50� is obtained by integrating Eq. �8�
and applying the pressure boundary conditions �42� and �45�.
The liquid height H̄�t� follows from conservation of liquid,

H̄�t� = H̄0 + h̄s − �h̄s − h̄��
0

1

�1 − ��dz̄ , �51�

where H̄0 is the dimensionless initial height of the liquid
region.

The dimensionless interface positions satisfy the ODEs

dh̄s

dt̄
= �c̄�t̄� − � 1

��h̄s − h̄��

��

� z̄
+ ���

z̄=1

, �52�

dh̄�

dt̄
= �c̄�t̄� + � 1

�1 − ���h̄s − h̄��

��

� z̄
+

��

�1 − ����
z̄=0

.

�53�

The initial conditions for the interface positions are

h̄��t̄ = 0� = 0, h̄s�t̄ = 0� = 0, and H̄�t̄ = 0� = H̄0. �54�

We will use the same solution technique as before to solve
Eqs. �47�–�54�.

Figure 9 shows interface positions h̄s, h̄�, and H̄ as a
function of time. A finite amount of liquid is supplied whose

thickness is shown by H̄�t� in the plot. Note that in the ab-
sence of gravity, the solution does not depend on �. Here,

both curves h̄s�t� and h̄��t� follow the similarity solution of
the case of the zero gravity capillary rise problem until the

p = pA + ρ�g(H − hs)

← z = H(t)p = pA →

Wet Porous→
p = pA + pc

←Liquid

h�(t)

hs(t)

←Dry Porous

FIG. 8. �Color online� This figure shows the schematic of the one-
dimensional liquid penetration configuration.
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H̄�t� for g=0 and g�0 when a finite amount of liquid penetrates into the
deformable porous material. In this plot we have used ��

�=0.2, �r=0.1,
�0=0.33, and �=0.1.
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fluid layer is completely drained into the porous material

when h̄s= H̄. For the nonzero gravity case, both curves fol-
low the similarity solution initially but then depart from this
trend until again the liquid layer has completely drained. We
define a drainage time as the time at which all the liquid is

drained into the porous material t̄= t� �h̄s�t��= H̄�t���. This
drainage time is faster for the nonzero gravity case as com-
pared to the zero gravity case.

Figure 10 shows the drainage time �t�� as a function of
dimensionless capillary pressure −pc /m. As capillary suction
is increased the drainage time t� decreases. When gravity is
present, this quantity depends on the density ratio �. In par-
ticular, the drainage time is larger when ��0 �solid more
dense than liquid� as compared to when ��0 �solid less
dense than liquid�. In the absence of gravity increasing the
capillary suction also decreases t�. For the zero gravity case,
the drainage time is independent of �.

VI. CONCLUSION

We have considered a one-dimensional model of capil-
lary flow into a deformable porous material in the presence
of gravity. This model is based on the work of Barry and
Aldis,25 Preziosi et al.,12 and Anderson34 and is similar to
other models of flow in deformable materials.11,35,36 Our new
contribution is a set of analytical and numerical results that
detail the effects of gravity and capillarity on the material
deformation in these systems. Our capillary-rise results of
deformable porous materials are analogous to the classical
Washburn results for capillary rise in rigid porous materials.

In the presence of gravity initially both interface posi-
tions, separating the liquid bath and wet porous material and
dry porous material and wet porous material, follow the
square root in time behavior as in the zero gravity case.
However, in contrast to the zero gravity case where no steady
state exists, the interface positions ultimately reach steady

state values h̄s
	 and h̄�

	. This fluid motion and solid deforma-
tion is driven by capillary suction; when capillary pressure is
zero no fluid is imbibed into the material and consequently
no deformation occurs.

We have quantified the deformation and imbibition de-
pendence on fundamental quantities such as the strength of
capillary suction and the solid-liquid density ratio. Deforma-
tion on both local and global scales has been assessed. In-
creased capillary pressure leads to increased net deformation.
Also the net deformation of the solid increases with increas-
ing �= ��s /��−1�. The deformation within the sponge has
also been assessed. In particular, when the solid is more
dense than the liquid we observe that there is local expansion
near the top and local compression near the bottom. An op-
posite trend is observed when the solid is less dense than the
liquid; here there is local expansion near the bottom and
local compression near the top.

In our capillary rise configuration, the equilibrium rise
height of liquid is the same for both rigid and deformable
geometries assuming the same capillary pressure in both
cases. This is also related to our assumption that the pressure
is fixed at a fixed location z̄=0 rather than at the bottom of
deforming solid. Therefore the noted increase in net defor-
mation is measured by the position of the wet sponge–liquid
interface.

We have also examined the case in which capillary and
gravitational forces act in the same direction. Here we mea-
sure the time required for a finite volume of fluid to penetrate
into the deformable material. It is observed that drainage of
liquid is faster for the nonzero gravity case as opposed to
when gravity is absent. We have also observed that drainage
time decreases as capillary suction is increased. When grav-
ity is present we find that when the solid is more dense than
the liquid, the drainage time is slower than when the solid is
less dense than the liquid.

As we show in the Appendix, the early time dynamics
observed in the experiments are consistent with the early
time t1/2 dynamics predicted by the theory for capillary rise
and material deformation. As was the case for capillary rise
in rigid porous materials �e.g., Refs. 3 and 4� we find that the
experimental data do not conform to the late time equilib-
rium predictions of our theory. The complete understanding
of these differences is only beginning to be addressed for
rigid porous materials and so we hope that information
gained in that context will lead to new ideas for deformable
materials.

These capillary and gravity interactions in one-
dimensional deformable porous materials highlight a number
of interesting phenomena that suggest further analysis of
models in higher dimensions as well as further experiments.
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APPENDIX: EXPERIMENTS ON CAPILLARY RISE
OF A LIQUID INTO A DEFORMABLE SPONGE

We present experimental results that document both the
capillary rise of water into an initially dry sponge and the
resulting deformation of the sponge. We discuss these results
in the context of capillary rise experiments that have previ-
ously been performed for rigid porous materials as well as in
the context of the theoretical model presented in the main
text.

The classical model of Washburn1 has been used for
nearly a century to describe capillary flow in rigid porous
materials. Washburn’s model predicts that when a fluid is
imbibed into a porous material due to capillarity and against
the force of gravity the fluid height initially increases, fol-
lowing a square root in time behavior before approaching an
equilibrium value determined by the balance of capillary
forces with the weight of the elevated fluid.

Recent experimental work on capillary rise in rigid po-
rous materials has verified Washburn’s early time t1/2 power
law but has also shown that at later times, rather than reach-
ing an equilibrium height, the fluid may continue to rise fol-
lowing a different power law. Delker et al.3 conducted ex-
periments on capillary rise of water in a porous material
made up of glass beads. In this setting they observed the
early time t1/2 power law predicted by Washburn but demon-
strated that even after several orders of magnitude in time
beyond the early scaling regime, the fluid height continued to
increase, following dynamics that could be fitted with a
power law t1/4. They attributed these long time dynamics to
randomness in the capillary forces of the porous material.
More recently, Lago and Araujo4 conducted similar experi-
ments for capillary rise of water in a packing of glass beads
as well as capillary rise of water in Berea sandstones. For
their experiments with glass beads they, like Delker et al.,
observed the early time Washburn dynamics and long time
dynamics for height that followed a power law �they did not
give a specific value for this power law, but it appears to be
close to the t1/4 estimated by Delker et al.�. In contrast, for
the case of Berea sandstone only the t1/2 power law was
observed.

In our experiments on capillary rise of water in deform-
able sponges presented below, we measure the capillary rise
height hl�t� relative to the water level z=0 of the fluid bath,
the sponge deformation depth hs�t� into the bath, and the
overall wet sponge height h�t�=hl�t�−hs�t�. We observe be-
havior analogous to that observed by Delker et al.3 and Lago
and Araujo4 for their experiments with glass beads and water.
Namely, we observe that the capillary rise height hl�t� and
deformation depth hs�t� follow early time dynamics consis-
tent with a t1/2 power law. The long time dynamics that we
observe in the experiments for hl�t� can be characterized by a
power law tb with 0.22�b�0.25, which appears to be close
to the t1/4 observed in rigid porous materials. The power law
observed for hs�t� has a slightly smaller exponent ranging
from 0.18 to 0.21.

1. Description of experiments

In our experiments we use commonly available cellulose
sponges �e.g., kitchen sponges� and water. Four sponges, all
cut from a single larger sponge, were used in the experiments
described here. The four smaller sponges were approxi-
mately rectangular parallelepipeds and when damp had
height of 9.10.1 cm, width of 3.80.2 cm, and depth of
2.40.1 cm. These same sponges when dry �as at the be-
ginning of each experiment� had height of 8.10.2 cm,
width of 3.50.2 cm, and depth of 2.10.1 cm. The varia-
tions listed are representative of the variation of each dimen-
sion within a given sponge as well as that between the indi-
vidual sponges. In general it is difficult to avoid such
variations in at least either the wet and dry sponges. While
careful milling or cutting of a sponge can be done �e.g., Ref.
11� the sponge deforms during both wetting and drying and
in general will not exactly maintain its shape. We note that
while it is possible to compress a sponge as it dries, for
example, for more efficient storage and transport of dry
sponges as well as more dramatic deformation when it soaks
up liquid, in all the cases presented, the sponges were al-
lowed to dry naturally �without external compression� and
completely before each experiment. Further, we did not at-
tempt to eliminate changes in the sponge properties that may
have occurred over multiple wetting, drying, swelling, and
shrinking cycles as has been reported in other similar experi-
ments for polyurethane sponges �see Refs. 39–41 and 11�.
While presumably the material properties may vary between
experiments conducted here, our interest is primarily in iden-
tifying qualitative behavior of typical sponges �e.g., ones that
may not have undergone multiple compression cycles to
equilibrate material properties� and to document joint capil-
lary rise and material deformation in an experimental setting.
Our results show no qualitative changes in the imbibition/
deformation process during the course of experiments run on
the same sponges over several months.

A typical experiment was conducted as follows. A clear-
sided tank with inside height of 14 cm, width of 26.1 cm, and
length of 20.3 cm was partially filled with water. One of the
sponges was then positioned along the front side of the tank
so that the bottom of the sponge was still slightly above the
water level. This sponge was securely attached with a clamp
at the top of the tank but otherwise could deform freely. To
begin each experiment, the water level was slowly raised by
adding more water to the tank via a tube near the back and
bottom of the tank. This filling was stopped as soon as the
water level reached the bottom of the sponge and imbibition
began. We observed no significant influence of the wall of
the tank on the capillary rise in the sponge and resultant
sponge deformation; the wet/dry sponge interface and the
wet sponge/liquid interface were generally planar and paral-
lel to the water level in the tank throughout the course of
each experiment. A typical configuration is shown in Fig. 11
at a point in time after the imbibition/sponge deformation
process had begun. The ruler on the right, which was taped
to the inside of the tank, shows centimeter markings. A stop
watch, not shown in this figure, was used to record the time.
The duration of each experiment was approximately 35–40
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min; this was the approximate amount of time required for
the imbibed liquid to reach the upper clamped portion of the
sponge. Photographs of the sponge, ruler, water level, and
stopwatch were taken during the course of each experiment.
Initially, the capillary rise and deformation occur rapidly and
photographs were taken at approximately 3 frames/s for the
first several seconds. As the dynamics slowed, the interval
between photographs was increased up to a maximum of
about 1 min for the last 15–20 min of the evolution. This
process was repeated for several different sponges on several
different days. Sponges were reused after they were allowed
to dry completely.

Measurements were obtained from digitized photographs
using software IMAGEJ �freeware for image analysis available
from NIH� to record for each image positions of the wet
sponge/dry sponge interface �z=hl�, the wet sponge/water
interface �z=hs�, the water level �z=0�, and markings on the
ruler. The time for each image was also recorded. The soft-
ware allowed us to record pixel values at a given location
and a corresponding scale factor for conversion of pixels to
centimeters was obtained by recording pixel values on the
image of the ruler. Three points were identified along each
interface hs and hl and then averaged to obtain a single value
h �total distance between the averaged points for the upper
and lower interface positions� representing the total thickness
of the wet sponge region for each image. Numerical values
for hs and hl were obtained from the averaged positions re-
corded for each interface by computing their distance from
the line representing the water level at z=0. An assumption
made in the analysis was that there was negligible change in
the water level of the bath during the course of each experi-
ment. Based on the quantity of water taken up by the sponge
and on the tank dimensions we estimate that the change in

water level was less than 0.5 mm during the course of each
experiment. If one also accounts for the volume of deformed
solid below the water line the estimated change in water
level would be even smaller. Care was taken to avoid any
motion of the tank or camera during each experiment. Pre-
liminary experiments in which the sponge was lowered into
the water resulted in slight motion of the sponge during ini-
tial stages of imbibition and have not been included in the
data presented here. However, in those cases, the value of h
could be measured robustly even when the values of hs and
hl revealed where sponge motion occurred. That is, the mea-
sured value of h is essentially independent of the recorded
water level, unlike hs and hl which are determined relative to
the recorded water level.

Figures 12–14 show the experimental results and some
comparisons to the theory that are described in more detail
below. Figure 12 shows the recorded value of the overall wet
sponge height h as a function of time for ten different ex-
periments. Figures 13 and 14 show similar results for the
wet/dry sponge interface hl and the wet sponge/water inter-
face hs. We point out here that since hs is negative we have
actually plotted �hs� in order to make use of log-log scales.
Two important trends can be observed from these figures.
First, there is an initial regime in which both interface posi-
tions hl and hs follow a power law in time that is consistent
with the t1/2 power law predicted by the model. This time
regime corresponds to approximately the first 8 or 9 s of the
experiment. We refer to this as the early time scaling regime.
For longer times, there is a transition to a second power law
that is slower; dashed lines show a power law t0.22 in Figs. 12
and 13 for h and hl and a power law t0.2 in Fig. 14 for hs. We
refer to this as the later time scaling regime.

As noted above, the experimental data for h, hs, and hl

were fitted to power laws

h = qtp, �hs� = qst
ps, hl = qlt

pl, �A1�

where t is the elapsed time from the beginning of imbibition
for both early time and later time regimes. The values for p,

FIG. 11. �Color online� Fluid-induced deformation in a sponge: Water soaks
into an initially dry sponge and leads to an approximately one-dimensional
deformation of the sponge. The scale on the right shows centimeter mark-
ings. In this snapshot, the bottom of the sponge, z=hs�t�, is at approximately
the 5.0 cm mark, the water level, z=0, is at approximately 5.5 cm, and the
interface between the wet and dry portions of the sponge, z=hl�t�, is at
approximately 8.5 cm.
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t0.22 power law at later times.
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q, ps, qs, pl, and ql are listed for each experiment in Tables I
and II. For the early time regime we find exponents between
0.47 and 0.56 for h, 0.47–0.59 for hs, and 0.47–0.57 for hl.
For the later time regime we find exponents between 0.22
and 0.24 for h, 0.18 and 0.21 for hs and 0.22 and 0.25 for hl.
We note that these values are sensitive to the precise value
identified as the starting time. Our experimental data for the
early times included photographs taken at a rate of 3 frames/s
which allowed us to visually identify the starting time to
within approximately 0.1–0.2 s. The scatter in the data is
representative of the sensitivity of the parameter fits to the
uncertainty in the starting time. The power law for hl in the
late time regime is close to the t1/4 observed by Delker et al.3

and Lago and Araujo4 for capillary rise of water in glass
beads. The later time power law observed here for deforma-
tion hs is also close to this value but appears to be slightly
smaller. That the late time power law exponent for h is much
closer to hl than hs is consistent with the fact that hl is
roughly ten times larger than �hs� and so a fit of h=hl−hs

would be dominated by the behavior of hl. As a check of our
data processing we have confirmed that the value of h com-
puted from the pixel data and the values of hl and hs com-
puted from the pixel data are consistent in that hl−hs is
within 10−14 of h �in cm�.

2. Comparison to theory

Our first and primary point of comparison between the
theory and the experiment is in the early time power law
scaling with respect to time. The theoretical prediction for
the capillary rise and sponge deformation can be expressed
most clearly in terms of the zero gravity similarity solution
for the interface positions given by

hl�t� = 2
l
�Dt , �A2�

hs�t� = 2
s
�Dt . �A3�

The coefficients 
l and 
s are constants determined by pa-
rameters �l

�, �0, and �r �e.g., see main text or Ref. 34 for
details�. The values of hl and hs also depend on D=K0m /�,
where K0 is a reference permeability, m is a stress scale, and
� is the fluid viscosity. The experimentally measured power
law fits for the wet sponge/dry sponge interface hl and the
wet sponge/liquid interface hs, shown in Table I, are consis-
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FIG. 13. This figure shows the measured values of hl as a function of time
for the ten different experiments. Also shown as a guide are two thin dashed
lines above the data indicating a t1/2 power law at early times and a t0.22

power law at later times. Additionally, we have included dashed-dotted
curves that show predictions from the theory without gravity �thinner
dashed-dotted line� and with gravity �thicker dashed-dotted curve�.
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TABLE I. Early time scaling fits from the experiments based on approximately the first 8–9 s of evolution.

Sponge �date� p q ps qs pl ql

3 �7-1� 0.55 0.68 0.59 0.071 0.55 0.61

4 �7-1� 0.51 0.84 0.55 0.072 0.50 0.77

1 �7-8� 0.56 0.67 0.55 0.073 0.57 0.60

4 �7-8� 0.50 0.80 0.56 0.074 0.49 0.73

1 �7-11� 0.49 0.94 0.50 0.11 0.49 0.83

4 �7-11� 0.50 0.74 0.56 0.065 0.50 0.68

1 �7-16� 0.47 0.86 0.47 0.10 0.47 0.76

4 �7-16� 0.52 0.68 0.57 0.064 0.52 0.62

2 �7-17� 0.51 0.70 0.52 0.075 0.51 0.63

3 �7-17� 0.52 0.70 0.59 0.066 0.51 0.63
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tent with the theoretical prediction of 1/2. This provides sup-
port that the most basic capillary rise and deformation
mechanisms observed experimentally are captured by the
theory.

In order to obtain further comparison between the early
time predictions of the theory and experiment we need to
determine appropriate values for 
l, 
s �which require know-
ing �r, �0, and �l

��, and D appearing in Eqs. �A2� and �A3�.
We first obtain an estimate for �r, which is the ratio of

the solid volume of the wet sponge to the total volume oc-
cupied by the wet sponge in its relaxed state. We take the
total volume of the wet sponge �parallelepiped� to be 9.1
�3.8�2.4=83.0 cm3. We measured the solid volume of the
wet sponge by submerging the sponge into a straight-sided
container of water and compressing the sponge to remove all
the trapped air. After the sponge was allowed to deform back
to its relaxed state and while still submerged, we measured
the change in the height of the water in the container. In this
way we estimated the solid volume of the sponge to be
6.1 cm3. The ratio of these gives the estimate �r=0.073.

We interpret �0 as the ratio of the solid volume of the
dry sponge to the total volume occupied by the dry sponge.
In order to obtain an estimate for �0 for a typical sponge we
make the assumption that the solid volume of the dry sponge
is equal to the solid volume of the wet sponge. This implies
that �0 /�r is the ratio of the wet sponge volume to dry
sponge volume, which is �9.1�3.8�2.4� / �8.1�3.5�2.1�
=1.39. This leads to the estimate �0=0.10.

The theory also involves the parameter �l
� which repre-

sents the solid fraction in the wet sponge at the wet sponge–
dry sponge interface. For simplicity and lack of a direct mea-
surement of this quantity we shall assume that �l

�=�0. That
is, there is no jump in the solid volume fraction at the wet/
dry sponge interface. With �l

�=�0=0.10 and �r=0.073, the
values for the coefficients in Eqs. �A2� and �A3� computed
from the model are 
l=0.3675 and 
s=−0.0590.

In principle the value of D could be obtained from mea-
surements of the parameters K0 and m representing reference
values for permeability and stress. However, the models for
permeability and stress used in the model from which these
two parameters originate were chosen based on expected
qualitative behavior and so presumably measurements of the
full stress and permeability dependence on the solid fraction

� would be required for a completely qualitative compari-
son. While such measurements have been obtained for other
sponges �e.g., see Ref. 11� we do not attempt such measure-
ments here. Instead, we shall obtain D by relating it to the
fitting value of ql from the experimental data. In particular,
we determine its value by comparison of Eq. �A2� to the
obtained values of ql �see Table I� and the above computed
values of 
l by

D =
ql

2

4
l
2 . �A4�

In the results shown we have chosen ql=0.7 as a representa-
tive value of those listed in Table I.

The predictions for the zero gravity hl�t� and hs�t� given
in Eqs. �A2� and �A3� based on the value q=0.7 are shown in
Figs. 13 and 14 as the thinner dashed-dotted lines. These
lines have a slope of 1/2. While these predictions do not
perfectly fit the collection of curves shown, we note that only
one parameter value was fitted, namely, D, in order to obtain
this comparison. In fact, the difference between the thin
dashed-dotted line and the early time data in Fig. 14 for �hs�
is a reasonable estimate of the agreement between theory and
experiment since once D was chosen to fit the hl data, there
were no further adjustable parameters for hs. Improved com-
parison between the theoretical curve and the experimental
data could be obtained at the expense of fitting an additional
parameter. For example, we have observed from the experi-
mental data that the ratio hl /hs is approximately �10. In the
theory this translates to the ratio of 
l /
s=−10 and so this
requirement could be imposed on the theory to suggest an
alternate choice for a parameter such as �r, �0, or �l

�. We
have chosen not to do so in favor of fitting the fewest num-
ber of parameters as possible.

As pointed out earlier, the experimental data for later
times do not show that equilibrium is reached but rather
indicate that the evolution continues following another
power law. The theory described in the main text, as was the
case for the classical Washburn equation for rigid porous
materials, does not predict these long time dynamics. Despite
this, for completeness we include two additional curves that
show the results of the full model prediction with gravity. In
Figs. 13 and 14 these appear as the thicker dashed-dotted

TABLE II. Late time scaling fits from experiments.

Sponge �date� p q ps qs pl ql

3 �7-1� 0.22 1.34 0.18 0.17 0.23 1.17

4 �7-1� 0.22 1.48 0.21 0.13 0.22 1.35

1 �7-8� 0.23 1.29 0.20 0.18 0.23 1.11

4 �7-8� 0.22 1.38 0.20 0.17 0.22 1.21

1 �7-11� 0.24 1.38 0.18 0.24 0.25 1.16

4 �7-11� 0.23 1.30 0.20 0.15 0.23 1.14

1 �7-16� 0.23 1.33 0.19 0.19 0.23 1.14

4 �7-16� 0.23 1.30 0.20 0.16 0.23 1.14

2 �7-17� 0.24 1.20 0.20 0.17 0.24 1.03

3 �7-17� 0.23 1.22 0.19 0.15 0.23 1.07
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curves. In order to plot the full results with gravity, the val-
ues of two additional parameters are required. The first is the
length scale L=m / ��lg� and the second is the density ratio
parameter �=�s /�l−1. Since the length scale L depends on
the parameter m �recall D depended on both K0 and m� we
again take the approach of not attempting to measure this
parameter directly. Rather, we have selected a value of L so
that the predicted equilibrium height for hl falls near its rep-
resentative early time/later time transition region in the ex-
perimental data. In the experiments of Lago and Araujo4 the
Washburn equilibrium height occurred at a similar location
with respect to the experimental data. We have used L
=70 cm which, with �l=103 kg m−3 and g�10 m s−2 im-
plies that m=7�103 Pa. Lastly, while we have not mea-
sured � directly, we have observed experimentally that the
sponge is more dense than the water so that ��0. However,
the theoretical predictions with different values of � reveal
no significant change in the positions of the thick dashed-
dotted curves in Figs. 13 and 14 and so the calculations we
have shown have used �=0 for simplicity. The resulting the-
oretical values for �hs� overpredicts the experimental data.
However, again we emphasize that only one additional pa-
rameter, L, was fitted and so no parameters were adjusted
specifically for the hs comparison.

Some differences between the theory and experiments
even for the early time regime may be attributable to com-
plexities in the experiments that are not accounted for in the
model. For example, it is worth pointing out that the quantity
of fluid taken up by the sponge is actually much less than the
available pore space in the sponge. One estimate for the liq-
uid fraction in the wet sponge based on solid fraction alone
would be 1−�r�0.93. However, based on more direct mea-
surements this appears to be too high. Our directly measured
estimate for the volume of liquid taken up by the sponge
after an experiment is 17.51 cm3 which corresponds to a
liquid fraction of around 0.2. This total amount of liquid,
estimated for different experiments by measuring the volume
of water that could be squeezed out of the sponge immedi-
ately after the experiment was over, includes the liquid oc-
cupying the region of the wet sponge below the water level
as well as above it. Based on this and the observation that a
considerable amount of the pore space in the wet sponge was
occupied by air, it seems safe to assume that the actual liquid
fraction in the wet sponge is considerably less than the avail-
able pore space. The presence of a third, vapor, phase was
not accounted for in the theory and may be important for
improved agreement.

Just as our experiments are not fully explained by the
theoretical model in the main text, we note that the experi-
mental work of Delker et al.3 and Lago and Araujo4 was not
completely explained by the classical Washburn model. In
the latter case, this discrepancy has recently motivated Lock-
ington and Parlange42 to develop a new model that general-
ized the Washburn model. Their new model predicts that, as
in the experimental data, the capillary-driven liquid in the
porous material continues to rise following dynamics char-
acterized by a parameter related to the presence of saturation
gradients in the system. While the incorporation of the recent
ideas of Lockington and Parlange have not been considered

in the present model for fluid flow and deformation, the de-
velopment of more sophisticated models along these lines is
an exciting avenue for future research.

3. Conclusions

In conclusion, we have presented experimental data that
show capillary rise in a deformable porous sponge. Early
time data were observed to follow approximately a t1/2 power
law and was found to be generally consistent with the theo-
retical predictions. The experimental data also revealed a
long time regime, not predicted theoretically, in which both
the fluid height and sponge deformation followed a power
law that was clearly slower than the early time t1/2 scaling;
estimates suggest t0.22 for the liquid height and t0.2 for the
solid deformation. These are comparable to the approximate
t1/4 power law for an analogous long time regime observed
for rigid porous materials.3,4
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