AMD-Vol. 170, Surface-Tension-Driven Flows
ASME 1993

SPREADING AND EVAPORATION
OF LIQUID DROPS ON SOLIDS

Stephen H. Davis
Department of Engineering Sciences
and Applied Mathematics
Northwestern University
Evanston, lilinois

Daniel M. Anderson
Department of Applied Mathematics
and Theoretical Physics
Cambridge University
Cambridge, United Kingdom

ABSTRACT

We consider a volatile liquid droplet on a uniformly heated horizontal surface. We use
lubrication theory to describe the effects of capillarity, thermocapillarity, vapor recoil,
viscous spreading, contact-angle hysteresis, and mass loss on the behavior of the droplet.
A new tri-junction condition, which takes into account the effect of mass loss, is derived
and used. We derive an evolution equation for steady and unsteady drop profiles and
solve for small and large capillary number. In the steady evaporation case, the steady
contact angle is larger than the advancing contact angle. In the unsteady case, effects
which tend to decrease (increase) the contact angle promote (delay) evaporation. In the
large capillary number limit, we use matched asymptotics to describe the droplet profile;
away from the contact line the shape is delermined by initial conditions and bulk mass
loss, while near the contact line surface curvature and slip are important.

INTRODUCTION '

Many processing systems involve tri-junctions at which phase transformations oc-
cur. Czochralski, and other meniscus-defined, crystal growth configurations are exam-
ples. They also appear in enclosed configurations such as directional solidification. An
important instance of tri-junction behavior involves a contact line across which evapo-
ration/condensation occurs. For example, the behavior of the meniscus is critical in the
heat transfer properties of a heat pipe, where a liquid layer is used to remove heat from
a hot surface. There has been much theoretical and experimental work done on such
systems (e.g. Ripple, 1993; Sujanani and Wayner, 1992; Wayner, 1993; Moosman and
Homsy, 1980).
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Figure 1: THE TWO-DIMENSIONAL EVAPORATING DROPLET.

Ehrhard and Davis (1991) analyzed the behavior of a non-isothermal liquid droplet on
a uniformly heated horizontal surface and described the effects of capillarity, thermocap-
illarity, gravity, and viscous spreading on the dynamics of the droplet. They found that
thermocapillarity retards (promotes) spreading when the substrate is heated (cooled).
Ehrhard (1993) performed experiments on both isothermal and non-isothermal droplets
and found good agreement with the theoretical predictions of Ehrhard and Davis (1991).

In the present work, we consider a volatile liquid droplet on a uniformly heated hori-
zontal surface. We use lubrication theory to describe the effects of capillarity, thermocap-
illarity, viscous spreading, and mass loss on the behavior of the droplet. The evaporation
model and the small slope analysis is analogous to that of Burelbach, et al. (1988) for
continuous films; however, in the present case there is a contact-line region which requires
additional attention. The current work extends that of Ehrhard and Davis (1991) to the
competition between the effects of evaporation and the tendency of the drop to spread
or recede.

X
FORMULATION

We consider a two-dimensional droplet on a uniformly heated horizontal surface as
shown in figure 1. The contact line is givep by z = a(t), the contact angle by 6(t), and
the liquid-vapor interface by z = h(z,t). The bottom plate, z = 0, is uniformly heated
resulting in an evaporative mass flux, J(z,t).

We use a one-sided model of evaporation analogous to Burelbach, et al. (1988), where
we neglect the vapor phase except where the vapor density is multiplied by the vapor
velocity. Using a lubrication approximation applicable to thin droplets, we obtain an
evolution equation for the droplet profile, h(z,T),



Table 1: Nomenclature

ag initial droplet radius

C ' capillary number

E evaporation humber

ho  initial droplet height at center
K non-equilibrium parameter

K’  dimensional non-equilibrium constant
k thermal conductivity of liquid

L latent heat of vaporization

M  Marangoni number

m mobility exponent

AT temperature difference

B slip coefficient

B*  dimensional slip length

¥ linear thermocapillarity constant
] measure of viscous spreading

64 advancing contact angle

fr  receding contact angle

kinematic viscosity of liquid
density ratio

pr  liquid density

py  vapor density

oo reference surface tension
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The scales for time, horizontal lengths, and vertical lengths are aghg/v, ao, and hg,
respectively. Also
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Equations related to equation (1) have been derived by other authors (e.g. Greenspan,
1978; Hocking, 1981; Hocking, 1983; Burelbach, et al., 1988; Ehrhard and Davis, 1991).
This equation is subject to initial conditions, boundary conditions, a contact-line condi-
tion, and the global mass balance condition.

Empirical studies (see Dussan V., 1979) on the spreading behavior of nonvolatile liquid
droplets have led to the use of a constitutive relation between fluid velocity at the contact



line, ucr, and the contact angle given by ucL = 1 £(0), where f(0) is an increasing
function of 8 given by

(6 —04)™ for6>0a

f0) = {0 for B < 0 < 04 (3)
(0 —8g)™ for6<6Or

where 7 and m are empirically determined constants (in general the value of 1 may have
different values for & > 64 than for § < 0r; however, for simplicity, we take a single
value). Measured values have this form. We shall presume that this form persists down
to micron scale where effective slip occurs. From the mass-balance condition evaluated
at the contact line and from the above constitutive relation we obtain the contact-line
condition,

ar(r) = ~ gy + MO (4)

where 7j = (n/v)(h5*! /al'). We see here that the speed of the contact line is not equal
to the fluid velocity there, the difference being related to the mass loss.
The global mass balance is

/o " (h,(z, )+ E’I%(?T)) dz = 0. (5)

_ First, we shall look at the steady case. Then we shall look at the unsteady case for
C=0,C«l,and C> 1

STEADY SPREADING AND EVAPORATION

In order to focus on the effects of the mass loss on contact-angle dynamics, we shall
define a steady, evaporating droplet which can be achieved by introducing mass through
the base of the droplet and balancing evaporative mags loss (see figure 2). In this case,
we immediately find that the contact-line condition (4 gives the steady value 65 of 6,

B )
0s(0s —04)" = K (6)

This shows that 8s > 04 always; evaporation gives an apparent angle greater than,
possibly much greater than, 04.

UNSTEADY SPREADING AND EVAPORATION

Zero Capillary Number

Consider € = 0 with all other parameters O(1). As discussed by Ehrhard and Davis
(1991), this limit leads to an outer solution in time for the drop profile; the initial
conditions on h are dropped while those at the contact line are enforced.

The solution of the evolution equation (1) with C =0 is given simply by a parabolic
droplet profile; the lubrication version of a constant curvature profile, where surface
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Figure 2: THE STEADY TWO-DIMENSIONAL EVAPORATING DROPLET WITH
MASS FLUX THROUGH THE BASE WHICH BALANCES THE EVAPORATIVE
MASS FLUX THROUGH THE LIQUID-VAPOR INTERFACE.

tension is dominant. Note that with C = 0 the results are independent of slip, ther-
mocapillarity, and vapor recoil. With this, the global mass balance and the contact-line
condition give an evolutionary system for a and 6. The solution represents a quasi-steady
solution where the drop profile equilibrates instantaneously and depends on time only
through a and 6, which evolve due to viscous spreading and bulk mass loss.

There are two typical regimes; the ‘strong’ evaporation regime where a,(0) < 0, and
the ‘weak’ evaporation regime where a,(0) > 0. That is, although the droplet disappears,
the droplet radius may decrease monotonically (strong evaporation regime) or increase
initially before decreasing (weak evaporation regime).

Small Capillary Number R

Here we obtain a solution for h using a regular perturbation expansion in small capil-
lary number. The results are again quasi-steady but we now can identify thermocapillary,
vapor recoil, and unsteady and mass loss effects. We find that the mass flux is strongest
where the droplet is thinnest; that is, at or near the contact line. Therefore, mechanisms
which tend to increase 6 delay evaporation while those which tend to decrease 8 promote
evaporation.

We find that the inclusion of the unsteady and mass-loss terms, the thermocapillary
term, and the vapor recoil term each alter the profile, making the droplet contract, and
as a result, each delay evaporation.

Large Capillary Number

We now consider EIE <1, % < 1, and ignore thermocapillary and vapor recoil
effects. Here we use matched asymptotic expansions to obtain representations for the
droplet profile, contact angle, and droplet radius. In this limit, the spatial derivatives
drop out of the evolution equation (1) and therefore the bulk of the drop has a shape




given by the initial conditions and there is a boundary-layer correction near the contact
line where the spatial derivatives cannot be neglected. We find that the inner solution is
spatially oscillatory and decays away from the contact line. If the contact angle has f > 0
(< 0) the oscillations start out as a slight dip (bulge) near the contact line. Furthermore,
if f = 0 there are no oscillations, and to O(EIE)’ the outer solution is the uniformly valid
solution. The droplet radius decreases monotonically in time while the contact angle
may increase or decrease.

SUMMARY

We have considered the evaporation of a liquid droplet on a uniformly heated hori-
sontal surface and have studied the effects of capillarity, thermocapillarity, vapor recoil,
viscous spreading, contact-angle hysteresis, and mass loss on the dynamics of the droplet
profile and contact-line region. We have used a one-sided model of evaporation of Burel-
bach, et al. (1988), which is modified to include the presence of contact lines. Our model
also extends that of Ehrhard and Davis (1991) of non-isothermal spreading to include
evaporation. .

We have derived a new contact-line condition (4) which takes into account the effects
of evaporative mass loss. Using a lubrication theory, we derived an evolution equation
for the droplet profile. J

In the steady case, the steady contact angle is always larger than the advancing contact
angle, 04. This steady angle corresponds to that angle which balances viscous spreading
with mass loss.

For the unsteady case, we obtained solutions for zero capillary number, small capillary
number, and large capillary number.

For zero and small capillary number, we found that, although evaporation always
causes the droplet to completely disappear, there are two basic regimes in which the
dynamics of the contact lines differ. The first is the ‘strong’ evaporation regime where
the droplet radius decreased monotonically in time. The second is the ‘weak’ evaporation
regime where the droplet radius increases initially. Effects which tend to decrease the
contact angle and thin the drop promote evaporation while those which tend to increase
the contact angle and contract the drop delay evapora ion. Thermocapillarity, vapor
recoil, and the unsteady and mass loss terms in the evolution equation all tend to contract
the droplet profile and therefore delay evaporation.

For large capillary number and small % we . found that the droplet profile could be
described by an outer region, away from the contact line where surface curvature can be
neglected, and an inner region near the contact line where the effects of curvature and
slip are important. We find that the inner region corresponds to a spatially oscillating
solution which decays away from the contact line and may correspond to either a dip or
bulge in the liquid/vapor interface immediately adjacent to the contact line.
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