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We develop a complete set of equations governing the evolution of a sharp
interface separating two fluid phases undergoing transformation. In addition to the
conventional balances for mass, linear momentum and energy these equations include
also a counterpart of the Gibbs–Thomson equation familiar from theories for crystal
growth. This additional equation arises from a consideration of configurational forces
within a thermodynamical framework. Although the notion of configurational forces
is well-developed and understood for the description of materials, such as crystalline
solids, that possess natural reference configurations, little has been done regarding
their role in materials, such as viscous fluids, that do not possess preferred reference
states. We therefore provide a comprehensive discussion of configurational forces,
the balance of configurational momentum, and configurational thermodynamics that
does not require a choice of reference configuration. The general evolution equations
arising from our theory account for the thermodynamic structure of the bulk phases
and the interface and for viscous and thermal dissipation in the bulk phases and for
viscous dissipation on the interface. Because of the complexity of these equations, we
provide a reduced system of equations based on simplified constitutive assumptions
and approximations common in the literature on phase transformations. Using these
reduced equations, we apply the theory to the radially symmetric problem for the
condensation of a liquid drop into the vapour phase.

1. Introduction
The purpose of this paper is to develop, from basic considerations, a complete set

of equations governing the evolution of a sharp interface separating two fluid phases
undergoing transformation. The dynamics of two fluid phases and the evolution of
the interface separating them has been a problem of scientific and industrial interest
for centuries. Such problems range from those of geophysics involving large length
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scales, where inertial and gravitational effects prevail, to those involving small length
scales, where surface tension and other interfacial phenomena are important. For
situations in which a phase transformation does not occur, so that the interface is a
material surface, the governing bulk and interfacial equations are well-developed and
agreed upon (Slattery 1990; Edwards, Brenner & Wassan 1991; Joseph & Renardy
1993). It is important to emphasize the distinction between non-material and material
interfaces: whereas non-material interfaces allow for exchanges of mass between
adjacent phases, fluid particles cannot cross a material interface. Focusing on the
interface, apart from appropriate kinematical conditions, the relevant equations are
the conventional balances for mass, linear momentum, and energy, augmented by
suitable constitutive equations. However, and what is most relevant to our discussion,
when a phase transformation does occur there is an additional kinematical degree of
freedom represented by the motion of the interface relative to the material; because
of this, the interfacial expressions for balance of mass, momentum and energy fail to
provide a closed description: an additional interface condition is needed to account
for the microphysics associated with the exchange of material between phases.

The need for a supplemental equation at a sharp phase-interface was recognized
early on by Lamé & Clapeyron (1831) and, somewhat later, by Stefan (1889) who,
in their works on the solidification of a pure substance, not only balanced energy
in the bulk phases and on the interface, but also required that, on the interface, the
temperature ϑ be equal to the melting temperature ϑ0:

ϑ = ϑ0. (1.1)

Despite its intuitive appeal, the physical basis of (1.1) is ambiguous: is it a balance, a
constitutive equation, or neither?

To address this question, we consider not (1.1) but a familiar generalization, the
Gibbs–Thomson equation, in which the interfacial temperature is allowed to depend
also on the curvature of the interface. Using S for the interface, n for its unit normal,
K = −divSn for its total (twice the mean) curvature, ψx = ψ̂x(ϑ) for the interfacial
free-energy (density), and � for the latent heat, and introducing a dimensionless
temperature

θ =
ϑ − ϑ0

ϑ0

, (1.2)

the Gibbs–Thomson equation (when the phases are of equal density � and flow is
neglected) reads

��θ = ψxK. (1.3)

The Gibbs–Thomson equation is typically derived using a variational argument.
Specifically, suppose that the medium occupies a fixed region R and that the interface
S remains disjoint from the boundary ∂R. Let ψ = ψ±(ϑ) denote the specific free
energy of phase ±. Since the interface is not material, its configuration can be varied
independently of the temperature field. Requiring that the variation of the net free
energy ∫

R
�ψ dv +

∫
S

ψx da (1.4)

with respect to changes of the configuration of S be stationary then yields the
requirement

ψxK + �[[ψ]] = 0, (1.5)

where [[Φ]] = Φ+ − Φ− denotes the jump of a bulk quantity Φ across the interface.
Let η = η± denote the specific entropy of phase ± and assume (as is classical) that
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η± = −dψ±(ϑ)/dϑ . Assume that ψ+(ϑ) and ψ−(ϑ) are defined so that

ψ+(ϑ0) = ψ−(ϑ0), η+(ϑ0) �= η−(ϑ0). (1.6a, b)

The Gibbs–Thomson equation (1.3) then follows from (1.5) on stipulating that
the temperature difference ϑ − ϑ0 deviates only infinitesimally from the melting
temperature ϑ0 and making the identification � = ϑ0(η

+(ϑ0) − η−(ϑ0)).
Using the terminology of Nabarro (1985), the foregoing argument, involving as

it does a variation of the configuration of the interface, distinguishes the quantity
ψxK + �[[ψ]] as the configurational force acting on S. This answers the question
posed after (1.1).

We use the adjective configurational to differentiate these forces from classical
Newtonian forces, which we refer to as standard.) In equilibrium, this force vanishes.
Non-trivial values of this force thus signal that the configuration of S is energetically
suboptimal. In this vein, (1.5) and its specialization the Gibbs–Thomson equation
(1.3) can be interpreted as constitutively augmented statements of configurational
force balance. (Statements such as (1.5) actually represent the normal component
of a vectorial configurational force balance (Gurtin 2000, p. 6). Indeed, on defining
C = �ψ1 and � = ψx�, with � = 1 − n ⊗ n the projection onto S (cf. (4.2)), a
straightforward calculation relying on the identity divS� = Kn (cf. (4.7)) shows that
(1.5) is the normal component of the vectorial equation divS� + [[C]]n = 0. In this
context, C and � are bulk and interfacial configurational stress tensors.

That additional configurational forces may be required to describe solid-state
phenomena involving evolving defect structures such as phase interfaces and grain
boundaries that migrate relative to the material is clear from the groundbreaking
works of Eshelby (1951, 1956, 1970, 1975), Peach & Koehler (1950) and Herring
(1951). However, as with our derivation of (1.3), these studies are based on variational
arguments and by their very nature, variational arguments cannot characterize
dissipation.

This drawback is particularly limiting when dealing with fluids, because of the
prominent role played by viscous stresses. Finally, we note that any variationally-
based introduction of configurational forces must necessarily be predicated on an
underlying constitutive framework and, therefore, restricted to a particular class of
materials.

That configurational forces are distinct from the standard (Newtonian) forces
associated with the motion of material particles should be clear from the derivation
of (1.5), which involves a variation that does not allow the fluid to move. On the
other hand, variations of positions of the fluid particles – holding the interface fixed –
yield the conventional balance laws for standard forces.

In the dynamics of defect structures with general forms of dissipation there is no
encompassing variational principle. Nevertheless, experience demonstrates the need
for an additional balance associated with the kinematics of the defect. An additional
balance of this sort is the relation that ensues when we formally set the variationally
derived expression for the configurational force on a defect equal to a linear function
of the velocity of that defect. In particular, for the solidification of a pure substance,
this procedure leads to a kinetic Gibbs–Thomson equation (Voronkov 1964; see
also Gurtin 1988, who uses configurational forces to derive (1.7) and its anisotropic
generalization)

��θ = ψ̂x(ϑ)K − κ(ϑ)V, (1.7)

where V denotes the scalar normal velocity of S and κ(ϑ) � 0 is the reciprocal
mobility of the interface.
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A completely different point of view is taken by Gurtin & Struthers (1990, this
work is somewhat obscure; better references for the key ideas are Gurtin 1995, 2000),
who use an argument based on invariance under observer changes to conclude that a
configurational force balance should join the standard (Newtonian) force balance as
a basic law of continuum physics. Here the operative word is ‘basic’. Basic laws are
by their very nature independent of constitutive assumptions; when placed within a
thermodynamic framework, such laws allow us to use the now standard procedures
of continuum thermodynamics to develop suitable constitutive theories.

We begin our study by revisiting a familiar topic: the bulk material away from
the interface. This setting allows for a discussion of the first two laws in a form that
accounts explicitly for power expended by configurational forces. In this setting, the
configurational and standard forms of the first two laws are equivalent; even so, this
setting is useful as it provides a vehicle for discussing the basic structure of these
laws, a structure not at all transparent when discussing phase interfaces. Once this
basic framework is established, we turn to the goal stated at the outset of the paper:
to develop, from basic considerations, a complete set of equations governing the
evolution of a sharp interface separating two fluid phases undergoing transformation.

Our treatment has the following limitations.
(i) We neglect the mass of the interface.
(ii) We do not allow for heat conduction within the interface.
(iii) We restrict attention to situations in which the absolute temperature ϑ is

continuous across the interface.
(iv) We require that the tangential component utan of the fluid velocity u be

continuous across the interface.
Aside from the classical bulk balances for standard forces and energy, the general
governing equations consist of interface conditions expressing balance of energy,
balance of standard momentum, and balance of configurational momentum; a general
system of local interface conditions equivalent to these basic balances is given in § 10.

The general equations are complicated and, for that reason, in §12 we consider
the equations under simplifed constitutive equations and approximate assumptions
(common in the literature). In particular, letting ψ̂(ϑ) denote the specific free energy
in bulk, if we assume, among other hypotheses, that the interfacial free energy ψx is
constant and the temperature ϑ is close to its equilibrium value ϑ0 (cf. (1.6a)), then
the resulting interface conditions consist of:

(i) the energy balance

[[q]] · n = �J, (1.8)

in which q is the bulk heat-flux vector, � is the latent heat, and J is the mass flow
across S;

(ii) the standard momentum balance

[[T]]n − J 2[[υ]]n = −ψxKn − divS{2α� + λ(tr�)�}, (1.9)

with T the stress tensor, υ the specific volume, � the superficial rate of stretch (cf.
(4.17)), α and λ interfacial fluid viscosities, assumed constant, and � the projection
onto S (cf. (4.2));

(iii) the normal configurational momentum balance, which may be expressed in the
following essentially equivalent forms:

�θ = −n · [[υT]]n + 1
2
J 2[[υ2]] − 〈〈υ〉〉{κV mig − βSV mig

+ 2α�:� + λ(tr�)K}, (1.10a)
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�θ = −[[υ]]n · 〈〈T〉〉n + 〈〈υ〉〉ψ̂xK − 〈〈υ〉〉{κV mig − βSV mig}. (1.10b)

(More precisely, (1.10a) represents the normal configurational momentum balance,
while (1.10b) represents a combination of the normal configurational and standard
momentum balances.) Here, θ is the dimensionless temperature (1.2), 〈〈υ〉〉 = (υ+ +
υ−)/2 is the average specific volume at the interface,

V mig = V − 〈〈u〉〉 · n

represents the average migrational velocity of the interface relative to the bulk
material, κ and β are constant viscosities associated with the migration of the
interface, � = −gradSn, and S the Laplace–Beltrami operator (surface Laplacian)
(12.5). The term βSV mig would seem relevant to applications involving small length
scales, applications whose importance lies in the development of micro- and nano-
scale fluid devices (e.g. Stone, Stroock & Adjari 2004.)

The basic interface equations (1.8)–(1.10) demonstrate the power of working within a
general framework: these balances exhibit the physical nature of – and the interaction
between – different physical effects and, in addition, provide a framework within which
different physical assumptions may be discussed. For example, if we neglect interfacial
and migrational viscosities, the standard momentum balance becomes

[[T]]n − J 2[[υ]]n = −ψxKn, (1.11)

and the equivalent statements of the configurational momentum balance have the
forms

�θ = −[[υn · Tn]] + 1
2
J 2[[υ2]], �θ = 〈〈υ〉〉ψ̂xK − [[υ]]n · 〈〈T〉〉n. (1.12a, b)

Note that (1.12b) generalizes the Gibbs–Thomson equation, (1.3), to account for
density differences between phases and for the influence of flow. Note also that,
because it determines the interfacial temperature solely in terms of interfacial limits of
bulk quantities, (1.12a) is the simpler of the two equations. In addition, (1.12a) shows
that the classical vapour recoil effect (Hickman 1952, 1972; Palmer 1976; Burelbach,
Bankoff & Davis 1988) – which is embodied by the inertial contribution −J 2[[υ]]n
in the standard momentum balance (1.11) – may also influence the interfacial
temperature through the term J 2[[υ2]]/2 in (1.12a). Whereas the vapour–recoil effect
is present in the interfacial momentum balance used in fluid mechanical theories for
evaporation–condensation, it does not enter the classical Hertz–Knudsen–Langmuir
equation (Schrage 1953) that is typically used (in lieu of the Gibbs–Thomson equation)
as an additional interface equation (Burelbach et al. 1988; Danov et al. 1998).

The challenge of developing accurate and efficient numerical methods for the
solution of initial-boundary-value problems arising from sharp-interface theories has
spurred on the development of regularized diffuse-interface, or phase-field, theories
(e.g. J. S. Langer 1978, unpublished work; Collins & Levine 1985; Caginalp 1986,
1989; Penrose & Fife 1990; Fried & Gurtin 1993, 1999; Wang et al. 1993.) This
approach has recently become popular for the modelling of fluid–fluid systems
(Anderson, McFadden & Wheeler 1998, 2000). Anderson, McFadden & Wheeler
(2001) analyse a two-fluid diffuse-interface model in a sharp-interface limit and derive
non-equilibrium interfacial conditions for a number of limiting cases. In addition
to interfacial statements of mass, momentum and energy balance, these conditions
include a non-equilibrium generalization of the Gibbs–Thomson equation. In our
notation, that equation reads

�θ = p−[[υ]] − 1
2
J 2[[υ]]2 + υ+ψxK − κ〈〈υ〉〉V mig (1.13)
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and can be derived as a specialization of our equations (1.9) and (1.10b) by setting
the interfacial fluid viscosities α and λ and the migrational viscosity β to zero, using
the identity 〈〈T〉〉 = T− + [[T]]/2, and neglecting viscous contributions to the stresses
in the bulk phases. (Compare (1.13) with (102) of Anderson et al. (2001), whose
definition of the mass flow J differs from ours by a sign. In writing (1.13), we set
to zero the reference pressure of Anderson et al. (2001). Their analysis provides
an expression for κ in terms of the densities and shear viscosities of the phases.)
Hence, (1.13) arises in our theory on neglecting all forms of bulk and interfacial
dissipation other than that associated with attachment kinetics (as embodied by
the migrational viscosity κ). Anderson et al. (2001) refer to (1.13) as a modified
Clausius–Clapeyron equation. We see here that (1.13) can be viewed alternatively as
a combined expression of the balances for standard and configurational momenta.
(Importantly, as in the expressions (1.10a) and (1.10b) of normal configurational
momentum balance, equation (102) of Anderson et al. (2001) exhibits the influence
of the recoil effect discussed in the paragraph containing (1.11) and (1.12) through
the term J 2[[υ]]2/2.) The particular sharp-interface limit obtained by an analysis of
the equations arising in a diffuse-interface theory is sensitive both to constitutive
and scaling assumptions. As such, a diffuse-interface theory may generally possess a
variety of sharp-interface limits. In the absence of a sound sharp-interface theory to
serve as a target, the problem of developing a physically meaningful diffuse-interface
theory is ill-posed. Here, we provide a sound target theory upon which to build
phase-field-based regularizations.

2. Theory for the bulk phases
2.1. Kinematics

We write u(x, t) for the velocity and

L = gradu, D = 1
2
(L + L�), W = 1

2
(L − L�) (2.1)

for the velocity gradient, rate of stretch, and spin. We assume that the fluid is
incompressible, so that

divu = trD = 0, (2.2)

and denote by

� (= constant in each phase), υ =
1

�
(2.3)

the mass density and specific volume.
We use a superposed dot to denote the material time-derivative; e.g. for a scalar

field Φ(x, t),

Φ̇ =
∂Φ

∂t
+ (gradΦ) · u. (2.4)

We consistently write P(t) for an arbitrarily chosen region that convects with the
fluid; a consequence of balance of mass is then that, for such a region and any field
Φ ,

d

dt

∫
P(t)

Φ� dv =

∫
P(t)

Φ̇� dv. (2.5)

2.2. Standard momentum and moment of momentum balances

We neglect external body forces. Writing T for the Cauchy stress, the standard
momentum and moment of momentum balances then require that, for any bulk
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region P, with m the outward unit normal to ∂P,

d

dt

∫
P

�u dv =

∫
∂P

Tm da, (2.6a)

d

dt

∫
P
(x − 0)×�u dv =

∫
∂P

(x − 0)×Tm da = 0. (2.6b)

These imply the local balance

�u̇ = divT (2.7)

and the symmetry of T.
Incompressibility of the fluid requires that the stress T admit a decomposition

T = −p1 + S (2.8)

into a constitutively indeterminate pressure p and an extra stress S (trS = 0) available
for constitutive prescription.

2.3. Bulk energy balance and entropy imbalance

For P(t) a region that convects with the fluid, the first and second laws of
thermodynamics, namely balance of energy and the entropy imbalance, have the
respective forms

d

dt

∫
P(t)

�
{
ε + 1

2
|u|2

}
dv =

∫
∂P(t)

Tm · u da −
∫

∂P(t)

q · m da, (2.9a)

d

dt

∫
P(t)

�η dv � −
∫

∂P(t)

q
ϑ

· m da, (2.9b)

where ε and η denote the specific internal energy and specific entropy, while q is the
heat flux and ϑ is the (absolute) temperature.

Using (2.2), (2.5), (2.7) and (2.8), we find that

�ε̇ = S : D − divq, �η̇ � −div
q
ϑ

, (2.10a, b)

which are the local forms of the first two laws. If we introduce the specific free energy

ψ = ε − ϑη, (2.11)

then, subtracting (2.10b) from (2.10a), we arrive at the local free-energy imbalance

�(ψ̇ + ηϑ̇) − S : D +
1

ϑ
q · gradϑ � 0. (2.12)

2.4. Bulk constitutive relations

Using the symbols ± to label the phases, we take as bulk constitutive equations for
the individual phases the classical state relations

ψ = ψ±(ϑ), η = η±(ϑ) = −dψ±(ϑ)

dϑ
, (2.13a, b)

the auxiliary state relation

ε = ε±(ϑ) = ψ±(ϑ) − ϑ
dψ±(ϑ)

dϑ
, (2.14)
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which follows from (2.11) and (2.13), the viscous flow relation

S = 2µ±(ϑ)D, (2.15)

and Fourier’s law

q = −k±(ϑ) gradϑ. (2.16)

Here, the viscosities µ± and conductivities k±, are strictly positive. For each phase,
the constitutive relations (2.13)–(2.16) are consistent with the free-energy imbalance
(2.12).

3. Configurational forces in bulk
When discussing configurational forces in solids, it is natural to employ a referential

(or Lagrangian) description. Here, as we are discussing fluids, we recast in a spatial
(or Eulerian) setting Gurtin’s (1995, 2000) approach to configurational forces.

3.1. Migrating control volumes. Observed and relative velocities

To characterize the manner in which configurational forces expend power, a means
of capturing the kinematics associated with the transfer of material is required. We
accomplish this with the aid of control volumes R(t) that migrate relative to the fluid
and thereby result in the transfer of material to – and the removal of material from –
R(t) at ∂R(t). Here, it is essential that regions P(t) convecting with the fluid not be
confused with control volumes R(t) that migrate relative to the material.

Unless specified to the contrary, R(t) is a migrating control volume with V∂R(x, t)
the (scalar) normal velocity of ∂R(t) in the direction of the outward unit normal
m(x, t). To describe power expenditures associated with the migration of R(t), we
introduce a velocity field v∂R(x, t) for ∂R(t). Compatibility then requires that v∂R have
V∂R as its normal component,

v∂R · m = V∂R, (3.1)

but v∂R is otherwise arbitrary.
Non-normal velocity fields, while not intrinsic, are important. For example, given

an arbitrary time-dependent parameterization x = x̂(ξ1, ξ2, t) of ∂R, the field defined
by v∂R = ∂ x̂/∂t (holding (ξ1, ξ2) fixed), is a velocity field for ∂R, but v∂R is generally
non-normal. We refer to the normal velocity V∂R and any choice of the velocity field
v∂R for ∂R as observed velocities for ∂R, since they represent velocity fields that
characterize the motion of R through space, independent of the motion of the fluid.
While it is important that we allow for the use of non-normal velocity fields, we
require that the theory itself not depend on the particular observed velocity field used
to describe a given migrating control volume.

We refer to this hypothesis, as intrinsicality. Intrinsicality is reminiscent of, but
different from, the general requirement that physical theories be independent of the
observer.

It is also possible to characterize the motion of R relative to the fluid; in this case,
we use the migrational velocity and the normal migrational velocity

v∂R − u, V mig
∂R = V∂R − u · m, (3.2)

as well as the field

J∂R = �V mig
∂R , (3.3)

which represents the migrational mass flow across ∂R.
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Since divu = 0, we may use (2.4) and (3.3) to conclude that

d

dt

∫
R(t)

�Φ dv =

∫
R(t)

�
∂Φ

∂t
dv +

∫
∂R(t)

Φ�V∂R da

=

∫
R(t)

�(Φ̇ − u · gradΦ) dv +

∫
∂R(t)

Φ�V∂R da

=

∫
R(t)

�Φ̇ dv +

∫
∂R(t)

ΦJ∂R da. (3.4)

3.2. Configurational momentum balance

We begin by rewriting the standard momentum balances (2.6) in a form appropriate
to a migrating control volume R(t):

d

dt

∫
R(t)

�u dv =

∫
∂R(t)

{Tm + uJ∂R} da, (3.5a)

d

dt

∫
R(t)

(x − 0)×�u dv =

∫
∂R(t)

(x − 0)×{Tm + uJ∂R} da. (3.5b)

To describe the configurational counterpart of these balances, we introduce three
additional fields: a specific configurational momentum p; a configurational stress
C; and an internal configurational body force f . (Internal configurational forces are
discussed in detail by Gurtin (2000, p. 10). In bulk; such forces are not so important, as
they are indeterminate,) Then, guided by (3.5a), we posit a configurational momentum
balance requiring that, for each migrating control volume R

d

dt

∫
R(t)

� p dv =

∫
∂R(t)

{Cm + pJ∂R} da +

∫
R(t)

f dv. (3.6)

(We could also introduce an additional balance for moment of configurational
momentum, but such a balance would be superfluous not only in bulk but, more
importantly, in most situations involving a phase interface; cf. (5.12) of Gurtin (2000).)
By (3.4), this balance has the local form

� ṗ = divC + f . (3.7)

In the balances (3.5) and (3.6), the vector fields uJ∂R and pJ∂R represent respective
flows of linear and configurational momentum across ∂R induced by its migration.
When there is no migration, that is when J∂R = 0 so that ∂R convects with the fluid,
then these momentum flows vanish.

It is convenient to view the flows uJ∂R and pJ∂R as effective tractions associated
with the flow of momentum across ∂R, for then the momentum balances (3.5a) and
(3.6) each has the form

d

dt
{momentum of R(t)} = {effective net force on R(t)}. (3.8)

This view is essential to our discussion of configurational forces.

3.3. Configurational thermodynamics

This section discusses forms of the energy balance and entropy imbalance appropriate
to migrating control volumes.
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Standard form of the first and second laws

As is classical, the global forms of the energy balance and the entropy imbalance
for a migrating control volume R(t) have the form

d

dt

∫
R(t)

�
{
ε + 1

2
|u|2

}
dv −

∫
∂R(t)

{
ε + 1

2
|u|2

}
J∂R da

=

∫
∂R(t)

Tm· u da −
∫

∂R(t)

q · m da, (3.9a)

d

dt

∫
R(t)

�η dv −
∫

∂R(t)

ηJ∂R da � −
∫

∂R(t)

q
ϑ

· m da. (3.9b)

In view of (3.3), the basic laws in this form account for the migration of R(t) through
the underlined terms, which represent flows of energy and entropy across ∂R. When
R(t) convects with the fluid, J∂R = 0 and (3.9) reduce to (2.9).

Configurational form of the first two laws

For a migrating control volume, the first two laws in the standard form (3.9) account
only implicitly for power expended by configurational forces. A thermodynamics
better suited to the study of such forces may be based on the first two laws in a form

d

dt

∫
R(t)

�
{
ε + 1

2
|u|2

}
dv =

∫
∂R(t)

{(Tm + uJ∂R) · v∂R + (Cm + pJ∂R) · (v∂R − u)} da

︸ ︷︷ ︸
W (R(t))

+

∫
∂R(t)

{ϑηJ∂R − q · m} da

︸ ︷︷ ︸
Q(R(t))

(3.10)

and
d

dt

∫
R(t)

�η dv �

∫
∂R(t)

ϑηJ∂R − q · m
ϑ

da

︸ ︷︷ ︸
H (R(t))

(3.11)

that accounts explicitly for configurational power expenditures. Configurational forms
of the first and second laws of thermodynamics were first given by Gurtin (1995)
for situations where inertia is negligible. See also Gurtin (2000), whose discussion of
configurational momentum is incorrect. Our treatment of inertia and the associated
effective power expenditures is based on that of Cermelli & Fried (1997). Before
establishing the precise manner in which this form of the first two laws is equivalent
to the standard form (3.9), we discuss the physical ideas underlying (3.10) and (3.11).

The abstract structure of, say, (3.10), namely

d

dt
{internal energy plus kinetic energy of R(t)}

= {effective power expended on R(t)}︸ ︷︷ ︸
W (R(t))

+ {effective heat flow into R(t)}︸ ︷︷ ︸
Q(R(t))

, (3.12)

treats a migrating control volume as a ‘thermodynamic entity’ in which the inflow of
(internal plus kinetic) energy is subsumed by:

(i) an effective expenditure of power by standard forces, configurational forces and
effective forces associated with the flow of momentum across surfaces;

(ii) an effective flow of heat.
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Note that this abstract structure is consistent with that of (3.8) for momentum.
The physical hypothesis underlying the form we choose for the effective power

expenditure W (R(t)) is the presumption that configurational forces expend power in
concert with transfers of material. In particular, we view the tractions Cm and pJ∂R

as forces associated with the transfer of material across ∂R; since the migrational
velocity v∂R −u represents the velocity with which material is transferred across ∂R, we
take v∂R −u to be an appropriate power-conjugate velocity for Cm+ pJ∂R; we therefore
assume that the migration of R is accompanied by an effective power expenditure∫

∂R(t)

{Cm + pJ∂R} · (v∂R − u) da. (3.13)

In deciding on the appropriate expenditure by standard tractions, it is important to
emphasize that material is continually being transferred across ∂R as a result of its
migration through the fluid; hence, ∂R has no intrinsic material description.

We therefore take the observed velocity v∂R of ∂R, rather than the material velocity u,
as the appropriate conjugate velocity for Tm + uJ∂R, and write the effective standard
power expenditure in the form∫

∂R(t)

{Tm + uJ∂R} · v∂R da.

Finally, the configurational body force f , being internal, is viewed as acting within
the control volume ∂R; as such f cannot affect the external power expenditure W (R).

For the second law in the form (3.11) to be consistent with its standard form (3.9b),
the entropy flow

∫
∂R ηJ∂R da must join the standard entropy flow −

∫
∂R(q · m)/ϑ da to

form the effective entropy flow H (R):

H (R(t)) =

∫
∂R(t)

ϑηJ∂R − q · m
ϑ

da. (3.14)

Further, if we require that, on ∂R,

entropy flow per unit area =
heat flow per unit area

ϑ
,

then we are led to consider

Q(R(t)) =

∫
∂R(t)

{ϑηJ∂R − q · m} da (3.15)

as the appropriate choice for the effective heat flow across ∂R. We therefore view
ϑηJ∂R and ηJ∂R as respective flows of heat and entropy induced by the migration of
∂R.

Equivalence of the standard and configurational forms of the first two laws

We now turn to a rigorous justification of our use of the configurational forms of the
first two laws. First of all, the configurational and standard forms, (3.11) and (3.9b),
of the second law are clearly equivalent, and the former trivially satisfies intrinsicality.
We may therefore limit our discussion to the first law. Regarding this law in the
configurational form (3.10), note that the intrinsicality hypothesis is equivalent to the
requirement that the power W (R(t)) be independent of the choice of observed velocity
field v∂R chosen to characterize the migration of R(t).

Equivalency Theorem. The first law in the configurational form (3.10), subject to
the intrinsicality hypothesis, is equivalent to the first law in the standard form (3.9a),
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supplemented by the Eshelby relation

C = �
{
ψ − 1

2
|u|2

}
1 − T (3.16)

and the momentum relation

p = −u. (3.17)

Proof. Consider the first law in the configurational form (3.10). Our first step
is to determine the consequences of the invariance requirement. Since all observed
velocity fields have the same normal component, while the tangential components
are arbitrary, the invariance requirement means that W (R(t)) be invariant under all
transformations of the form

v∂R �→ v∂R + ξ t, (3.18)

with ξ an arbitrary scalar field and t with |t| = 1 a tangential vector field on ∂R, or,
equivalently, by (3.3), that∫

∂R(t)

ξ t · {(T + C)m + �(u + p)V mig
∂R } da = 0

for all such transformations. Thus, since R, ξ , and t (tangential to ∂R) may be
arbitrarily chosen, it follows that

t · {(T + C)m + �(u + p)V mig
∂R } = 0

for any scalar field V
mig

∂R and all unit vectors t and m with t orthogonal to m. Since
V

mig
∂R is arbitrary, t · (u + p) = 0 for all unit vectors t , so that p = −u, which is (3.17).

Thus, letting A = T + C, it follows that, for each m, Am must lie in the direction of
m, which is possible if and only if A has the form A = �ϕ1, with ϕ a scalar field.
Invariance therefore yields the pre-Eshelby relation

C = �ϕ1 − T. (3.19)

In view of (3.17) and (3.19), the power expended on R becomes

W (R(t)) =

∫
∂R(t)

{Tm · u + {ϕ + |u|2}J∂R} da. (3.20)

Further, since ψ = ε − ϑη, we may use (3.4) and (3.20) to write (3.10) in the form:∫
R(t)

�
˙{

ε + 1
2
|u|2

}
dv =

∫
∂R(t)

Tm · u da −
∫

∂R(t)

q · m da +

∫
∂R(t)

{
ϕ + 1

2
|u|2 − ψ

}
J∂R da.

(3.21)

At this point, it is important to note that, by (3.2) and (3.3), the sole term in (3.21)
involving the normal velocity V∂R is the term with integrand (ϕ + 1

2
|u|2 − ψ)J∂R =

�(ϕ + 1
2
|u|2 − ψ)(V∂R − u · m). Bearing this in mind, we note that, given any time t0,

we may choose a second migrating control volume that coincides with R(t) at t = t0,
but for which V∂R at t0 is arbitrary. Thus, for (3.21) to hold for all migrating control
volumes, we must have

ϕ = ψ − 1
2
|u|2; (3.22)

therefore, by (3.19), the Eshelby relation (3.16) holds. Further, by (3.22), we may use
(3.4) to reduce (3.21) to the standard form (3.9a) of the first law. We have therefore
shown that the configurational form of the first law and the intrinsicality hypothesis
together imply both the standard form of this law and the Eshelby relation.
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To prove the converse assertion, assume that both the standard form (3.9a) of the
first law, the Eshelby relation (3.16), and the momentum relation (3.17) are satisfied.
Choose an arbitrary velocity field v∂R for ∂R and note that, since v∂R · m = V∂R and
J∂R = �(V∂R − u · m), it follows, upon appealing to the Eshelby relation (3.16), that

Tm · u = Tm · v∂R − Tm · (v∂R − u)

= Tm · v∂R + Cm · (v∂R − u) − (T + C)m · (v∂R − u),

= Tm · v∂R + Cm · (v∂R − u) −
{
ψ − 1

2
|u|2

}
J∂R. (3.23)

Further, since p = −u, it follows that |u|2 = u · v∂R + p · (v∂R − u), and this equation
and (3.23) imply that{

ε + 1
2
|u|2

}
J∂R + Tm · u = (Tm + uJ∂R) · v∂R + (Cm + pJ∂R) · (v∂R − u) + ϑηJ∂R.

This identity reduces the first law in the standard form (3.9a) to its configurational
counterpart (3.10). The proof of the equivalency theorem is now complete.

We have shown that, granted intrinsicality, the configurational and standard forms
of the first two laws are equivalent. For that reason, our discussion of configurational
forces in bulk might seem superfluous, but it is not; this discussion provides a vehicle
for introducing the basic structure and central ideas, these are not at all transparent
when discussing phase interfaces. In fact, our treatment of phase interfaces is based
on thermomechanical laws that are direct counterparts of the configurational laws
(3.10) and (3.11) and that lead, via intrinsicality, to an interfacial Eshelby relation
analogous to the bulk Eshelby relation (3.16).

3.4. Specific form of the configurational fields

Until this stage in our discussion of configurational forces, no use has been made of
constitutive theory. Our results, being independent of constitutive equations, therefore
apply to broad classes of materials. Moreover, since the standard force balance (2.7)
requires that �u̇ = divT, the Eshelby and momentum relations (3.16) and (3.17) yield,
for each of the two phases, the relation divC − � ṗ = �grad{ψ − |u|2/2}, where we
have used the assumed constancy of � in each phase. This result, which is independent
of constitution, shows that the internal body force f in the configurational balance
(3.7) has the explicit form

f = −�grad{ψ − 1
2
|u|2}. (3.24)

Thus, granted (3.24) and the Eshelby relation, the configurational force balance in
bulk is a direct consequence of the standard force balance. On the other hand, as
we shall see, the interfacial configurational momentum balance is an independent
balance, not derivable from standard interfacial results (cf. the materials literature,
where interfacial configurational balances are often determined via a variational
principle, assuming equilibrium, and then used as missing interface conditions for
dynamical problems).

As a consequence of (3.24), we see that the internal configurational force f arises as
a response to an inhomogeneous distribution of free and kinetic energy (and hence –
because the free energy depends constitutively on the temperature – as a response
to inhomogeneous temperature and velocity fields). Thus, roughly speaking, internal
configurational forces characterize microphysical forces that act within the material as
a response to energetic inhomogeneities. This need for internal configurational forces
becomes primal when discussing sharp phase interfaces: the interface in a two-phase
system generally represents a surface of discontinuity (and hence inhomogeneity) of
the free and kinetic energies.
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Using (3.24), the Eshelby relation (3.16), the momentum relation (3.17), and the
bulk constitutive relations, we find that the configurational stress C± and internal
configurational force f ± in the individual bulk phases are determined by the fields u,
ϑ and p. As we shall see, interfacial counterparts of C+ and f +, which we view as
surface excess quantities, do require independent constitutive specification.

4. Interfacial kinematics
4.1. The interface S. Superficial fields

We assume that the interface S(t) separating the phases is a smoothly evolving
surface oriented by a unit normal field n(x, t). We write V (x, t) for the (scalar)
normal velocity of S(t).

A superficial field is a smooth field defined on the interface for all time. A superficial
vector field g is tangential if g · n = 0. For a superficial tensor field � we require that

�n = 0; (4.1)

if, in addition, ��n = 0, then we say that � is fully tangential, so that � maps
tangent vectors to tangent vectors. An example of a fully tangential tensor field is the
projection

� = 1 − n⊗n (4.2)

onto S; clearly,

�:� = 2. (4.3)

(A superficial tensor field would generally be defined at each x ∈ S as a linear
transformation of the tangent space at x into �3; the requirement (4.1) allows us to
consider � at each point as a linear transformation of �3 into �3.)

Each superficial tensor field � admits a decomposition of the form

� = �tan + n⊗b, (4.4)

in which �tan = �� is fully tangential and b = ��n is tangential. The verification of
this decomposition is straightforward: simply expand �� using (4.2).

4.2. Surface gradient and divergence

We write gradS and divS for the surface gradient and surface divergence on S.
The curvature tensor � defined by

� = −gradSn (4.5)

is fully tangential and symmetric, and

K = tr� = �:� = −divSn (4.6)

is the total (twice the mean) curvature. Then, by (4.2), we have the identity

divS� = Kn. (4.7)

Further, the product rule yields the useful identities

gradS(V n) = n⊗gradSV − V �, divS(V n) = −KV, (4.8)

involving the interfacial normal, normal velocity and curvature.
Let � be a fully tangential tensor field. Then

n · divS� = divS(��n︸︷︷︸
= 0

) − �:gradSn,
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and (4.5) yields the important identity

n · divS� = �:�, for � fully tangential. (4.9)

We assume that each bulk field is smooth up to the interface from either side. We
write [[Φ]] and 〈〈Φ〉〉 for the jump and average of a bulk field Φ across S: [[Φ]] is the
interfacial limit of Φ from the (+) phase (the phase into which n points) minus its
limit from the (−) phase; 〈〈Φ〉〉 is the average value of these two limits. Then, given
bulk fields Φ and Λ, we have the important identity:

[[ΦΛ]] = 〈〈Φ〉〉[[Λ]] + 〈〈Λ〉〉[[Φ]]. (4.10)

4.3. Mass balance. Mass flow across the interface

The fields

�±(V − u± · n) (4.11)

represent flows of mass at the two sides of the interface in the direction n, and balance
of mass requires that these be equal:

[[�(V − u · n)]] = 0. (4.12)

Thus, we may define the mass flow J across the interface (in the direction n) by the
relation J = �±(V − u± · n), so that

J = 〈〈υ〉〉−1
V mig, [[υ]]J = −[[u]] · n, (4.13a, b)

with

V mig def
= V − 〈〈u〉〉 · n (4.14)

the average migrational velocity of the interface relative to the bulk material.

4.4. Smoothness of u at the interface

We allow for the possibility that the densities of the phases differ and therefore, by
(4.12), we must allow for the possibility that the normal components u± · n of the
interfacial limits u± of u differ. On the other hand, we assume that

�[[u]] = 0, (4.15)

so that the tangential components �u± of the interfacial limits u± of u coincide. In
addition, we assume that u is smooth up to the interface from either side.

We write

� = gradS〈〈u〉〉 = 〈〈L〉〉� = 〈〈D + W〉〉� (4.16)

for the superficial velocity gradient and

� = 1
2

{
�� + ���

}
= �〈〈D〉〉� (4.17)

for the superficial rate of stretch. Then, for � a tangential and symmetric superficial
tensor field,

�:� = �:�. (4.18)

Further, since � is tangential,

�:� = tr�. (4.19)

4.5. Velocity fields

We let v(x, t) denote a velocity field for S; that is, a velocity field describing the
evolution of S. Then the normal component of v must satisfy

V = v · n, (4.20)
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but the tangential part, �v, which is not intrinsic, may be arbitrarily chosen. The
fields

v − u±, V − u± · n (4.21)

represent migrational velocites of the interface relative to the material in each of the
bulk phases.

Consider an arbitrary migrating subsurface A(t) of S(t). To describe the migration
of A(t), we introduce a field v∂A(x, t) defined over ∂A(t) for all t . Compatibility then
requires that

v∂A · n = V, v∂A · ν∂A = V∂A, (4.22a, b)

where V∂A, which is intrinsic, is the scalar normal velocity of ∂A in the direction of
its normal ν∂A.

The motion of ∂A relative to the bulk material is described by the migrational
velocities v∂A − u± and average migrational velocity v∂A − 〈〈u〉〉. Further, bearing in
mind that u+ · ν∂A = u− · ν∂A,

V mig
∂A

def
= V∂A − utan · ν∂A = V∂A − 〈〈u〉〉 · ν∂A = V∂A − u± · ν∂A (4.23)

represents the normal migrational velocity of ∂A.
The component of v∂A tangential to ∂A is not intrinsic and may be arbitrarily

chosen. We require that the theory not depend on the velocity field v∂A chosen to
characterize the migration of ∂A, and therefore that the theory be invariant under
transformations of v∂A of the form

v∂A → v∂A+ t, t tangent to ∂A. (4.24)

4.6. Migrationally normal velocity field for S
In discussing the formulation of integral balance laws for an interface S(t) migrating
through the fluid, what is required is a velocity field for S that characterizes its
migration. Specifically, we seek a single velocity field v for S that renders each
of the migrational velocities v − u± normal. With this in mind, we let vtan and
utan, respectively, denote the tangential component of v and the common tangential
component of u+ and u−,

vtan
def
= �v, utan

def
= �u+ = �u−, (4.25)

and note that

v − u± = v − (u± · n)n − utan = (V − u± · n)n + (vtan − utan),

so that, taking vtan = utan, we arrive at a choice of velocity field v for S with each of
its migrational velocities v − u± normal:

v − u± = (V − u± · n)n. (4.26)

Since u± − (u± · n)n = utan, the resulting velocity field v, called the migrationally
normal velocity field for S, has the specific form

v = V n + utan (4.27)

and is important because it is normal when computed relative to the material on
either side of S(t).

In view of (4.14), for v the migrationally normal velocity field for S, the migrational
velocity v − 〈〈u〉〉 satisfies

v − 〈〈u〉〉 = V mign, (4.28a)
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gradS(v − 〈〈u〉〉) = n⊗gradSV mig − V mig�, (4.28b)

Further, by (4.22), (4.23) and (4.26), we also have the identity

(v∂A − v) · ν∂A = (v∂A − u±) · ν∂A −
=0︷ ︸︸ ︷

(v − u±) · ν∂A = V mig
∂A . (4.29)

4.7. Migrationally normal time derivative following S
Defining a meaningful time derivative of, say, a superficial scalar field γ (x, t) is a
non-trivial matter: note that the standard partial derivative ∂γ /∂t is not well defined,
because a point x on S(t0) need not lie on S(t) for t close to t0. For our purposes,
what is required is a time derivative that, in some sense, follows the migration of the
interface.

With this in mind, let v denote a velocity field for S. Then given any time t0 and
any point x0 on S(t0), the solution z(t) of

dz(t)
dt

= v(z(t), t), z(t0) = x0 (4.30)

represents the trajectory of a ‘particle’ that, at each time, lies on S and and has
velocity v. In particular, let v denote the migrationally normal velocity field for S
(cf. (4.27)) and let

◦
γ (x0, t0)

def
=

dγ (z(t), t)
dt

∣∣∣∣
t=t0

; (4.31)

the field
◦
γ defined in this manner is referred to as the migrationally normal time

derivative of γ following S. (This notion as well as that of a migrationally normal

velocity field are introduced by Cermelli, Fried & Gurtin (2005), who show that
◦
γ is

related to the (standard) normal time derivative
�

γ following S through the relation
◦
γ =

�

γ + utan · gradSγ ;
�

γ is based on the use of normal trajectories determined via
(4.30) using the vector normal-velocity v = V n.)

4.8. Two-phase migrating control volumes

Let R(t) denote an arbitrary two-phase migrating control volume; that is, a migrating
control volume whose interior intersects the interface, so that the portion of S(t) in
R(t),

A(t) = R(t) ∩ S(t),

is a smoothly evolving subsurface of S(t). Let R+(t) and R−(t) be the portions of
R(t) that lie in the (+) and (−) phases, respectively, so that, for m the outward unit
normal to ∂R(t):

(i) R+(t) and R−(t) are migrating control volumes;
(ii) the boundary ∂R±(t) of R±(t) is the union of A(t) and a surface ∂R±

blk(t) that
does not intersect the interface;

(iii) the outward unit normals to ∂R+ and ∂R− are

m|
∂R+ =

{
m on ∂R+

blk,

−n on A,
m|

∂R− =

{
m on ∂R−

blk,

n on A;
(4.32)

(iv) given a velocity field v∂R for ∂R, the associated velocity fields for ∂R+ and ∂R−

are given by

v∂R+ =

{
v∂R on ∂R+

blk,

v on A,
v∂R− =

{
v∂R on ∂R−

blk,

v on A.
(4.33)
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Note that

R(t) = R+(t) ∪ R−(t) (4.34)

represents a decomposition of R(t) into single-phase migrating control volumes R+(t)
and R−(t), because R+(t) contains only plus-phase material, and similarly for R−(t).
The theory for the interface is based on two-phase migrating control volumes R(t)
and – because the intersection of ∂R with A is a set of zero area – involves integrals∫

∂R . . . da no different from their bulk-theoretic conterparts. Our localization of such
integrals to the interface is based on decompositions of the form∫

∂R
· · · da =

∫
∂R−

· · · da +

∫
∂R+

· · · da +

∫
A

· · · da.

We refer to any such decomposition as the distillation of
∫

∂R · · · da, because R+ and
R− contain only single-phase bulk material. Such distillations allow for the application
of bulk results to eliminate terms of the form

∫
∂R± · · · da in any given balance (or

imbalance), thereby reducing each term of the form
∫

∂R · · · da to an interfacial term∫
A · · · da.

5. Interfacial mechanics
In this section, we introduce basic balances for standard and configurational forces

that account for forces within the interface. We also discuss the power expenditures
associated with the effective standard and configurational surface tractions on a two-
phase migrating control volume. The localization of the standard and configurational
force balances to points on the interface uses a tensorial form of the surface divergence
theorem. Further, to develop an intrinsic expression for the power, we use the surface
divergence theorem in yet another form.

Surface Divergence Theorem. Let � be a superficial tensor field, and let h be
a superficial vector field. Then the surface divergence theorem asserts that, for any
subsurface A of S, ∫

∂A
�ν∂A ds =

∫
A

divS� da, (5.1a)∫
∂A

�ν∂A · h ds =

∫
A

{h · divS� + �:gradSh} da. (5.1b)

These forms of the surface divergence theorem are based on the following more
standard form in which g is a tangential superficial vector field:∫

∂A
g · ν∂A ds =

∫
A

divS g da. (5.2)

To derive the relations in (5.1), we simply let a be an arbitrary constant vector and
work with left-hand sides∫

∂A
(��a) · ν∂A ds,

∫
∂A

(��h) · ν∂A ds,

using (5.2).

5.1. Standard momentum and moment of momentum balance

In addition to the bulk Cauchy stress T, we account for a standard surface stress �,
which is a superficial tensor field on S. Let R(t) be an arbitrary two-phase migrating
control volume, with A(t) the portion of S(t) in R(t). Then the integral of the
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traction �ν∂A over ∂A(t) represents the force exerted on R(t) by the portion of S
exterior to R(t); the balances of standard momentum and moment of momentum for
R(t) therefore have the form (bearing in mind that we neglect interfacial mass)

d

dt

∫
R(t)

�u dv =

∫
∂R(t)

{Tm + uJ∂R} da +

∫
∂A(t)

�ν∂A ds (5.3)

and

d

dt

∫
R(t)

(x − 0)×�u dv =

∫
∂R(t)

(x − 0)×{Tm + uJ∂R} da +

∫
∂A(t)

(x − 0)×�ν∂A ds. (5.4)

Consider the momentum balance (5.3). The localization of this balance hinges on
the distillation of

∫
∂R

{
Tm + uJ∂R

}
da. To achieve this distillation, we first note that,

by virtue of (4.32),∫
∂R(t)

Tm da =

∫
∂R+(t)

Tm da +

∫
∂R−(t)

Tm da +

∫
A(t)

[[T]]n da; (5.5)

Next, to distill the term
∫

∂R uJ∂R da, we note that, by (3.3), (4.13a), (4.32) and (4.33),

J∂R+ =

{
J∂R on ∂R+

blk,

−J on A,
J∂R− =

{
J∂R on ∂R−

blk,

J on A,
(5.6)

so that, bearing in mind (4.13b) and (4.15),∫
∂R(t)

uJ∂R da =

∫
∂R+(t)

uJ∂R da +

∫
∂R−(t)

uJ∂R da +

∫
A(t)

[[u]]J da

=

∫
∂R+(t)

uJ∂R da +

∫
∂R−(t)

uJ∂R da −
∫

A(t)

J 2[[υ]]n da; (5.7)

Trivially, (d/dt)
∫

R �u dv = (d/dt)
∫

R+ �u dv + (d/dt)
∫

R− �u dv; thus, appealing to
(5.5) and (5.7), we may rewrite (5.3) in the form

d

dt

∫
R+(t)

�u dv −
∫

∂R+(t)

{Tm + uJ∂R} da

︸ ︷︷ ︸
=0 by (3.5a)

+
d

dt

∫
R−(t)

�u dv −
∫

∂R−(t)

{Tm + uJ∂R} da

︸ ︷︷ ︸
= 0 by (3.5a)

=

∫
A(t)

{[[T]]n − J 2[[υ]]n} da +

∫
∂A(t)

�ν∂A ds; (5.8)

therefore, we have the first of the interfacial balances∫
A(t)

{[[T]]n − J 2[[υ]]n} da +

∫
∂A(t)

�ν∂A ds = 0, (5.9a)

∫
A(t)

(x − 0)×{[[T]]n − J 2[[υ]]n} da +

∫
∂A(t)

(x − 0)×�ν∂A ds = 0, (5.9b)

and the second follows similarly. Given any migrating subsurface A(t) of S(t), there
is at least one two-phase migrating control volume R(t) such that A(t) = R(t)∩S(t);
indeed, choose δ > 0 sufficiently small and let R(t) = Rδ(t) be the δ-pillbox about
A(t):

Rδ(t)
def
= {x | x = y ± λn( y, t), y ∈A(t), |λ| � δ}. (5.10)

Thus, the balances (5.9) must be satisfied for all migrating subsurface A(t) of S(t).
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Localizing (5.9), we are led to the relations

divS� + [[T]]n = J 2[[υ]]n, � = ��, (5.11a, b)

and the second of these implies that � is fully tangential.
Equation (5.11a) follows on applying the surface divergence theorem in the form

(5.1a) to (5.9a). To derive the second, let a an arbitrary constant vector, let (a×) denote
the tensor defined by (a×)b = a×b for every vector b, and note that gradS(a×x) =
(a×)(grad x)� = (a×)�. Then, by (5.1b) and (5.11a),

a ·
∫

∂A(t)

x×�ν∂A ds =

∫
∂A(t)

(a×x) · �ν∂A ds

=

∫
A(t)

{divS� · (a×x) + �:gradS(a×x)} da

=

∫
A(t)

{a · (x×divS�) + �: ((a×)�)} da

= −a ·
∫

A(t)

x×{[[T]]n − J 2[[υ]]n} da +

∫
A(t)

�:{(a×)�} da.

(5.12)

Further, since � is a superficial tensor, �:
{
(a×)�

}
=

(
��

)
: (a×) = �: (a×) and,

by (5.9b) and (5.12),
∫

A�: (a×) da = 0. Therefore, since A is arbitrary, �: (a×) = 0
for every a. However, any skew tensor may be written in the form a×; thus � is
symmetric and (5.11b) holds.

Since � is fully tangential, (4.9) implies that n · divS� = �:� thereby rendering the
normal part of the standard momentum balance (5.11a) of the form

�:� + n · [[T]]n = J 2[[υ]]. (5.13)

5.2. Configurational momentum balance

Next, in addition to the stress tensor C and the internal body force f in bulk, we
allow for a configurational surface stress �, which is a superficial tensor field on S,
and an internal configurational surface force f x , with f x a vector field on S.

We posit a balance law for configurational forces asserting that, for any two-phase
migrating control volume,

d

dt

∫
R(t)

� p dv =

∫
∂R(t)

{Cm + pJ∂R} da +

∫
R(t)

f dv +

∫
∂A(t)

�ν∂A ds +

∫
A(t)

f x da (5.14)

(cf. § 5.1). Then, arguing as we did in going from (5.5) to (5.9a) and making use of
the momentum relation (3.17), we obtain∫

A(t)

{[[C]]n + J 2[[υ]]n} da +

∫
∂A(t)

�ν∂A ds +

∫
A(t)

f x da = 0, (5.15)

for any migrating subsurface A(t) ⊂ S(t). Thus

divS� + f x + [[C]]n + J 2[[υ]]n = 0. (5.16)

We let

f = f x · n (5.17)
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denote the normal internal configurational force on the interface. The balance (5.16)
may then be decomposed into a normal configurational momentum balance

n · divS� + f + n · [[C]]n + J 2[[υ]] = 0 (5.18)

and a tangential balance that is irrelevant to what follows (cf. Remark (ii) after
(6.20)).

Finally, in view of (4.4), the configurational stress admits the decomposition

� = �tan + n⊗c, (5.19)

in which �tan, which is fully tangential, characterizes configurational stress within the
interface, while the tangential vector c characterizes configurational surface shear; i.e.
for any tangent vector ν,

�ν = �tanν + (c · ν)n.

Next, since

n · divS(n ⊗ c) = divSc + n · ((gradSn)c)︸ ︷︷ ︸
= −�n·c = 0

= divSc,

we may use (4.9) and (5.19) to write the normal configurational momentum balance
(5.18) in the form

divSc + �tan :� + f + n · [[C]]n + J 2[[υ]] = 0. (5.20)

5.3. Power expended by standard and configurational forces

Total power expenditure

Let A(t) be a migrating subsurface of S(t). Then guided by the discussion of
§3, we take the observed velocity v∂A of ∂A as the power conjugate velocity for the
standard traction �ν∂A on ∂A. For the configurational traction �ν∂A, a velocity for
the migration of A would be appropriate, but there are two values of the velocity
u at the surface. For that reason it seems reasonable to use the average migrational
velocity

v∂A − 〈〈u〉〉
of ∂A as the appropriate power conjugate velocity for �ν∂A.

Let R(t) denote an arbitrary two-phase migrating control volume, with A(t) the
portion of S(t) in R(t). The integral that represents W (R(t)) in (3.10) here gives the
power expended on that portion of ∂R(t) that lies in the bulk phases; for that reason
we write the power expended on R(t) in the form

Wtot(R(t)) =

∫
∂A(t)

{�ν∂A · v∂A + �ν∂A · (v∂A − 〈〈u〉〉)} ds

+

∫
∂R(t)

{(Tm + uJ∂R) · v∂R + (Cm − uJ∂R) · (v∂R − u)} da.

︸ ︷︷ ︸
W (R(t))

(5.21)

Here, we use the momentum relation (3.17). Because the configurational surface force
f x is internal, it does not enter the power expenditure (5.21).

Interfacial power expenditure. Pre-Eshelby relation

We continue to use the notation and terminology of § 4.8.
The term W (R(t)) leads to interfacial contributions. To determine those con-

tributions we first use (4.32), (4.33) and (5.6) to obtain the distillations
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∂R(t)

{Tm + uJ∂R} · v∂R da =

∫
∂R+(t)

{Tm + uJ∂R+} · v∂R+ da

+

∫
∂R−(t)

{Tm + uJ∂R− } · v∂R− da +

∫
A(t)

= −divS� by (5.11a)︷ ︸︸ ︷
{[[T]]n − J 2[[υ]]n} · v da

and ∫
∂R(t)

{Cm − uJ∂R} · (v∂R − u) da =

∫
∂R+(t)

{Cm − uJ∂R+} · (v∂R+ − u) da

+

∫
∂R−(t)

{Cm − uJ∂R− } · (v∂R− − u) da +

∫
A(t)

[[(Cn − uJ ) · (v − u)]] da.

These distillations yield the decomposition

W (R(t)) = W (R+(t)) + W (R−(t)) −
∫

A(t)

{v · divS� − [[(Cn − uJ ) · (v − u)]]} da;

(5.21) therefore becomes

Wtot(R(t)) = W (R+(t)) + W (R−(t)) + w(A(t)), (5.22)

with

w(A(t)) =

∫
∂A(t)

{�ν∂A · v∂A + �ν∂A · (v∂A − 〈〈u〉〉)} ds

︸ ︷︷ ︸
w∗(A(t))

−
∫

A(t)

{v · divS� − [[(Cn − uJ ) · (v − u)]]} da (5.23)

the interfacial power expenditure for the migrating subsurface A(t).
We assume that the intrinsicality hypothesis applies also for two-phase migrating

control volumes. In view of the bulk Eshelby relation (3.16) and the momentum
relation (3.17), it follows that W (R+) and W (R−) are independent of the velocity
fields v∂R+ and v∂R− for ∂R+ and ∂R−. Thus, by (5.22), intrinsicality is equivalent to
the stipulation that w(A(t)) be independent of the choice of observed velocity field v∂A

chosen to characterize the migration of A(t) (cf. the intrinsicality hypothesis in § 3.1).
Equivalently, by (5.23), we require that w∗(A) be invariant under all transformations
of the form (4.24); thus, necessary and sufficient that the above stipulation be satisfied
is that the terms w∗(A) have this invariance, or, equivalently, that∫

∂A
t · {�ν∂A + �ν∂A} ds = 0 (5.24)

for all subsurfaces A of S and all fields t tangential to ∂A. Recalling that � is fully
tangential and noting that only the fully tangential part �tan of � is affected by (5.24),
we see that this requirement is equivalent to the requirement that the superficial field
� = � + � satisfy

t · �ν = 0

at any point x of S whenever t and ν are orthogonal and tangent to S at x. Arguing
as in the derivation of (3.19), we find that there must exist a superficial scalar field ϕ
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such that

�tan = ϕ� − �, (5.25)

which represents a pre-Eshelby relation for the interface that is analogous to the bulk
relation (3.19). In the absence of configurational surface stress � = ϕ�, so that ϕ

plays the role of surface tension; but this is not the case when both configurational
and standard surface stresses are present, for then, by (5.25), ϕ plays the role of a
‘surface tension’ for the combined stress � + �tan.

Using (4.20), (4.20a), (5.19) and (5.25), we find that

�ν∂A · v∂A + �ν∂A · (v∂A − 〈〈u〉〉) = �ν∂A · v + �ν∂A · (v − 〈〈u〉〉) + (� + �)ν∂A · (v∂A − v)

= �ν∂A · v + �ν∂A · (v − 〈〈u〉〉) + ϕ(v∂A − v) · ν∂A + (c · ν∂A) (v∂A − v) · n︸ ︷︷ ︸
= 0

,

and thus, by (5.1b), that

w∗(A(t)) −
∫

∂A(t)

ϕ(v∂A − v) · ν∂A ds =

∫
∂A(t)

{�ν∂A · v + �ν∂A · (v − 〈〈u〉〉)} ds

=

∫
A(t)

{v · divS� + (v − 〈〈u〉〉) · divS� + �:gradSv + �:gradS(v − 〈〈u〉〉)} da. (5.26)

Further, noting that, by (4.10), (4.13a), and (4.15),

[[(Cn − uJ ) · (v − u)]] = [[(Cn − uJ )]] · (v − 〈〈u〉〉) + 〈〈(Cn − uJ )〉〉 · [[v − u]]

= [[Cn − uJ ]] · (v − 〈〈u〉〉) − 〈〈Cn − uJ 〉〉 · [[u]]

= [[Cn − uJ ]] · (v − 〈〈u〉〉) + J [[υ]]
(
n · 〈〈C〉〉n − J 〈〈u〉〉 · n

)
,

and that, by (5.19), (5.25) and (4.16)–(4.18),

�:gradSv + �:gradS(v − 〈〈u〉〉)

= (� + �tan):gradSv︸ ︷︷ ︸
= ϕdivSv

+(n⊗c):gradS(v − 〈〈u〉〉) − �tan :gradS〈〈u〉〉︸ ︷︷ ︸
= �tan :�

,

we find, on substituting (5.26) into (5.23) and appealing to (4.13) and the force
balances (5.11) and (5.16), that

w(A(t)) =

∫
∂A(t)

ϕ(v∂A − v) · ν∂A ds +

∫
A(t)

{ϕdivSv − �tan :� − fx · (v − 〈〈u〉〉)} da

+

∫
A(t)

{(n ⊗ c):gradS(v − 〈〈u〉〉) + J [[υ]](n · 〈〈C〉〉n − J 〈〈u〉〉 · n)} da. (5.27)

We henceforth require that v be the migrationally normal velocity field for S as
defined in (4.27), so that, recalling (4.23), (4.28) and (4.8):

(v∂A − v) · ν∂A = V mig
∂A , v − 〈〈u〉〉 = V mign, divSv = divSutan − KV. (5.28)

Hence, by (4.13) and (4.28b),

(n⊗c):gradS(v − 〈〈u〉〉) = c · gradSV mig, f x · (v − 〈〈u〉〉) = 〈〈υ〉〉f J, (5.29)
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and (5.27) takes the intrinsic form

w(A(t)) =

∫
∂A(t)

ϕ V mig
∂A ds −

∫
A(t)

{ϕ (KV −divSutan)+�tan :�− c · gradSV mig +FJ } da,

(5.30)
with

F = 〈〈υ〉〉f − [[υ]]n · (〈〈C〉〉n − J 〈〈u〉〉 · n). (5.31)

Equation (5.30) represents the final form of the expended power.

6. Interfacial forms of the first two laws
6.1. Global statements of the first two laws

In this subsection we introduce global statements of the first two laws appropriate
to a migrating control volume that contains a portion of the interface. Here, we find
it most useful to use appropriate generalizations of the bulk laws in configurational
form as given in (3.10) and (3.11).

We assume that the temperature ϑ is continuous across the interface, namely,

[[ϑ]] = 0. (6.1)

The restriction of ϑ to S then represents the temperature of the interface. We endow
the interface with internal energy and entropy (densities) εx and ηx , but neglect
interfacial heat flux. We write ψx for the interfacial free energy (density)

ψx = εx − ϑηx. (6.2)

Let A(t) be an arbitrary migrating subsurface of S(t). Consider the first two laws
in bulk as expressed by (3.10) and (3.11), and, in particular, the terms∫

∂R(t)

ϑηJ∂R da,

∫
∂R(t)

ηJ∂R da, (6.3)

which represent flows of heat and entropy induced by the migration of ∂R. Guided
by (6.3), we view ∫

∂A(t)

ϑηxV mig
∂A ds,

∫
∂A(t)

ηxV mig
∂A ds,

respectively, as flows of heat and entropy induced by the migration of ∂A. We use
V

mig
∂A (cf. (4.23) – the normal migrational velocity of ∂A – because we do not allow

for mass flow within the interface.
Then, given any two-phase migrating control volume R(t), with A(t) the portion

of S(t) in R(t), the first two laws for R(t) have the form

d

dt

∫
R(t)

�{ε + 1
2
|u|2} dv +

d

dt

∫
A(t)

εx da

= Wtot(R(t)) +

∫
∂R(t)

{ϑηJ∂R − q · m} da +

∫
∂A(t)

ϑηxV mig
∂A ds, (6.4)

with Wtot(R(t)) defined in (5.22), and

d

dt

∫
R(t)

�η dv +
d

dt

∫
A(t)

ηx da �

∫
∂R(t)

ϑηJ∂R − q · m
ϑ

da +

∫
∂A(t)

ηxV mig
∂A ds. (6.5)
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6.2. Localizing the first two laws to the interface. Interfacial Eshelby relation

Step 1. Localization to integral laws involving only the interface

We consider first the energy balance and begin with the distillation∫
∂R

q · m da =

∫
∂R+

q · m da +

∫
∂R−

q · m da +

∫
A

[[q]] · n da. (6.6)

Next, we use (5.6) to distil the term
∫

∂R ϑηJ∂R da, giving∫
∂R

ϑηJ∂R da =

∫
∂R+

ϑηJ∂R+ da +

∫
∂R−

ϑηJ∂R− da +

∫
A

ϑ[[η]]J da. (6.7)

Decomposing the integral (d/dt)
∫

R �
{
ε+ |u|2/2

}
dv over R(t) into contributions over

R+(t) and R−(t) and appealing to (5.22) and (6.6)–(6.7), we may then rewrite (6.4) in
the form

d

dt

∫
R+(t)

�
{
ε + 1

2
|u|2

}
dv − W (R+(t)) − Q(R+(t))

︸ ︷︷ ︸
= 0 by(3.10)

+
d

dt

∫
R−(t)

�
{
ε + 1

2
|u|2

}
dv − W (R−(t)) − Q(R−(t))

︸ ︷︷ ︸
= 0 by(3.10)

+
d

dt

∫
A(t)

εx da

− w(A(t)) −
∫

A(t)

{ϑ[[η]]J − [[q]] · n} da −
∫

∂A(t)

ϑηxV mig
∂A ds = 0,

which leaves the interfacial energy balance

d

dt

∫
A(t)

εx da = w(A(t)) +

∫
A(t)

{ϑ[[η]]J − [[q]] · n} da +

∫
∂A(t)

ϑηxV mig
∂A ds. (6.8)

A strictly analogous argument for the entropy imbalance (6.5) leads to the inequality

d

dt

∫
R+(t)

�η dv − H (R+(t))

︸ ︷︷ ︸
(I)

+
d

dt

∫
R−(t)

�η dv − H (R−(t))

︸ ︷︷ ︸
(II)

+
d

dt

∫
A(t)

ηx da −
∫

A(t)

ϑ[[η]]J − [[q]] · n
ϑ

−
∫

∂A(t)

ηxV mig
∂A ds � 0. (6.9)

Using the divergence theorem and the transport identity (3.4), the terms (I) and (II)
lead to the inequalities ∫

R±(t)

{
�η̇ + div

q
ϑ

}
dv � 0 (6.10)

(cf. (2.10b)). Given any migrating subsurface A(t), we may choose the migrating
control volumes R±(t) to be δ-pillboxes R±

δ (t) about A(t) (cf. (5.10)); for this choice,
the terms (6.10) tend to zero as δ → 0 leaving the interfacial entropy imbalance

d

dt

∫
A(t)

ηx da �

∫
A(t)

ϑ[[η]]J − [[q]] · n
ϑ

+

∫
∂A(t)

ηxV mig
∂A ds. (6.11)
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Step 2. Interfacial Eshelby relation. Pointwise localization

To localize the interfacial laws (6.8) and (6.11) it is necessary, in some sense, to
take the time derivatives (d/dt)

∫
A εx da and (d/dt)

∫
A ηx da inside the integrals, an

operation facilitated by the following result:

Superficial Transport Theorem. For γ (x, t) a superficial scalar field and
◦
γ its

migrationally normal time derivative following S as defined in (4.31),

d

dt

∫
A

γ da =

∫
A

{ ◦
γ −γ (KV − divSutan)} da +

∫
∂A

γV mig
∂A ds. (6.12)

(Cf. Cermelli et al. (2005), who derive (6.12) based on a transport theorem of Gurtin
et al. (1989).)

The interfacial energy balance (6.8) with w(A) by (5.30) and (d/dt)
∫

A εx da given
by (6.12) with γ = εx has the form∫

A(t)

{◦
ε x − εx (KV − divSutan)} da

= −
∫

A(t)

{ϕ (KV − divSutan) + �tan :� − c · gradSV mig + FJ } da,

+

∫
A(t)

{ϑ[[η]]J − [[q]] · n} da +

∫
∂A(t)

{ϕ − εx + ϑηx} V mig
∂A ds. (6.13)

Consider the underlined term, which is the sole term involving an integral over ∂A.
Since the migrating subsurface A(t) is arbitrary, we may, at any given time, vary
V∂A and (hence) V

mig
∂A = V∂A − utan· ν∂A arbitrarily without changing the remaining

fields involved in (6.13). Thus for (6.13) to be valid for all choices of the migrating
subsurface A(t), we must have

ϕ = εx − ϑηx = ψx, (6.14)

and (5.25) takes the form of an interfacial Eshelby relation

�tan = ψx� − �. (6.15)

The chief difference between (6.15) and its bulk counterpart (3.16) is the absence of
a kinetic-energy term in (6.15), as brought about by our neglect of interfacial mass.

Next, if we use (6.14) to rewrite (6.13) as∫
A(t)

{◦
ε x − ϑηx(KV − divSutan)} da

= −
∫

A(t)

{[[q]] · n + �tan :� − c · gradSV mig − (ϑ[[η]] − F )J } da,

then, since A is arbitrary, we are led to the local form of the energy balance:

◦
ε x = ϑηx(KV − divSutan) − [[q]] · n + ϑ[[η]]J − �tan :� + c · gradSV mig − FJ. (6.16)

Similarly, by (6.11) and (6.12) with γ = ηx , we have the local form of the entropy
imbalance:

ϑ
◦
η x � ϑηx(KV − divSutan) − [[q]] · n + ϑ[[η]]J. (6.17)

Let

f ∗ def
= 〈〈υ〉〉−1

F (6.18)
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so that, by (5.28) and (5.31),

FJ = f ∗V mig, f ∗ = f − [[υ]]

〈〈υ〉〉{n · 〈〈C〉〉n − J 〈〈u〉〉 · n}. (6.19a, b)

Then, subtracting (6.17) from (6.16) and using (6.2), we arrive at the interfacial
dissipation inequality

◦
ψ x + ηx ◦

ϑ +�tan :� − c · gradSV mig + f ∗V mig � 0. (6.20)

This inequality is basic to our discussion of constitutive equations. As we shall see,
the field f ∗ represents the dissipative part of the normal internal force f .

Remark (i). The standard surface stress � does not appear in the interfacial
dissipation inequality (6.20); for that reason, we consider � to be constitutively
indeterminate. On the other hand, the term �tan :� in (6.20) would imply the need
for a constitutive relation for �tan, which, with the interfacial Eshelby relation in the
form � = ψx� − �tan would yield an auxiliary relation for � (cf. (9.1)).

Remark (ii). Similarly, by (6.19), � f x – the tangential part of the internal
configurational force f x for the interface – is not restricted by (6.20). We therefore
consider � f x to be constitutively indeterminate and hence adjustable to ensure
satisfaction of the tangential part of the configurational force balance (5.16). The role
of � f x in the theory is analogous to that of the bulk pressure in an incompressible
fluid.

Remark (iii). Taking advantage of the bulk and interfacial Eshelby relations (3.16)
and (6.15), we may rewrite the energy balance (6.4) for a migrating control volume
R(t) containing a portion A(t) of the interface S(t) in a form,

d

dt

∫
R(t)

�
{
ε + 1

2
|u|2

}
dv −

∫
∂R(t)

{
ε + 1

2
|u|2

}
J∂R da +

d

dt

∫
A(t)

εx da −
∫

∂A(t)

εxV mig
∂A ds

=

∫
∂R(t)

Tm · u da +

∫
∂A(t)

�ν∂A · utan ds −
∫

∂R(t)

q · m da, (6.21)

involving only standard forces. Additionally, the entropy imbalance (6.5) can be
rewritten as

d

dt

∫
R(t)

�η dv −
∫

∂R(t)

ηJ∂R da +
d

dt

∫
A(t)

ηx da −
∫

∂A(t)

ηxV mig
∂A ds � −

∫
∂R(t)

q
ϑ

· m da.

(6.22)
These versions of the first and second laws simply generalize (3.9) to account for
flows of energy and entropy across ∂A as well as the power expended on ∂A by the
standard interfacial traction.

7. Standard and configurational momentum balances revisited
7.1. Standard momentum balance

Using the interfacial Eshelby relation (6.15) and (4.7),

divS� = ψxKn + gradSψx − divS�tan,

and we may rewrite the standard momentum balance (5.11a) in the form

ψxKn + gradSψx − divS�tan + [[T]]n = J 2[[υ]]n. (7.1)
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7.2. Normal configurational momentum balance

Combining (6.19b) and the normal configurational momentum balance in the form
(5.20) and making use of the identity (4.13), we find that

〈〈υ〉〉divSc+〈〈υ〉〉�tan :�+〈〈υ〉〉f ∗+[[υ]]n·〈〈Cn〉〉+〈〈υ〉〉n·[[C]]n=J {[[υ]]〈〈u〉〉·n+〈〈υ〉〉[[u]]·n},
or, equivalently, by (4.10), that

〈〈υ〉〉divSc + 〈〈υ〉〉�tan :� + 〈〈υ〉〉f ∗ + [[υ(Cn − uJ )]] · n = 0.

Thus, appealing to the bulk Eshelby relation (3.16) and making use of the identity

[[ 1
2
|u|2 + (V − u · n)u · n]] = [[ 1

2
(u · n)2 + (V − u · n)u · n]]

= [[V u · n − 1
2
(u · n)2]]

= − 1
2
[[(V − u · n)2]]

= − 1
2
J 2[[υ2]],

we find that

〈〈υ〉〉(divSc + �tan :� + f ∗) + [[ψ]] − n · [[υT]]n + 1
2
J 2[[υ2]] = 0. (7.2)

Reversing the foregoing steps, we see that (7.2) is equivalent to the normal
configurational force balance in the form (5.20). The relation (7.2) represents the
normal configurational force balance, expressed per unit mass.

7.3. Normal combined momentum balance

The interfacial Eshelby relation couples the standard and configurational stresses �
and �, a coupling that allows us to obtain a useful combination of the standard and
configurational momentum balances. To begin with, using (5.13) to eliminate the term
J 2[[υ]] from (5.20) yields a relation,

divSc + (� + �tan):� + f + n · [[T + C]]n = 0,

which, when combined with the bulk and interfacial Eshelby relations (3.16) and
(6.15) and the identity �:� = K , has the form

divSc + ψxK + f + [[�(ψ − 1
2
|u|2)]] = 0. (7.3)

Thus, appealing to (6.19b), the bulk Eshelby relation (3.16), and (4.13) and using
(4.10) and (4.15), we see that

f + [[�(ψ − 1
2
|u|2)]] = f ∗ +

[[υ]]

〈〈υ〉〉{n · 〈〈C〉〉n − J 〈〈u〉〉 · n} + [[�(ψ − 1
2
|u|2)]]

= f ∗ +
1

〈〈υ〉〉{[[ψ − 1
2
|u|2]] + 1

2
[[(u · n)2]]} − [[υ]]

〈〈υ〉〉 n · 〈〈T〉〉n,

= f ∗ + 〈〈υ〉〉−1
[[ψ]] − [[υ]]

〈〈υ〉〉 n · 〈〈T〉〉n, (7.4)

and we are led to the normal combined momentum balance

divSc + ψxK + f ∗ + 〈〈υ〉〉−1
[[ψ]] − ζ n · 〈〈T〉〉n = 0, (7.5)

with

ζ
def
= − [[�]]

〈〈�〉〉 =
[[υ]]

〈〈υ〉〉 (7.6)

a dimensionless measure of the density jump across the interface.
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Granted (7.1), (7.5) implies (5.20) (with C and � as determined by (3.16) and (6.15)).

7.4. Complete set of momentum balances

A complete set of momentum balances for the interface consists of:
(i) the standard momentum balance in the form (7.1); and
(ii) either the normal configurational momentum balance in the form (7.2) or the

normal combined balance (7.5).

8. Interfacial constitutive relations
Consistent with our treatment of the bulk phases, we suppose that the free energy

and entropy of the interface are determined by state relations

ψx = ψ̂x(ϑ), ηx = −dψ̂x(ϑ)

dϑ
. (8.1)

Granted this, the interfacial dissipation inequality (6.20) reduces to

D def
= −�tan :� + c · gradSV mig − f ∗V mig � 0, (8.2)

with D the interfacial dissipation, per unit area; we refer to (8.2) as the dissipation
inequality.

Guided by the dissipation inequality, we posit isotropic constitutive equations giving
�tan, c and f ∗ as functions of ϑ , and

(�, V mig, gradSV mig). (8.3)

Assuming, for convenience, that these relations are linear and uncoupled in the
arguments (8.3), we are led to a kinetic relation

f ∗ = −κ(ϑ)V mig, (8.4)

with modulus κ(ϑ), and interfacial flow relations

�tan = −2α(ϑ)� − λ(ϑ)(tr�)�, c = β(ϑ)gradSV mig, (8.5a, b)

with moduli α(ϑ), λ(ϑ) and β(ϑ). Here:
(i) α(ϑ) and λ(ϑ) represent (interfacial) fluid viscosities; α(ϑ), the shear viscosity, is

associated with shearing of the interface, while λ(ϑ) + α(ϑ), the dilatational viscosity,
is associated with changes in the local area of the interface;

(ii) κ(ϑ) and β(ϑ), which represent migrational viscosities, describe dissipative
effects in the exchange of atoms between phases.

The constitutive relations (8.3)–(8.5) and the identities (4.3) and (4.19) render the
dissipation (8.2) of the form

D = 2α(ϑ)|�0|2 +
{
λ(ϑ) + α(ϑ)

}
(tr�)2 + β(ϑ)|gradSV mig|2 + κ(ϑ)|V mig|2, (8.6)

with

�0 = � − 1
2
(tr�)�

the deviatoric stretch rate. Thus, since the tensor fields tr� and �0 may be specified
independently, the dissipation inequality (8.2) is satisfied if and only if the moduli
satisfy

α(ϑ) � 0, λ(ϑ) + α(ϑ) � 0, κ(ϑ) � 0, β(ϑ) � 0.
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In particular, the interface is inviscid (and hence dissipationless) if and only if

α(ϑ) = λ(ϑ) = κ(ϑ) = β(ϑ) = 0, (8.7)

in which case both the configurational stress � and the dissipative part f ∗ of the
normal internal force f vanish. Thus, in particular, interfacial configurational stress
is not present at an inviscid interface.

Remark. The most general linear, isotropic constitutive equations consist of coupled
relations

tr�tan = −2
{
λ(ϑ) + α(ϑ)

}
tr� − ζ̄ (ϑ)V mig,

f ∗ = −ζ (ϑ)tr� − κ(ϑ)V mig,

together with uncoupled relations (�tan)0 = −α(ϑ)�0 and c = β(ϑ)gradSV mig , where
(�tan)0 is the deviatoric part of �tan. Here, ζ̄ (ϑ) and ζ (ϑ) are constitutive moduli that
couple the relations for tr�tan and f ∗.

9. Consequences of the interfacial constitutive relations
9.1. Constitutive relation for the standard interfacial stress

An interesting and important consequence of the interfacial flow relation (8.5a)
supplemented by the interfacial Eshelby relation (6.15) is an auxiliary constitutive
relation for the standard interfacial stress:

� = ψ̂x(ϑ)� + 2α(ϑ)� + λ(ϑ)(tr�)�. (9.1)

Remark (i). By (9.1), the surface tension

σ
def
= 1

2
tr� = ψ̂x(ϑ) +

{
λ(ϑ) + α(ϑ)

}
tr�

is a sum of energetic and viscous terms.

Remark (ii). The superficial stretch-rate � may be written in the alternative form

� = 1
2

{
�gradSutan + (gradSutan)

��
}

− 〈〈u · n〉〉�.

In view of (9.1), if the interface S is material – so that, necessarily, u is continuous
across S – then (9.1) with ψ̂x ≡ 0 reduces to an expression due to Scriven (1960).

9.2. Interfacial energy balance

As with the bulk phases, the relation ψx = εx − ϑηx and the state relations (8.1) yield
an auxiliary state relation εx = ε̂x(ϑ), with the consequence that

dε̂x(ϑ)

dϑ
= −ϑ

d2ψ̂x(ϑ)

dϑ2
= ϑ

dη̂x(ϑ)

dϑ
.

Thus, bearing in mind (6.14), the energy balance (6.16) becomes

[[q]] · n − ϑ[[η]]J = −ϑ{ ◦
η x − ηx(KV − divSutan)} + D, (9.2)

with D the dissipation (8.6).

9.3. Standard momentum balance

The standard momentum balance in the form (7.1) and the constitutive relations (8.1)
and (8.5a) for ψx and � yields the balance

[[T]]n − J 2[[υ]]n = −ψ̂x(ϑ)Kn − gradSψ̂x(ϑ) − divS{2α(ϑ)� + λ(ϑ)(tr�)�}. (9.3)
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Remark. By (4.9), the normal part of the balance (9.3), namely

n · [[T]]n − J 2[[υ]] = −ψ̂x(ϑ)K − 2α(ϑ)�:� − λ(ϑ)(tr�)K,

represents a generalization of the classical Young–Laplace equation (Young 1805;
Laplace 1806) to account for the inertia of the bulk phases and interfacial viscosity.
Note the presence of the full curvature tensor �.

9.4. Normal configurational momentum balance

The normal configurational momentum balance, expressed per unit mass as in (7.2),
augmented by the constitutive relations (8.4) and (8.5), yields the balance

[[ψ]] − n · [[υT]]n + 1
2
J 2[[υ2]]

= 〈〈υ〉〉{κ(ϑ)V mig − divS(β(ϑ)gradSV mig) + 2α(ϑ)�:� + λ(ϑ)(tr�)K}. (9.4)

The balance (9.4) depends on the bulk flow via the migrational velocity V mig as
defined in (4.14).

Remark (i). When inertial effects along with the migrational viscosity β and the
interfacial fluid viscosities α and λ are negligible, and when n · [[υT]]n = 0, (9.4)
becomes

〈〈υ〉〉κ(ϑ)V mig = [[ψ]],

which has the form of an evolution equation due to Frank (1958) – the differences
being in the dependence of κ on the temperature field and a velocity measured relative
to the average fluid velocity at the interface.

Remark (ii). An important consequence of (9.4) is that, if inertial effects are
negligible and the interface is inviscid in the sense of (8.7), then

[[ψ]] = n · [[υT]]n.

When the bulk stress is a pressure, so that T = −p1, this equation reduces to the
classical condition [[ψ + pυ]] = 0 underlying the Maxwell (1875) equal-area rule for
the equilibrium of two fluid phases. In this sense, the condition [[ψ]] = n · [[υT]]n can
be viewed as a generalization of the equal area rule to account for the viscosities of
the bulk phases. Moreover, the general normal configurational balance, (9.4), extends
that generalization to account for the migrational and fluid viscosities of the interface.

Remark (iii). When the migrational viscosity β and the interfacial viscosities α and
λ are negligible, we may use the identity J 2[[υ2]] = [[(V − u · n)2]] to write (9.4) as

〈〈υ〉〉κ(ϑ)V mig = [[ψ + 1
2
(V − u · n)2 − υn · Tn]],

which has the form of an equation proposed by Fried (1995).

9.5. Normal combined momentum balance

When supplemented by the constitutive relation for ψx and the kinetic relation (8.4),
the normal combined momentum balance (7.5) takes the form

[[ψ]] − [[υ]]n · 〈〈T〉〉n = −〈〈υ〉〉ψ̂x(ϑ)K + 〈〈υ〉〉{κ(ϑ)V mig − divS

(
β(ϑ)gradSV mig

)
}. (9.5)

Note that this equation is independent of the interfacial fluid viscosities α and λ.

Remark. When the migrational viscosity β is negligible and the two phases have
the same density (ζ = 0), (9.5) becomes

ψ̂x(ϑ)K = κ(ϑ)V mig − 〈〈υ〉〉−1
[[ψ]],
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an equation that is independent of bulk stress and reminiscent of the classical
curvature-flow equation (Mullins 1956) driven by a difference in bulk free-energies
(Angenent & Gurtin 1989).

10. Summary of general interface conditions
Apart from appropriate kinematical equations, the basic equations for the interface

therefore consist of the balances (6.16), (7.1) and (7.2), for energy, standard momentum
and normal configurational momentum augmented by the interfacial Eshelby relation
(6.15) and the interfacial constitutive relations (8.1), (8.4) and (8.5). These equations
combine as shown in § 9 to form basic interface conditions consisting of the energy
balance

[[q]] · n − ϑ[[η]]J = −ϑ{ ◦
η x − ηx(KV − divSutan)} + D, (10.1)

with ηx = −dψx(ϑ)/dϑ and D given by (8.6) and where
◦
ηx is related to the (standard)

normal time derivative
�

ηx following S through the relation
◦
ηx =

�

ηx + utan · gradSηx

(as noted in § 4.7), the standard momentum balance

[[T]]n − J 2[[υ]]n = −ψ̂x(ϑ)Kn − gradSψ̂x(ϑ) − divS

{
2α(ϑ)� + λ(ϑ)(tr�)�

}
, (10.2)

and either the normal configurational momentum balance

[[ψ]] − n · [[υT]]n + 1
2
J 2[[υ2]]

= 〈〈υ〉〉{κ(ϑ)V mig − divS(β(ϑ)gradSV mig) + 2α(ϑ)�:� + λ(ϑ)(tr�)K} (10.3)

or the normal combined force balance

[[ψ]] − [[υ]]n · 〈〈T〉〉n = −〈〈υ〉〉ψ̂x(ϑ)K + 〈〈υ〉〉{κ(ϑ)V mig − divS(β(ϑ)gradSV mig)}. (10.4)

11. Existence of an equilibrium temperature
11.1. Latent heat. Free-energy theorem

If the interface is flat and at rest, and the bulk fluid is unstressed (T = 0), then the
normal combined balance implies that

[[ψ]] = 0, (11.1)

a condition that represents a thermal equilibrium. Since the bulk free-energy depends
on temperature, (11.1) is, in essence, a condition on the interfacial temperature. With
this as background, we now add the following constitutive assumption:

(C1) there is a unique (constant) equilibrium temperature ϑ0 such that

ψ+(ϑ0) = ψ−(ϑ0), ε+(ϑ0) �= ε−(ϑ0). (11.2)

In what follows a subscripted zero denotes evaluation at ϑ0. The scalar constant
� = [[ε0]] represents the latent heat at the temperature ϑ0; by (11.2),

� = ϑ0[[η0]], [[η0]] �= 0. (11.3)

The next theorem is central to what follows. In stating this result, it is useful to
define a dimensionless temperature θ by

θ =
ϑ − ϑ0

ϑ0

. (11.4)



Sharp-interface conditions for phase transformations 355

Free-Energy Theorem

(I) If the bulk specific heat is independent of phase, then the state fields obey the
simple jump relations

[[ψ]] = −�θ, [[η]] ≡ �

ϑ0

, [[ε]] ≡ �, (11.5)

and conversely.
(II) The jumps in free energy and entropy obey the following estimates:

[[ψ]] = −�θ + O(θ2), [[η]] =
�

ϑ0

+ O(θ). (11.6a, b)

To verify (I), assume first that

dε+

dϑ
=

dε−

dϑ
, (11.7)

so that [[ε]] ≡ [[ε0]]. By (2.13), the jumps [[ψ]], [[η]] and [[ε]], considered as functions
of ϑ , obey the thermodynamic relations

[[ψ]] = [[ε]] − ϑ[[η]], [[η]] = −d[[ψ]]

dϑ
, (11.8)

and these relations, the condition [[ε]] ≡ [[ε0]], and (11.4) yield (11.5). Conversely,
(11.5) implies that [[ε]] ≡ [[ε0]] and hence that (11.7) is satisfied. Thus (I) is valid.

Consider (II). Expanding G(ϑ) = ψ+(ϑ) − ψ−(ϑ) about ϑ = ϑ0, we find that, by
(11.8),

G(ϑ) = −[[η0]](ϑ − ϑ0) + O(θ2),
dG(ϑ)

dϑ
= O(1);

thus, using (11.3), we arrive at the estimates (11.6). This completes the proof of the
free-energy theorem.

11.2. Estimates for the temperature

A direct consequence of (10.3) and (10.4) and the free-energy theorem are the following
estimates for the temperature:

�θ = −n · [[υT]]n + 1
2
J 2[[υ2]] − 〈〈υ〉〉{κ(ϑ)V mig − divS(β(ϑ)gradSV mig)

+ 2α(ϑ)�:� + λ(ϑ)(tr�)K} + O(θ2), (11.9a)

�θ = −[[υ]]n · 〈〈T〉〉n + 〈〈υ〉〉ψ̂x(ϑ)K − 〈〈υ〉〉
× {κ(ϑ)V mig − divS(β(ϑ)gradSV mig)} + O(θ2). (11.9b)

Equations (11.9) represent respective estimates for the normal configurational and
normal combined momentum balances. If the interface is inviscid in the sense of (8.7),
then (11.9) become

�θ = −n · [[υT]]n + 1
2
J 2[[υ2]] + O(θ2), (11.10a)

�θ = −[[υ]]n · 〈〈T〉〉n + 〈〈υ〉〉ψ̂x(ϑ)K + O(θ2). (11.10b)

Finally, if the bulk specific heat is independent of phase, then the term O(θ2) may be
dropped from (11.9) and (11.10).

Remark (i). Granted the standard momentum balance (10.2), the two estimates in
(11.9) are equivalent, as are the two estimates in (11.10).

Remark (ii). When [[υ]] = 0, (11.10b) yields the classical Gibbs–Thomson
equation, (1.3).
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12. Conditions at an interface whose free energy and viscosities are constant
The general equations (10.1)–(10.4) expressing energy balance, standard momentum

balance, normal configurational momentum balance, and normal combined
momentum balance on the interface are complicated. We now consider a simplification
afforded by (C1) and the following additional constitutive assumptions:

(C2) the interfacial fluid and migrational viscosities α, λ, κ , and β are constant.
(C3) the interfacial free energy ψx is constant, so that ηx = 0 and εx = ψx .
Assumption (C3) reduces the energy balance (10.1) to

[[q]] · n − ϑ[[η]]J = D. (12.1)

By (8.6), the dissipation D is quadratic in the interfacial fields �, V mig and gradSV mig ,
and it would seem reasonable to limit our discussion to situations in which this
dissipation is small compared to the remaining terms in (12.1), which involve only
bulk fields. Therefore,

(C4) we neglect the term D in the energy balance (12.1).
Granted (C2)–(C4) and using (7.6), the interface conditions discussed in § 10 take

the form

[[q]] · n = ϑ[[η]]J, (12.2a)

[[T]]n − J 2[[υ]]n = −ψxKn − divS{2α� + λ(tr�)�}, (12.2b)

and either

[[ψ]] − n · [[υT]]n + 1
2
J 2[[υ2]] = 〈〈υ〉〉{κV mig − βSV mig + 2α�:� + λ(tr�)K} (12.3)

or

[[ψ]] − [[υ]]n · 〈〈T〉〉n = −〈〈υ〉〉ψxK + 〈〈υ〉〉{κ V mig − βSV mig}. (12.4)

Here S, the Laplace–Beltrami operator, is defined on any superficial field ϕ by

Sϕ = divS(gradSϕ). (12.5)

The next three subsections greatly simplify these interface conditions.

12.1. Inviscid interface

The equations are further simplified if we replace (C4) by the constitutive assumption
(C4)∗ κ = α = λ = β = 0 (so that the interface is inviscid).

(By (8.6), (C4)∗ is stronger than (C4).) Then the interface conditions (12.2)–(12.4)
become

[[q]] · n = ϑ[[η]]J, [[T]]n − J 2[[υ]]n = −ψxKn, (12.6a, b)

and either

[[ψ]] − n · [[υT]]n + 1
2
J 2[[υ2]] = 0 (12.7)

or

[[ψ]] − [[υ]]n · 〈〈T〉〉n = −〈〈υ〉〉ψxK. (12.8)

12.2. Bulk specific heats independent of phase

If, in addition to (C1)–(C4), we assume that the bulk specific heats are independent
of phase, then, by (11.5), the balance (12.6a) for energy becomes

[[q]] · n =
�ϑ

ϑ0

J, (12.9)
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the standard force balance remains (12.6b), and the normal configurational and
normal combined balances – which are equivalent, granted (12.6b) – may be written
in the form (11.9) with the arguments (ϑ) removed and with the O(θ2) terms omitted.

If we further assume that the interface is inviscid, then the interface conditions are

[[q]] · n =
�ϑ

ϑ0

J, [[T]]n − J 2[[υ]]n = −ψxKn, (12.10a, b)

and either

�θ = −n · [[υT]]n + 1
2
J 2[[υ2]] (12.11)

or

�θ = −[[υ]]n · 〈〈T〉〉n + 〈〈υ〉〉ψxK. (12.12)

Remark. The hypotheses (C1)–(C3) and (C4)∗ represent additional constitutive
assumptions consistent with the constitutive frameworks set out in § § 2.4 and 9.2. For
that reason the simplified theory based on (C1)–(C3) and (C4)∗ and resulting in the
interface conditions (12.10)–(12.12) is consistent with the standard and configurational
force balances and the first two laws as discussed in § § 5 and 6. In this sense, the
interface conditions (12.10)–(12.12) are exact. (Of course, to be exact when coupled
to the bulk equations, the specific heats of the two phases must coincide.)

12.3. Temperature close to its equilibrium value

If, in addition to (C1)–(C4), we assume that the temperature is close to its equilibrium
value and, consequently, consider: (i) the energy balance (12.2a) with ϑ replaced
by ϑ0 in conjunction with (11.6b) neglecting the O(θ) term; and (ii) the normal
configurational and normal combined momentum balances in the form (11.9),
neglecting the O(θ2) term. The resulting interface conditions then consist of the
balances

[[q]] · n = �J, (12.13a)

[[T]]n − J 2[[υ]]n = −ψxKn − divS{2α� + λ(tr�)�}, (12.13b)

and either

�θ = −n · [[υT]]n + 1
2
J 2[[υ2]] − 〈〈υ〉〉{κV mig − βSV mig)+2α�:�+ λ(tr�)K} (12.14)

or

�θ = −[[υ]]n · 〈〈T〉〉n + 〈〈υ〉〉ψxK − 〈〈υ〉〉{κV mig − βSV mig}. (12.15)

The approximate equations (12.13) and (12.14) reduce further when the interface is
inviscid to give

[[q]] · n = �J, [[T]]n − J 2[[υ]]n = −ψxKn, (12.16a, b)

and either

�θ = −n · [[υT]]n + 1
2
J 2[[υ2]] (12.17)

or

�θ = 〈〈υ〉〉ψxK − [[υ]]n · 〈〈T〉〉n. (12.18)

Remark. Although the assumptions underlying their derivations differ, the sole
difference between the interface conditions (12.10)–(12.12) and (12.16)–(12.18) is that
the latent heat � in (12.16) is replaced by �ϑ/ϑ0 in (12.10a).
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13. Application: radial symmetry
We assume that the interface is a spherical surface with time-dependent radius

R. The interior of the sphere is the (−) phase; the exterior is the (+) phase. For
simplicity, we suppose that the viscosities µ± and conductivities k± of the bulk phases
are constant (i.e. independent of ϑ). We also assume that the specific heats of the
bulk phases are constant, so that

dε±(ϑ)

dϑ
= c±. (13.1)

As for the interface, we restrict attention to circumstances in which the temperature
is close to its equilibrium value; cf. § 12.3.

13.1. Bulk equations

The basic unknown fields in the bulk phases are the velocity u, the pressure p, and
the temperature ϑ . Writing r = |x| and e = x/r , we assume that

u(x, t) = U (r, t)e, p(x, t) = p(r, t), ϑ(x, t) = ϑ(r, t). (13.2a–c)

In view of (13.2a, computing the gradient of u yields

L = D =
∂U

∂r
e ⊗ e +

U

r
(1 − e ⊗ e), (13.3)

and the constraint divu = trD = 0 of incompressibility requires that ∂U/∂r +2U/r =
0; cf. (2.2). Integrating this equation, we find that

U (r, t) ∝ 1

r2
, (13.4)

with the coefficient of proportionality being independent of r . For the velocity to
be bounded at x = 0, the relevant coefficient of proportionality entering (13.4) must
vanish in the (−) phase. It therefore follows that

U (r, t) =

⎧⎨
⎩

0, r < R(t),

Q(t)

r2
, r > R(t),

(13.5)

with Q being an as yet unknown function of time.
By (13.2a) and (13.5), the acceleration has the form

u̇(x, t) =

⎧⎨
⎩

0, 0 < r < R(t),

1

r2

(
dQ(t)

dt
− 2Q2(t)

r3

)
e, R(t) < r < ∞.

(13.6)

Further, by (2.15), (13.3) and (13.5), the extra stress is given by

S(x, t) =

⎧⎨
⎩

0, 0 < r < R(t),

2µ+Q(t)

r3
(1 − 3e ⊗ e). R(t) < r < ∞,

(13.7)

A calculation shows that, for S as given by (13.7), divS = 0 and, bearing in mind
(13.2b), the momentum balance (2.7) yields expressions for ∂p/∂r in both phases and,
on integrating these expressions, we find that

p(r, t) =

⎧⎨
⎩

p−(t), 0 < r < R(t),

p∞(t) +
�+

r

(
dQ(t)

dt
− Q2(t)

2r3

)
, R(t) < r < ∞,

(13.8)
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where p− denotes the uniform pressure in the (−) phase and p∞ denotes the assigned
pressure in the far field.

Turning to the bulk consequences of energy balance, we note from (13.1), (13.2a, c),
and (13.5) that

ε̇(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

c− ∂ϑ(r, t)

∂t
, 0 < r < R(t),

c+

(
∂ϑ(r, t)

∂t
+

Q

r2

∂ϑ(r, t)

∂r

)
, R(t) < r < ∞.

(13.9)

Further, by (13.5) and (13.7),

S(x, t):D(x, t) =

⎧⎨
⎩

0, 0 < r < R(t),

12µ+Q2(t)

r6
, R(t) < r < ∞,

(13.10)

and, since the conductivities of the phases are assumed constant,

q(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

−k− ∂ϑ(r, t)

∂r
e, 0 < r < R(t),

−k+
∂ϑ(r, t)

∂r
e, R(t) < r < ∞.

(13.11)

In view of (13.9)–(13.11), the energy balance (2.10a) yields

c− ∂ϑ

∂t
= k−

(
∂2ϑ

∂r2
+

2

r

∂ϑ

∂r

)
, 0 < r < R,

c+

(
∂ϑ

∂t
+

Q

r2

∂ϑ

∂r

)
=

12µ+Q2

r6
+ k+

(
∂2ϑ

∂r2
+

2

r

∂ϑ

∂r

)
, R < r < ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13.12)

13.2. Interface equations

In addition to the temperature field ϑ , our consideration of the bulk equations leaves
undetermined the functions Q, p− and R of t . A full system of equations for the
determination of ϑ , Q, p− and R arises on considering the interface conditions (4.12),
(4.15), (12.13) and either (12.14) or (12.15). We emphasize that (4.15) is automatically
satisfied when u is as determined by (13.2a) and (13.5).

For a spherical interface with the phases arranged as assumed above,

n = e, V =
dR

dt
, K = −2

r
. (13.13)

In view of (13.5), the mass balance (4.12) specializes to

J = �+

(
dR

dt
− Q

R2

)
= �− dR

dt
, (13.14)

which yields

Q =
[[�]]R2

�+

dR

dt
= − [[υ]]R2

υ−

dR

dt
. (13.15)

Bearing in mind (13.11) and (13.14), the energy balance (12.13a) becomes

−
[[

k
∂ϑ

∂r

]]
=

�

υ−
dR

dt
. (13.16)
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Next, turning to the momentum balance, we note from (13.5), (13.7) and (13.13)–
(13.15), that

−ψxKn =
2ψx

R
e, [[S]]n =

4µ+[[υ]]

υ−R

dR

dt
e, J 2[[υ]]n =

[[υ]]

(υ−)2

(
dR

dt

)2

e, (13.17)

Further, by (13.3) and (13.15),

� = � = �〈〈L〉〉� = 1
2
�L+� =

Q

2R3
� = − [[υ]]

2υ−R

dR

dt
�, (13.18)

so that 2α� + λ(tr�)� = −(α + λ)([[υ]]/υ−R)(dR/dt)� and thus

divS(2α� + λ(tr�)�) =
2(α + λ)[[υ]]

υ−R2

dR

dt
e. (13.19)

In view of (13.17) and (13.19), the momentum balance (2.13b) specializes to

[[p]] =
2[[υ]]

υ−R

(
2µ+ +

α + λ

R

)
dR

dt
− [[υ]]

(υ−)2

(
dR

dt

)2

− 2ψx

R
. (13.20)

Next, since V mig = dR/dt − Q/2R2 = (〈〈υ〉〉/υ−)dR/dt and SV mig = 0, the normal
combined balance (12.15) becomes

�
ϑ − ϑ0

ϑ0

= [[υ]]

(
〈〈p〉〉 − 2µ+[[υ]]

υ−R

dR

dt

)
− 2〈〈υ〉〉ψx

R
− κ〈〈υ〉〉2

υ−

dR

dt
. (13.21)

Summarizing, the basic interface equations for radially symmetric flow – the energy
balance, the momentum balance, and the normal combined balance – take the form

−
[[

k
∂ϑ

∂r

]]
=

�

υ−
dR

dt
, (13.22a)

[[p]] =
4µ+[[υ]]

υ−R

dR

dt
− [[υ]]

(υ−)2

(
dR

dt

)2

+
2(α + λ)[[υ]]

υ−R2

dR

dt
− 2ψx

R
, (13.22b)

�
ϑ − ϑ0

ϑ0

= [[υ]]

(
〈〈p〉〉 − 2µ+[[υ]]

υ−R

dR

dt

)
− 2〈〈υ〉〉ψx

R
− κ〈〈υ〉〉2

υ−

dR

dt
. (13.22c)

13.3. Generalized Gibbs–Thomson relation

Using (13.22b) to compute p− and inserting the result along with (13.8) in (13.22c),
we arrive at the generalized Gibbs–Thomson relation

�
ϑ − ϑ0

ϑ0

= − [[υ]]2

υ+υ−

(
R

d2R

dt2
+

3

2

(
dR

dt

)2)

− 1

υ−

(
[[υ]]2

R

(
4µ+ +

λ + α

R

)
+ κ〈〈υ〉〉2

)
dR

dt
− 2υ−ψx

R
+ [[υ]]p∞. (13.23)

13.4. Free-boundary problem in terms of dimensionless quantities

Assuming that the pressure at infinity p∞ is assigned, the radially summetric problem
reduces to a free-boundary problem for the temperature field ϑ (in each of the bulk
phases) and the radius R of the interface. In particular, this problem consists of bulk
equations which arise on using (13.15) in (13.12) along with the interface condition
(13.22a), the generalized Gibbs–Thomson relation (13.23), and the condition [[ϑ]] = 0.
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Let ϑ∞ denote the temperature in the far field, define a characteristic length scale

r∗ =
2υ−ψxϑ0

�(ϑ0 − ϑ∞)
, (13.24)

and introduce dimensionless variables

θ̄ =
ϑ − ϑ∞

ϑ0 − ϑ∞
, r̄ =

r

r∗
, R̄ =

R

r∗
, t̄ =

k+t

c+r2
∗
. (13.25)

Dropping bars, we then arrive at a dimensionless free-boundary problem consisting
of the bulk equations

∂θ

∂t
= a

(
∂2θ

∂r2
+

2

r

∂θ

∂r

)
(0 < r < R), (13.26a)

∂θ

∂t
− υR2

r2

dR

dt

∂θ

∂r
=

(υ)2SNDR4

r6

(
dR

dt

)2

+
∂2θ

∂r2
+

2

r

∂θ

∂r
(R < r < ∞), (13.26b)

together with the interface equations

θ = θ+ = θ−,

1

S

dR

dt
= −

(
∂θ

∂r

)+

+ k

(
∂θ

∂r

)−

, (13.27a)

θ = 1 +
υP

S
− 1

R
− Nκ

dR

dt

− (υ)2SNν

(
1

R

dR

dt
+

1

4Pr+

(
R

d2R

dt2
+

3

2

(
dR

dt

)2)
+

SNνi

R2

dR

dt

)
,

(13.27b)

with dimensionless parameters defined via

v =
[[υ]]

v−
, a =

c+k−

c−k+
, k =

k−

k+
, Pr+ =

υ+c+µ+

k+
, (13.28a–d)

S =
c+(ϑ0 − ϑ∞)v−

�
, P =

ϑ0c
+(υ−)2p∞

�2
, Nκ =

〈〈υ〉〉2

(υ−)2
κk+

2c+ψx
, (13.28e–g)

Nν =
µ+k+�2

(υ+ψx)2c+ϑ0

, Nνi =
(λ + α)l2

8µ+(υ−)2ψxc+ϑ0

, ND =
3µ+k+�3

(c+)3ϑ2
0 (υ

−)3(ψx)2
. (13.28h–j )

Here, υ represents the density difference between phases, a and k are thermal
property ratios, Pr+ is a Prandtl number, S is a Stefan number, P is a dimensionless
applied pressure, Nκ is a dimensionless kinetic coefficient, Nν and Nνi are
dimensionless parameters associated with bulk viscosity and interface viscosity effects
on the interface temperature, and ND is a parameter associated with bulk viscous
heating.

13.5. Solution approach

The problem (13.26)–(13.27) includes a variety of special cases for which similarity-
type solutions have been obtained. Cases without flow include the classical Stefan
problem with interfacial temperature equal to the melting temperature (Frank 1950),
the Stefan problem with interfacial temperature modified by interfacial curvature
(Krukowski & Turski 1982) and the Stefan problem with interfacial curvature and
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attachment kinetic effects (Sekerka et al. 1988). The effect of advective fluid flow,
driven by density change upon phase transformation, in the melt on the classical
Stefan problem has been examined by Howison (1988). Curvature, kinetics, and
hydrodynamic effects – such as bulk viscous dissipation or interfacial viscosity –
have yet to be treated. Our goal here is to highlight the new hydrodynamic effects
contained in (13.26)–(13.27). To achieve this, we adopt an approach based on a
generalized similarity-type solution.

We assume that

R(t) = 2x0

√
t, (13.29)

with x0 a constant to be determined, and introduce a change of variables of the form

θ(r, t) =

3∑
α=0

Θα(x)

rα
, x =

r

2
√

t
. (13.30a, b)

The various powers of r appearing in the expansion (13.30a) are required to satisfy
the bulk and interfacial equations. Using the change of variables (13.30a, b) in the
bulk equations (13.30), we find that, for each α = 0, 1, 2, 3, Θα must obey

d2Θα

dx2
+ 2

(
1 − α

x
+

x

a

)
dΘα

dx
+

α(α − 1)

x2
Θα = 0, (13.31)

for 0 < x < x0, and

d2Θα

dx2
+ 2

(
1 − α

x
+ x +

x3
0υ

x2

)
dΘα

dx
+

α

x2

(
α − 1 − 2x3

0υ

x

)
Θα

= − 4SND(υ)2x6
0δα2

x4
, (13.32)

for x > x0. Similarly, using (13.30) in (13.27), we find that, for each α = 0, 1, 2, 3,

Θ+

α = Θ−
α , (13.33a)

2x0δα0

S
= −

(
dΘα

dx
− αΘα

x

)+

+ k

(
dΘα

dx
− αΘα

x

)−

(13.33b)

Θα =

(
1 +

Pυ

S

)
δα0 −

(
1 + 2x2

0Nκ

)
δα1

− 2x2
0 (v)2SNν

(
1 +

x2
0

4Pr+

)
δα2 − 2x2

0 (υ)2S2NνNνiδα3, (13.33c)

at x = x0. In (13.32)–(13.33), δαβ denotes the Kronecker delta.
The quantity Θ0 can be determined explicitly and is given by Θ0 = (1 + Pυ/S)

for x < x0 and Θ0(x) = (1 + Pυ/S)F0(x)/F0(x0) for x > x0, with

F0(x) =

∫ ∞

x

exp

(
−y2 +

2x3
0υ

y

)
dy

y2
. (13.34)

The quantity x0 is required to satisfy

2x3
0F0(x0) exp

(
(1 − 2υ)x2

0

)
= S + Pυ. (13.35)

The remaining quantities Θ1, Θ2 and Θ3 were obtained by numerical integration. In
particular, in the (−) phase the ordinary differential equations (13.31) were integrated
numerically starting from the centre of the liquid sphere – with the aid of a series
expansion for x � 1 to start the integration away from the origin – up to the interface
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Dimensional parameters

Density of water† �− = 1/v− 481.6 kgm−3

Density of steam† �+ = 1/v+ 177.4 kgm−3

Dynamic viscosity of water† µ− 5.526 × 10−5 Pa s
Dynamic viscosity of steam† µ+ 2.795 × 10−5 Pa s
Thermal conductivity of water† k− 0.4177 WmK−1

Thermal conductivity of steam† k+ 0.2499 WmK−1

Thermal diffusivity of water† k−/c− 3.276 × 10−8 m2 s−1

Thermal diffusivity of steam† k+/c+ 2.682 × 10−8 m2 s−1

Surface energy† ψx 8.09 × 10−4 Jm−2

Kinetic coefficient‡ κ 105 N s m−3

Latent heat† l 5.524 × 105 J kg−1

Interfacial viscosity λ + α 10−11 – 10−7 N s m−1

Equilibrium temperature (at p = 202.7 bar) ϑ0 640 K

Table 1. Thermophysical properties of the steam–water system at the reference pressure
202.7 bar and the corresponding equilibrium temperature 640 K (Parry 2000†). The critical
temperature and pressure for the steam–water system are 647 K and 221.1 bar and the
critical density is 323 kg m−3. An estimate for a kinetic coefficient for solid–liquid systems
is contained in the expression V = V0Sf T/N̄kBTi (Coriell & Turnbull 1982‡) where V is
the interfacial normal velocity, V0 is the liquid sound speed, Sf is the molar entropy of fusion
at the interfacial temperature Ti , T = Ti − TM where TM is the thermodynamic equilibrium
temperature, N̄ is the Avogadro number and kB is the Boltzmann constant. Therefore, with
T/Ti taken as (ϑ − ϑ0)/ϑ0 an estimate for κ follows from κ = lN̄kB/V0Sf 〈〈υ〉〉. Using

V0 ≈ 1000m s−1, Sf = 15.55 J K−1 mol−1, and 〈〈υ〉〉 = 3.85 × 10−3 m−3 kg−1, we find that

κ = 8 × 104 N s m−3. The estimate for interfacial viscosity is obtained from Scriven & Sternling
(1963). Specifically, they define Nvi = (λ + α)/µd , where d is a fluid-layer thickness and µ is
the fluid viscosity and note that for a fluid layer of thickness 1 mm, Nvi ranges from 10−3

(clean surface) to 10 (surface with insoluble monolayer). Therefore, using µ ≈ 10−5 Pa s we
find that λ + α = Nviµd ranges approximately between 10−11 and 10−7.

x = x0. The linearity of (13.31) allowed a rescaling of the computed value of Θα to
match the correct temperature conditions at x = x0 as determined by the modified
Gibbs–Thomson condition (13.33c). The remaining conditions (13.33a, b) provided
starting conditions for the integration of the the ordinary differential equations (13.32)
in the (+) phase. These equations were integrated from x = x0 to a fixed far-field value
x = xmax. A value of xmax = 6 was used for the calculations. The numerical approach
was verified by comparison to analytical series solutions in the bulk phase and also by
comparison to the results of Sekerka et al. (1988) for the analogous problem without
fluid flow. The effects associated with the new features under investigation in the
present work are illustrated and discussed below.

13.6. Discussion

We have performed numerical calculations using thermophysical properties based
on the water–steam system below the critical point (Wagner 1998; Parry 2000).
The material constants are evaluated at an equilibrium reference state of constant
pressure and temperature; in this section, ϑ0 denotes the equilibrium temperature at
the reference pressure (not at the unstressed state) and p∞ denotes the far-field applied
pressure relative to the reference pressure. The assumed thermophysical properties
are given in table 1, with the corresponding dimensionless parameters in table 2.
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

υ 0 0 1.715 1.715 1.715 1.715
a 1.221 1.221 1.221 1.221 1.221 1.221
k 1.671 1.671 1.671 1.671 1.671 1.671

Nκ 0 1 0 1 1 1
Pr+ n/a n/a n/a n/a 5.875 5.875
Nν n/a n/a 0.0 0.0 13.6 13.6
Nνi n/a n/a 0.0 0 0 10.0
S 0.082 0.082 0.076 0.076 0.076 0.076
x0 0.25 0.25 0.25 0.25 0.25 0.25

Table 2. Dimensionless material parameters used in the numerical calculations. The non-zero
values of the parameters υ , a, k, Pr+ and Nν follow from the dimensional parameters in
table 1. Owing to the broad uncertainty in the appropriate values for parameters Nκ and Nνi ,
we have chosen values for these parameters with the goal of illustrating their qualitative effects.
Note that the values used for Pr+, Nν and Nνi are irrelevant to the solution when υ = 0.
Case 1: parameters showing the reference case with capillarity but no flow or kinetics. Case 2:
parameters showing reference case with with capillarity and kinetics but no flow. Case 3: fluid
flow with capillarity but no kinetics. Case 4: fluid flow with capillarity and kinetics. Case 5:
fluid flow with capillarity, kinetics, and viscosity. Case 6: fluid flow with capillarity, kinetics,
viscosity, and interfacial viscosity.
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Figure 1. Undercooling versus the similarity variable x0 for various density ratios υ . Here
the interface position is given by r = 2x0

√
t . From right to left, the curves correspond to

υ = 0 (dashed curve), υ = 0.5, υ = 1.715, and υ = 5.0. All variables are dimensionless.

Figure 1 illustrates the dependence of x0 on the undercooling for different values
of the dimensionless difference υ of the specific volume. Note that

(1 + v)(S + Pυ) =
c+υ+ϑ0

�

(
1 +

p∞[[υ]]

�
− ϑ∞

ϑ0

)
(13.36)

represents the dimensionless undercooling based on the properties of the exterior
phase. Here ϑ0(1 + p∞[[υ]]/�) is the equilibrium temperature of the interface, which
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Figure 2. The temperature profiles θ (r, t) versus the radius r at various times for Cases 1
(solid curves) and 2 (dashed curves) of table 2. From bottom to top, the various stages for
each case have R = 0.5, 1, 2, 3 and 5, which correspond to t = 1, 4, 16, 36 and 100, so that
R(t) = 0.5

√
t . All variables are dimensionless.

includes the shift in temperature with pressure due to the Clausius–Clapeyron effect
(Callen 1960). Positive υ corresponds to a less dense (+) phase, which is the usual
situation for a liquid surrounded by its vapour. For a given undercooling, there is a
significant reduction in interfacial motion for large positive values of υ . This trend
is similar to that obtained for the effect of a density-change flow on the growth of a
dendrite tip (McFadden & Coriell 1986). For dimensionless undercoolings greater than
unity there are presumably no spherically symmetric solutions that grow diffusively
(that is, for which R(t) ∼

√
t) (Frank 1950).

As discussed by Sekerka et al. (1988), the solution describing diffusive growth with
capillarity and kinetics is driven by a significant initial undercooling in the sample,
which distinguishes this case from the classical theory of nucleation and growth in
an isothermal system. This initial undercooling is evident in figure 2, where thermal
profiles for growth with capillarity effects without kinetics (solid curves, Case 1 in
table 2), and both capillarity and kinetic effects (dashed curves, Case 2 in table 2)
are shown for x0 = 0.25; cf. figures 2 and 3 in Sekerka et al. (1988). For small
times, the effect of capillarity is to lower the temperature of the spherical interface
relative to that of a planar interface (θ = 1); for long times, the radius becomes
large enough so that the effects of capillarity become insignificant. For Nκ = 0,
interfacial attachment kinetics are infinitely rapid; with finite attachment kinetics
(Nκ > 0), interfacial motion is more sluggish and a finite deviation in the interfacial
temperature from its equilibrium value is necessary to drive the interfacial motion.
Thus, the corresponding temperatures for the case Nκ = 1 are lower than those for
Nκ = 0.

In figure 3, we illustrate the effects of an applied pressure on the system by plotting
temperature profiles at a fixed time. Here, with a finite change in density (υ > 0), the
equilibrium interfacial temperature is raised by an applied overpressure relative to the
reference pressure and – due to the Clausius–Clapeyron effect – lowered by an applied
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Figure 3. The temperature profiles θ (r, t) versus the radius r for various applied pressures P
at time t = 16. From top to bottom, the solid curves correspond to Case 3 but with the pressure
set to P = 0.01 (S = 0.059), P = 0 (S = 0.076), and P = −0.01 (S = 0.094), respectively. For
comparison, Case 1 with P = 0 is also included as the dashed curve, which lies very close to
the middle solid curve for P = 0. All variables are dimensionless.

under pressure. For the material properties corresponding to steam given in table 1,
the effect of the bulk density change flow on the temperature profiles is small, as
illustrated by comparison with the dashed curve in figure 3 corresponding to υ = 0
(Case 1). For this type of flow, the effects of bulk viscous heating are also very small
in this case, with SND(υ)2x6

0 = 10−4. The heating tends to raise the temperature in
the system slightly by amounts of this magnitude, and since the results are smaller
than graphical precision, we have neglected the effects of bulk viscous heating in our
numerical calculations. This effect is usually insignificant under normal conditions
and is often neglected through the Boussinesq approximation (Chandrasekhar 1961)
in studies of thermal transport.

The effects of flow, bulk viscosity and interfacial viscosity on the temperature profiles
near the interface at a given time are shown in figure 4. These curves all correspond to
cases with finite attachment kinetics (Nκ = 1) and interfacial capillarity. For υ > 0,
the flow driven by the density change is toward the interface and tends to steepen
the temperature gradient in the exterior phase at the interface, as can be seen by
comparing the top two curves in figure 4. With both attachment kinetics and the effect
of bulk viscosity on the interfacial temperature taken into account, the temperatures
are lowered further. Adding the effects of interfacial viscosity causes a comparable
shift in the temperature profiles for this system. The lowering of the interfacial
temperatures is consistent with a dissipation argument: when additional dissipation
is present at the interface, less free energy is available to drive the interfacial motion,
and so the driving temperature difference ϑ − ϑ0 must increase to compensate for the
dissipative energy loss.
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Figure 4. The temperature profiles θ (r, t) versus the radius r near the interface at time t = 16
for various cases in table 2. From top to bottom, the curves correspond to Cases 2 (dashed
curve), 4, 5 and 6. All variables are dimensionless.

14. Summary
We have developed a complete set of boundary conditions that apply at an interface

between two fluid phases undergoing transformation. Our focus has been on those
interfacial conditions whose equilibrium forms are well known, but whose extensions
to settings with even simple fluid flows have not been firmly established. We have
employed an approach based on a consideration of configurational forces in the
context of non-equilibrium thermodynamics. This approach, which is well developed
in the framework of solid mechanics, is extended here for fluids with both bulk
viscosity and interfacial viscosity. Our results illuminate a number of physical effects
that may play key roles for transport during phase transformation and interfacial
flows.

We have illustrated our results by applying the theory to the condensation of a
liquid drop growing into its vapour phase. For this problem, our model admits a
radially symmetric solution with the liquid–vapour interface position growing with
the square root of time. Since the densities of the liquid and vapour phases are
unequal, conservation of mass at the moving interface generates a radial flow in
the vapour phase and the thermal transport is altered by that flow. Whereas the
velocity field can be obtained analytically, the temperature fields in both phases can
be written as the sum of terms that each have a similarity form. The resulting ordinary
differential equations are solved numerically, and the numerically generated solutions
are combined to provide a temperature field satisfying the interfacial conditions arising
from our model. The solution thus incorporates effects associated with the flow driven
by a density change, interfacial energy, interfacial attachment kinetics, and both the
bulk and the interfacial viscosities. The effects of applied pressure variations on the
interfacial temperature through the Clausius–Clapeyron equation are also included
in the model. The results show that the effects of the fluid flow on thermal transport
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in the bulk vapour phase are modest, but that the effects of capillarity, attachment
kinetics, and bulk and interfacial viscosities are all significant near the liquid–vapour
interface. These effects are particularly pronounced at early times when the interface
radius is relatively small.

This work was supported in part by the Italian MIUR project ‘Modelli Matematici
per la Scienza dei Materiali’ (P. C.), the US Department of Energy (E. F. and M.G.),
the US National Science Foundation (D. M.A.), and the US NASA Microgravity
Research Division (G. B.M.). The authors thank Xuemei Chen for her careful reading
of various drafts of this paper. We also thank the referees for many helpful comments
and suggestions.

REFERENCES

Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid
mechanics. Annu. Rev. Fluid Mech. 30, 139–165.

Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2000 A phase-field model of solidification
with convection. Physica D 135, 175–194.

Anderson, D. M., McFadden G. B. & Wheeler, A. A. 2001 A phase-field model with convection:
sharp-interface asymptotics. Physica D 151, 305–331.

Angenent, S. & Gurtin, M. E. 1989 Multiphase thermomechanics with interfacial structure 2.
Evolution of an isothermal interface. Arch. Rat. Mech. Anal. 108, 323–391.

Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing
liquid films. J. Fluid Mech. 195, 463–494.

Caginalp, G. 1986 An analysis of a phase field model of a free boundary. Arch. Rat. Mech. Anal.
92, 205–245.

Caginalp, G. 1989 Stefan and Hele-Shaw type models as asymptotic limits of the phase-field
equations. Phys. Rev. A 39, 5887–5896.

Callen, H. B. 1960 Thermodynamics. Wiley.

Cermelli, P. & Fried, E. 1997 The influence of inertia on the configurational forces in a deformable
solid. Proc. R. Soc. Lond. A 453, 1915–1927.

Cermelli, P., Fried, E. & Gurtin, M. E 2005 Transport relations for surface integrals arising in
the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339–351.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.

Collins, J. B. & Levine, H. 1985 Diffuse interface model of diffusion-limited crystal growth. Phys.
Rev. B 31, 6119–6122.

Coriell, S. R. & Turnbull, D. 1982 Relative roles of heat transport and interface rearrangement
rates in the rapid growth of crystals in undercooled melts. Acta Metall. 30, 2135–2139.

Danov, K. D., Alleborn, N., Raszillier, H. & Durst, F. 1998 The stability of evaporating thin
liquid films in the presence of surfactant. I. Lubrication approximation and linear analysis.
Phys. Fluids 10, 131–143.

Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology.
Butterworth-Heinemann.

Eshelby, J. D. 1951 The force on an elastic singularity. Phil. Trans. R. Soc. Lond. A 244, 87–112.

Eshelby, J. D. 1956 The continuum theory of lattice defects. In Progress in Solid State Physics 3
(ed. F. Seitz D. Turnbull). Academic.

Eshelby, J. D. 1970 Energy relations and the energy-momentum tensor in continuum mechanics.
In Inelastic Behavior of Solids (ed. M. F. Kanninen, W. F. Alder, A. R. Rosenfield & R. I.
Jaffe). McGraw-Hill.

Eshelby, J. D. 1975 The elastic energy-momentum tensor. J. Elasticity 5, 321–335.

Frank, F. C. 1950 Radially symmetric phase growth controlled by diffusion. Proc. R. Soc. Lond. A
201, 586–599.

Frank, F. C. 1958 On the kinematic theory of crystal growth and dissolution processes. In Growth
and Perfection of Crystals (ed. R. H. Doremus, B. W. Roberts & D. Turnbull), Wiley.



Sharp-interface conditions for phase transformations 369

Fried, E. 1995 Energy release, friction, and supplemental relations at phase interfaces. Continuum
Mech. Thermodyn. 7, 111–121.

Fried, E. & Gurtin M. E. 1993 Continuum theory of thermally induced phase transitions based
on an order parameter. Physica D 68, 326–342.

Fried, E. & Gurtin M. E. 1999 Coherent solid-state phase transitions with atomic diffusion: a
thermomechanical treatment. J. Statist. Phys. 95, 1361–1427.

Gurtin, M. E. 1988 Multiphase thermomechanics with interfacial structure 1. Heat conduction and
the capillary balance law. Arch. Rat. Mech. Anal. 104, 185–221.

Gurtin, M. E. 1995 The nature of configurational forces. Arch. Rat. Mech. Anal. 131, 67–100.

Gurtin, M. E. 2000 Configurational Forces as Basic Concepts of Continuum Physics. Springer.

Gurtin, M. E. & Struthers, A. 1990 Multiphase thermomechanics with interfacial structure 3.
Evolving phase boundaries in the presence of bulk deformation. Arch. Rat. Mech. Anal. 112,
97–160.

Gurtin, M. E., Struthers, A. & Williams, W. O. 1989 A transport theorem for moving interfaces.
Q. Appl. Maths 47, 773–777.

Herring, C. 1951 Surface tension as a motivation for sintering. In The Physics of Powder Metallurgy
(ed. W. E. Kingston). McGraw-Hill.

Hickman, K. C. D. 1952 Surface behavior in the pot still. Ind. Engng Chem. 44, 1892–1902.

Hickman, K. 1972 Torpid phenomena and pump oils. J. Vacuum Sci. Technol. 9, 960–976.

Howison, S. D. 1988 Similarity solutions to the Stefan problem and the binary alloy problem. IMA
J. Appl. Maths 40, 147–161.

Joseph, D. D. & Renardy, Y. 1993 Fundamentals of Two-Fluid Dynamics. Part 1: Mathematical
Theory and Applications. Springer.

Krukowski, S. & Turski, L. A. 1982 Time-dependent solution for spherically symmetric freezing
precipitate. J. Cryst. Growth 58, 631–635.
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