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We examine the case of density-dependent flow in heterogeneous porous medium systems bounded by
a free surface using homogenization methods for leading-order approximations. Specifically we consider
the two-dimensional case in which variations occur in both the horizontal and vertical directions. Such
problems lead to the need to solve cell problems to compute the solution, which is generally done using
numerical approaches. We review the general homogenization results for general topology and aspect
ratio. We derive an analytical solution for a case with two-dimensional variability in the slender limit
for certain assumed scaling of the permeability, and we find excellent agreement with the numerical
solution. We also consider the case of two miscible fluids with an assumed sharp interface and contrasting
densities. We derive an analytical solution in a thin limit neglecting mixing and show agreement with
known solutions for limiting cases.

1. INTRODUCTION

Density dependent flow in porous media is both scientifically stimulating and of significant practical
interest. For example, Miller and workers have recently suggested a novel class of remediation methods
based upon the injection of a dense brine, which is used to restrict the movement of dense non-aqueous
phase liquids and aid remediation [1–3]. For such systems, the behavior of the brine as a function of
space and time is a critical issue. Since natural porous medium systems are typically heterogeneous, the
behavior of brines under such conditions is of central interest.

In previous work [4], hereafter referred to as AMM, we have examined the use of homogenization
methods for calculating leading-order approximations and first-order corrections to determine the time
evolution of the free surface of a brine in porous media that are heterogeneous in the vertical direction,
the horizontal direction, and in both the vertical and horizontal dimensions. Both analytical similarity
and numerical solutions were derived in certain limits. However, the two-dimensional work performed to
date was only preliminary in nature. Further, systems of primary concern will have a brine fluid contained
within a freshwater zone, leading to two-fluid problems, which have not been considered to date using
homogenization methods to the best of our knowledge.

The overall goal of this work is to improve our understanding of the dynamics of dense brines in
heterogeneous porous medium systems. The specific objectives of this work are: (1) to examine further
the case of two-dimensional variability in certain limits of scaling; (2) to compare analytical and numerical
solutions; and (3) to extend the analysis to the case of two distinct fluids of different density.
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2. SINGLE FLUID GRAVITY CURRENT: HETEROGENEOUS POROUS MEDIA

2.1. Governing Equations

The equations governing the evolution of a single-fluid gravity current in a porous media with perme-
ability function Kc(x, z) that varies in space are given by the variable coefficient elliptic problem

∇ · [Kc(x, z)∇φ] = 0, (1)

where φ = p/(ρg)+ z, p is the pressure and g is the gravitational acceleration in the negative z direction.
This equation is subject to boundary conditions corresponding to an impermeable boundary and zero
pressure at the free boundary

∂φ

∂z
= 0, at z = 0, (2)

φ = h(x, t), at z = h(x, t). (3)

The interface h(x, t) evolves according to the kinematic boundary condition

∂h

∂t
=

∂

∂x

∫ h

0

Kc(x, z)
∂φ

∂x
dz. (4)

This equation is subject to symmetry and contact boundary conditions

∂h

∂x
= 0, at x = 0, (5)

h = 0, at x = R(t), (6)

where R is the radial position of the contact line. It follows that the contact line x = R(t) moves with
the horizontal fluid velocity dR/dt = u(R, t). See AMM for further details.

2.2. Thin Geometry Limit

In the limit of a thin geometry δ = H/L � 1, where the vertical length scale of the fluid region H is
much smaller than the horizontal length scale L, the evolution equation for h can be decoupled from the
elliptic problem so that h satisfies the following partial differential equation

∂h

∂t
=

∂

∂x

[

∂h

∂x

∫ h

0

Kc(x, δz)dz

]

. (7)

This equation is subject to suitable boundary conditions as in (5) and (6). When Kc is constant, this
equation admits a similarity solution that can be written down analytically (see AMM for details). For
some variable permeability functions, it may be appropriate to approximate Kc(x, δz) by Kc(x, 0); such
would be the case if there was relatively slow variation of the permeability in the vertical direction or
if the geometry of the fluid was so thin as to only sample a section of the media that was effectively of
uniform permeability with respect to vertical variation. We shall describe other scenarios in the sections
that follow.

2.3. Special Limit of Two-Dimensional Periodicity

AMM examined equations (1)–(6) for Kc = Kc(x/ε, z/ε) where ε is a small parameter measuring the
length scale associated with the permeability variations in the porous media. They applied homogeniza-
tion techniques in the limit ε → 0 and found that in the fully two-dimensional case (non-thin geometry)
the elliptic problem can be reduced to one with constant coefficients, and that in the thin geometry limit
a single constant effective permeability appears in the evolution equation for the interface [see equa-
tion (18)]. However, in order to determine these coefficients one must generally solve cell problems (22)
numerically. Special forms of Kc allow exact solutions to be found (e.g. see Holmes[5]). In this section
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we describe another special case in which homogenization techniques can be applied in the thin limit to
explicitly identify the effective permeability coefficient.

Here we are interested the situation where Kc = Kc(x/ε, z/ε2); that is, there is rapid variation in the
permeability function that occurs on a length scale of O(ε) in the horizontal direction and on a length
scale of O(ε2) in the vertical direction. Further, we are interested in the thin-geometry limit where δ
represents the ratio of vertical to horizontal extent of the fluid region as described above. We assume
that δ = O(ε) and, in fact, for ease of exposition we take δ = ε. In this setting the permeability variations
in the vertical and horizontal directions appear on the same scale in the rescaled coordinates of the thin
geometry.

In order to proceed we introduce the rescaled variables z = δz ′, X = x/ε and Z ′ = z′/ε. We then
proceed with a multiscale expansion by formally taking

∂

∂x
→

∂

∂x
+

1

ε

∂

∂X
,

∂

∂z
→

1

δ

(

∂

∂z′
+

1

ε

∂

∂Z ′

)

. (8)

Substituting this into equation (1) gives

(

∂

∂x
+

1

ε

∂

∂X

)

[

Kc(X, Z ′)

(

∂φ

∂x
+

1

ε

∂φ

∂X

)

]

+
1

ε2

(

∂

∂z′
+

1

ε

∂

∂Z ′

)

[

Kc(X, Z ′)

(

∂φ

∂z′
+

1

ε

∂φ

∂Z ′

)

]

= 0. (9)

We introduce an expansion in ε of the form

φ = φ0 + εφ1 + ε2φ2 + ε3φ3 + . . . . (10)

One can proceed with an expansion of the equations under the assumption that each φi depends on
the variables x, z′, X and Z ′. However, based on the results of AMM and the expectation in the thin
geometry that the dependence of φ on the vertical coordinate will not occur until higher orders, we make
the following ansatz: φ0 = φ0(x), φ1 = φ1(x, X), φ2 = φ2(x, z′, X) and φi = φi(x, z′, X, Z ′) for i > 2. It
can be verified that the O(ε−4), O(ε−3) and O(ε−2) expansions of equation (9) are identically satisfied
under these assumptions.

The O(ε−1) terms in equation (9) are

∂

∂Z ′

[

Kc

(

∂φ2

∂z′
+

∂φ3

∂Z ′

)]

+
∂

∂X

[

Kc

(

∂φ0

∂x
+

∂φ1

∂X

)]

= 0. (11)

Averaging this in Z ′ and then integrating in X gives

〈Kc〉Z′

(

∂φ0

∂x
+

∂φ1

∂X

)

= c(x), (12)

where c(x) is a function of x only (in particular it is independent of X). Dividing by 〈Kc〉Z′ and averaging
in X , assuming that φ1 is periodic in X , shows that

c(x) = 〈〈Kc〉
−1

Z′ 〉
−1

X

∂φ0

∂x
. (13)

Therefore,

〈Kc〉Z′

(

∂φ0

∂x
+

∂φ1

∂X

)

= 〈〈Kc〉
−1

Z′ 〉
−1

X

∂φ0

∂x
. (14)

The problem is not complete until we examine the boundary conditions. As described in AMM, our
approach with the interface evolution equation (4) when applying homogenization techniques in this case
is to formally ‘pre-average’ terms in the boundary condition that depend on Z ′ in order to eliminate
the fast variation in the vertical direction before applying the boundary condition. This was justified in
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AMM for the case where Kc = Kc(z/ε). We provide further justification here by comparison of these
results to direct numerical simulations (see next section). The pre-averaged boundary condition is

∂h

∂t
=

∂

∂x

∫ h

0

〈Kc

∂φ

∂x
〉Z′dz′. (15)

Consistent with our expansion for φ, we take h = h0(x)+εh1(x, X)+ . . .. Furthermore, we note that since
φ0 = φ0(x) the boundary condition (3) implies that φ0 = h0. Expanding equation (15) in multi-scales
gives at O(1)

∂h0

∂t
=

∂

∂x

[

h0〈Kc

(

∂φ0

∂x
+

∂φ1

∂X

)

〉Z′

]

+
∂

∂X

[

h1〈Kc

(

∂φ0

∂x
+

∂φ1

∂X

)

〉Z′

]

+
∂

∂X

[

h0〈Kc

(

∂φ1

∂x
+

∂φ2

∂X

)

〉Z′

]

. (16)

Averaging this in X , using equation (14) and φ0 = h0 gives

∂h0

∂t
= 〈〈Kc〉

−1

Z′ 〉
−1

X

∂

∂x

[

h0

∂h0

∂x

]

, (17)

which indicates that the effective permeability is 〈〈Kc〉
−1

Z′ 〉
−1

X which is the harmonic average in X of the
arithmetic average in Z ′ of the permeability function.

We compare this result with the more general result derived in AMM where for the thin geometry limit
with permeability function Kc(x/ε, z/ε), the problem for the interface position was reduced to solving

∂h0

∂t
= Keff

∂

∂x

[

h0

∂h0

∂x

]

, (18)

with effective permeability function Keff = α − β2/γ. The coefficients α, β and γ were given by

α = 〈〈Kc〉〉 − 〈〈Kc|∇θ1|
2〉〉, (19)

β = −〈〈Kc∇θ1 · ∇θ2〉〉, (20)

γ = 〈〈Kc〉〉 − 〈〈Kc|∇θ2|
2〉〉, (21)

Here the functions θ1 and θ2 satisfied the two cell problems

Lθ1 = −
∂Kc

∂X
, Lθ2 = −

∂Kc

∂Z
, (22)

where Z = z/ε with periodic boundary conditions on X ∈ [0, 1], Z ∈ [0, 1], where the linear operator L
was given by

L =
∂

∂X

(

Kc

∂

∂X

)

+
∂

∂Z

(

Kc

∂

∂Z

)

. (23)

Additionally, 〈〈 · 〉〉 =
∫

1

0

∫

1

0
· dXdZ. An iterative solution of the above cell problem with Z = δZ ′

and δ → 0 also reveals that Keff = 〈〈Kc〉
−1

Z′ 〉
−1

X but one must take the precaution that the result in
AMM was derived for the case Kc(x/ε, z/ε) whereas the result derived in this section applied specifically
for the thin limit with Kc(x/ε, z/ε2). We further note that this particular formula for Keff is exact

for permeabilities whose heterogeneity admit multiplicative factorization Kc(X, Z) = H(X)G(Z) (see
e.g. Holmes[5]) and agrees with the slender limit calculation just presented, as well as with the iterated
homogenization. More generally, the cell problems require numerical inversion.

The results of this section can be compared to numerical simulations of the original slender limit
equations. We show this comparison below.
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2.4. Numerical Simulations

In the limit of a thin geometry, the evolution equation for h is given by equation (7) subject to the
boundary conditions (5) and (6). The contact line condition

dR

dt
= u(R, t) = −Kc(R/ε, 0)

∂h

∂x

∣

∣

∣

∣

x=R

. (24)

is also directly enforced. The initial conditions are h(x, 0) = AH (1 − x2) and R(0) = 1 where AH is a
given constant. We consider the permeability function

Kc(x, z′) = 1 + A cos

(

2πx

ε

)

+ B cos

(

2πz′

ε

)

(25)

with ε = 0.5, A = B = 0.2. Here 〈〈Kc〉
−1

Z′ 〉
−1

X = 0.9797. We solve this system numerically using a
finite difference approach with second-order accurate central differencing in space and a backward Euler
implicit time stepping routine. For more details on the numerical method, see ‘Approach B’ described in
AMM.

Figure 1 shows the direct numerical simulation of the slender geometry model calculated with the
variable permeability function (25) [solid curve] and the numerical solution of equation (17) with the
effective permeability [dashed curve] as noted above. The leading order homogenization result clearly
captures the global behavior of the gravity current. The small variation away from this global behavior
in response to the local permeability can be observed in the full numerical solution. The close-up in the
lower plot shows that in regions where the permeability is relative high and the fluid relatively mobile,
the actual interface position is flatter on average than the homogenized solution. Where the permeability
is relatively low and the fluid is less mobile, the actual interface position is steeper on average than the
homogenized solution.

3. TWO LAYER GRAVITY CURRENT:

As in the above description, AMM considered only a single fluid model. In this section we develop
an analogous two-fluid model and show how it can be related back to the single fluid models previously
discussed, thereby extending the applicability and interpretation of the single fluid model.

Consider a slumping of mound of fluid with density ρ1 in a porous media along an impermeable
boundary at z = 0. The height of this layer is given by z = h(x, t). A second fluid with density ρ2

surrounds fluid 1. The second fluid has an interface with air at a height z = H in the porous layer.
Fluid 1 occupies the region 0 ≤ x ≤ R(t) (assumed symmetric about x = 0) and 0 ≤ z ≤ h(x, t) where
R(t) represents the contact line at the leading edge of the gravity current. Fluid 2 is assumed to extend
infinitely in the horizontal direction. We are interested in the case where the overall layer thickness H is
much greater than the maximum value of h, and consequently assume that H is constant.

In fluid 1, the governing equations are

u1 = −K1

∂φ1

∂x
, (26)

w1 = −K1

∂φ1

∂z
, (27)

0 =
∂u1

∂x
+

∂w1

∂z
, (28)

where φ1 ≡ p1/(ρ1g) + z and the fluid velocity has horizontal and vertical components u1 and w1.
Similarly, in fluid 2 the governing equations are

u2 = −K2

∂φ2

∂x
, (29)
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Figure 1. The upper figure shows the background permeability structure and the interface position
calculated numerically using the thin geometry evolution equation (solid line) and the leading order
homogenized solution (dashed line). A close-up view of the region in the box in the upper figure is shown
in the lower figure.

w2 = −K2

∂φ2

∂z
, (30)

0 =
∂u2

∂x
+

∂w2

∂z
, (31)

where φ2 ≡ p2/(ρ2g) + z and the fluid velocity has horizontal and vertical components u2 and w2. The
permeability functions K1 and K2 are assumed for simplicity to be constants.

The boundary condition applied at z = H is that p2 = 0 (constant atmospheric pressure taken to be
zero without loss of generality). The boundary conditions along the impermeable base at z = 0 are that
w2 = 0 for x > R(t) and w1 = 0 for 0 ≤ x ≤ R. At the fluid/fluid interface we have p1 = p2 and the
mass balance conditions ~u1 · n̂ = ~u2 · n̂ = ~uI · n̂, where ~u1 = (u1, w1), ~u2 = (u2, w2) and ~uI is the velocity
of the interface. We express these conditions as follows

φ2 = H, at z = H, (32)

∂φ2

∂z
= 0 at z = 0 for x > R(t), (33)

∂φ1

∂z
= 0 at z = 0 for 0 ≤ x ≤ R(t). (34)

The boundary conditions at the interface z = h(x, t) can be expressed as

ρ1(φ1 − h) = ρ2(φ2 − h), (35)

−u1hx + w1 = −u2hx + w2 =
∂h

∂t
. (36)

The geometry is assumed to be infinite in the horizontal direction so that φ2 → H as |x| → ∞.
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3.1. Approximate Solution

In this section we describe a solution to the above equations that applies when fluid 1 can be considered
‘thin’ [its horizontal extent is much larger than its maximum height]. In this scenario the governing
equations in fluid 1 reduce to

u1 = −K1

∂φ1

∂x
, (37)

0 = −K1

∂φ1

∂z
, (38)

w1 = −

∫ z

0

∂u1

∂x
dz, (39)

to leading order. This implies that φ1 = φ1(x, t) is independent of z. Then, from equation (35) we have

φ1(x, t) = h +
ρ2

ρ1

[φ2(x, h, t) − h]. (40)

Equation (40) implies that

∂φ1

∂x
=

(

1 −
ρ2

ρ1

)

hx +
ρ2

ρ1

[

∂φ2

∂x
(x, h, t) + hx

∂φ2

∂z
(x, h, t)

]

. (41)

The fluid/fluid interface h(x, t) evolves according to

∂h

∂t
=

∂

∂x

∫ h

0

K1

∂φ1

∂x
dz =

∂

∂x

[

K1h
∂φ1

∂x

]

, (42)

which can be solved once suitable information about derivatives of φ2 is known.
The mass balance boundary condition (36) can be expressed as

∂

∂x

∫ h

0

u1dz =
∂

∂x

∫ h

H

u2dz. (43)

Integrating with respect to x and noting that u1 = u2 = 0 along the line of symmetry x = 0 gives
∫ h

0

K1

∂φ1

∂x
dz =

∫ h

H

K2

∂φ2

∂x
dz. (44)

Since φ1 is independent of z we have

K1

∂φ1

∂x
h =

∫ h

H

K2

∂φ2

∂x
dz. (45)

Using equation (41) in equation (45) leads to the expression

K1h

{(

1 −
ρ2

ρ1

)

hx +
ρ2

ρ1

[

∂φ2

∂x
(x, h, t) + hx

∂φ2

∂z
(x, h, t)

]}

=

∫ h

H

K2

∂φ2

∂x
dz, (46)

which is effectively a boundary condition for φ2 at the interface z = h. This equation and φ2(x, H, t) = H
are the boundary conditions for the φ2 problem defined above.

A simple approximate solution to the φ2 problem can be obtained in the case where the layer thickness
H is much larger that the thickness of the gravity current. This is the deep layer case where h/H → 0.
Here, φ2 = H to leading order. Equation (46) is satisfied to leading order by the right-hand side vanishing
[the left-hand side would enter at a higher order contributing to corrections to φ2 = H ]. In this limit
equation (41) implies that

∂φ1

∂x
=

(

1 −
ρ2

ρ1

)

hx, (47)
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so that an evolution equation for the interface position can be expressed as

∂h

∂t
=

(

1 −
ρ2

ρ1

)

∂

∂x

[

K1h
∂h

∂x

]

. (48)

Notice that in the limit ρ2/ρ1 → 0 we recover the single layer case. If ρ2 = ρ1 the interface is stationary.
If ρ2 > ρ1 we have a slumping gravity current in reverse [i.e. it steepens]. This is effectively the same
evolution equation considered in the single fluid problem [compare, for example, equation (18)] if time
were rescaled to account for the density difference factor.

4. CONCLUSIONS

The following conclusions are drawn from this work:

1. We have shown that homogenization methods are useful for the description of nonlinear, free-surface
problems involving the movement of dense brines in porous medium systems.

2. We have built upon previous homogenization results by considering a special two-dimensional case
in a thin limit and validated our numerical results, adding further evidence for the validity of our
formal ”pre-averaging” of the boundary condition to obtain a closed, large scale evolution.

3. We have further derived an approximate solution for a two fluid case in which the interface between
miscible fluids of contrasting densities evolve with time for a thin limit case.

4. Continued development and application of both leading order and first-order corrections based upon
homogenization methods used to describe density dependent flow in heterogeneous porous medium
systems appears both possible and worthwhile, with several additional extensions summarized for
future work.

Our future plans involve further validating the homogenization techniques used here and in AMM
for non-slender geometries, which requires directly solving the variable-coefficient elliptic problem. Our
interest is in cases of layered permeabilities as well as two-dimensional periodic permeabilities. The
latter, as noted above, generally requires the solution of cell problems in order to determine the necessary
coefficients for the homogenized solutions although special cases, as described in the present work, will
also be considered.
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