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Abstract. We develop a model to describe the dynamics of a spreading and melting droplet on
a heated substrate. The model, developed in the capillary-dominated limit, is geometrical in nature
and couples the contact line, trijunction, and phase-change dynamics. The competition between
spreading and melting is characterized by a single parameter KT that represents the ratio of the
characteristic contact line velocity to the characteristic melting (or phase-change) velocity. A key
component of the model is an equation of motion for the solid. This equation of motion, which
accounts for global effects through a balance of forces over the entire solid–liquid interface, including
capillary effects at the trijunction, acts in a natural way as the trijunction condition. This is in
contrast to models of trijunction dynamics during solidification, where it is common to specify a
trijunction condition based on local physics alone. The trijunction dynamics, as well as the contact
angle, contact line position, and other dynamic quantities for the spreading and melting droplet, are
predicted by the model and are compared to an isothermally spreading liquid droplet whose dynamics
are controlled exclusively by the contact line. We find that in general the differences between the
dynamics of a spreading and melting droplet and that of an isothermally spreading droplet increase
as KT increases. We observe that the presence of the solid phase in the spreading and melting
configuration tends to inhibit spreading relative to an isothermally spreading droplet of the same
initial geometry. Finally, we find that increasing the effect of spreading promotes melting.
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1. Introduction. The description of a spreading and melting droplet involves
both a moving contact line and a trijunction. At the outset, then, we shall distinguish
between these two locations and establish the following working definitions. In this
work, we refer to a contact line as the intersection of a liquid phase, a vapor phase,
and a foreign solid substrate. We refer to a trijunction as the intersection of a liquid
phase, its own solid phase, and a vapor phase.

Moving contact lines are ubiquitous in fluid flows that involve interfaces. It is well
known that in the continuum description of a contact line moving along a solid sub-
strate with the no-slip condition enforced on the solid substrate, a nonintegrable stress
singularity occurs at the contact line (Dussan V. and Davis [1]). Not surprisingly, the
problem of a moving contact line has been the subject of mathematical modeling
covering macroscopic to molecular scales with descriptions based on continuum me-
chanics (e.g., Dussan V. [2], Davis [3], de Gennes [4], Ehrhard and Davis [5], Haley
and Miksis [6], Hocking [7], Shikhmurzaev [8]), statistical mechanics (e.g., Merchant
and Keller [9]), molecular dynamics (e.g., Thompson and Robbins [10], Thompson,
Brinckerhoff, and Robbins [11], Koplik and Banavar [12]), and diffuse-interface theo-
ries (Jacqmin [13, 14], Seppecher [15]). Experimental work has also covered the broad
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range of scales from macroscopic (e.g., Ehrhard [16]) to micron-scale (e.g., Marsh,
Garoff, and Dussan V. [17], Chen, Ramé, and Garoff [18]) to molecular-scale (e.g., Thi-
ansathaporn [19], Glick [20]).

Contact lines have been examined in isothermal as well as nonisothermal con-
ditions (e.g., Ehrhard and Davis [5], Ehrhard [16], Smith [21]). They may be the
location of evaporation (e.g., Moosman and Homsy [22], Wayner [23], Anderson and
Davis [24], Hocking [25], Morris and Moreno [26]), as often occurs in the context of
heat pipes [27]. Other situations such as the spreading of a reactive material (e.g.,
Braun et al. [28], Warren, Boettinger, and Roosen [29]), the spreading of a liquid along
a porous substrate (Davis and Hocking [30, 31]), and the spreading, solidification, and
ultimate arrest of a molten contact line (Schiaffino and Sonin [32, 33]) have recently
been considered.

Trijunctions, like the contact lines described above, are often the site of phase
transformation. In applications such as containerless materials processing techniques,
where the melt is partially or completely confined by its own surface tension (e.g.,
Czochralski growth [34]), a trijunction at which solidification occurs is present. An-
other materials processing technique, known as float-zone processing, involves trijunc-
tions at both solidifying and melting boundaries (e.g., Surek and Coriell [35]). In this
case, a liquid bridge is formed (by thermal control) between two solid ends of a rod
in such a way that as the rod is translated along its axis through the heated zone,
one side is melted and the other side is solidified. The two solid–liquid interfaces are
each bounded by a three-phase line, the trijunction, one of which is the location of
solidification and the other of which is the location of melting.

In a problem that is geometrically very similar to the one addressed here, An-
derson, Worster, and Davis [36] considered the solidification of a liquid droplet on
a cold substrate. They observed that a liquid drop solidified into a solid drop that
was cusp-like at the top. Their theoretical predictions showed that the shape was
strongly controlled by the conditions imposed at the trijunction. The use of a trijunc-
tion condition is typical in problems involving solidification at trijunctions; the most
common of these is the “fixed growth angle” condition, where the angle between the
tangents of the solid–vapor interface and the liquid–vapor interface at the trijunction
is taken to be a constant (e.g., Surek and Chalmers [37], Satunkin, Tatarchenko, and
Shaitanov [38], Sanz [39], Brown [34]).

In the present work, we shall describe a spreading and melting droplet for which
both a contact line and a trijunction are present. Here, melting occurs at the tri-
junction as it bounds an evolving solid–liquid interface. Our aim is to develop a
mathematical model (using a macroscopic point of view) for the spreading and melt-
ing droplet and to identify how the solid phase affects the spreading dynamics.

2. Problem description. We consider the evolution of an initially solid sphere
at rest at time zero on a heated substrate. For t > 0 the droplet melts from the
bottom. We assume that gravity is negligible and that the solid portion of the droplet
is supported by the liquid layer forming between it and the substrate. (Since gravity
is neglected, the problem of spreading on top of a horizontal plate is equivalent to
the spreading of a hanging drop on the underside of a horizontal plate.) As the
melting proceeds the contact line at the substrate advances. The contact line motion is
governed by dynamics which we shall specify locally [2, 5, 16] but is necessarily coupled
through the geometry and the thermal problem to the dynamics of the melting front.
In this problem, the solid–liquid interface is defined to be the location of the melting
temperature isotherm and the phase transition will be assumed to have associated with
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it zero latent heat. The position of this melting front is controlled not only by the heat
transfer through the substrate but also by the dynamics of the underlying liquid layer
upon which the solid rides. There is, then, a time scale associated with the contact
line dynamics and another associated with the phase transformation dynamics. The
ratio of these time scales will play a central role in our model.

The spreading and melting droplet is a transient phenomenon as sufficient heat
and time will completely melt droplet and reduce the problem to the spreading of a
nonisothermal liquid droplet in the absence of the solid phase (e.g., see Ehrhard and
Davis [5]). Hocking and Rivers [40] have addressed the partially melted spreading
regime by introducing a shifted time origin for the long-term spreading behavior.
Our interest here is specifically on the dynamics when both phases are present.

Our focus on this transient stage has been inspired by experiments performed by
Glick [20] on the spreading behavior of polystyrene spheres on glass. In Glick’s work,
spreading polystyrene spheres (approximately 1mm radius) were examined under two
different thermal conditions, termed the “oven” and “hot plate” cases. In the oven
configuration, a polystyrene sphere was placed at room temperature on a glass sub-
strate that was also at room temperature. The drop and substrate were then placed
into an oven whose temperature was fixed above the glass transition temperature of
polystyrene. The droplet heated up isothermally and spread. During spreading, the
contact angle was measured as a function of time. These measurements were repeated
for a range of oven temperatures. A time scale µ(T )R0/γ(T ) based on the ratio of
viscosity µ(T ) to surface tension γ(T ) (both of which are temperature dependent
for polystyrene) times the initial droplet radius R0 was identified which allowed the
contact angle versus time curves to collapse to a single master curve. The data fit
a simple isothermal spreading model based on a spherical cap approximation and a
contact line speed versus contact angle relationship (see next section). In the hot plate
configuration, a polystyrene sphere at room temperature was placed on a glass sub-
strate whose temperature was already fixed above the glass transition temperature.
Here, the droplet spread along the substrate before becoming completely liquid. (To
be precise, above the glass transition temperature polystyrene is a relatively mobile
viscous fluid, while below the glass transition temperature it is a relatively immo-
bile extremely viscous fluid.) In this configuration, spreading again was observed
for a range of substrate temperatures. In this case, the data collapsed to a single
curve only when a temperature-dependent length scale Reff (T ) was introduced into
the time scale µ(T )Reff (T )/γ(T ). The exact origin and interpretation of Reff (T )
were unclear; however, it was found that Reff (T ) increased with increasing substrate
temperature and was in the range of 0.2 to 0.8 times the initial radius of the sphere.

While our modeling has been inspired by the work of Glick in examining these two
spreading scenarios, we do not attempt to incorporate non-Newtonian and polymeric
aspects into our model. However, we shall adopt the notions of the hot plate and
oven configurations in order to assess in a mathematical framework the effect of the
presence of the solid phase on contact line spreading. Specifically, we are interested in
comparing the evolution from initial conditions of the spreading and melting droplet
(hot plate case) to the evolution from initial conditions of an isothermal liquid droplet
(oven case) with otherwise the same initial geometry.

Our model is developed in the capillary (or surface tension) dominated limit sim-
ilar in spirit to those of Ehrhard and Davis [5] and Anderson, Worster, and Davis
[36], where the droplet shape dynamics may be decoupled from the bulk fluid hydro-
dynamic equations of motion. Unlike Ehrhard and Davis, we shall not invoke the
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lubrication approximation but shall rely on sufficiently large surface tension to fix
the liquid–vapor interface shape. The resulting model highlights key features of the
spreading and melting droplet configuration while avoiding the complexities of solv-
ing the bulk hydrodynamic equations of motion for this complicated free-boundary
problem.

We begin by outlining in section 3 a model for an isothermal spreading liquid
droplet for small capillary number (dominant surface tension). The motivation for
doing so is threefold. First, we wish to use the isothermal spreading model to help
motivate and develop an analogous spreading and melting model. Second, we shall
use the isothermal spreading model to continue the evolution of the spreading and
melting droplet once the droplet has completely melted. Third, once a spreading
and melting model is solved, we shall use the simple isothermal spreading predictions
as a basis for comparison between the two configurations. In section 4 we describe
the spreading and melting model, which includes the shape problem and the thermal
problem. We then describe the solution method and the model predictions. Following
this there is a discussion section and conclusions.

3. Isothermal liquid spreading: Oven configuration. Consider an axisym-
metric isothermal liquid droplet for which gravity is zero and the droplet shape is
dominated by surface tension (or small capillary number C = µκ/γ, where µ is the
fluid viscosity, γ is the coefficient of surface tension of the liquid–vapor interface, and
κ is a characteristic contact line speed defined in (3.3)), as shown in Figure 4.1a.
In this situation, arguably one of the simplest to consider, the droplet shape and
spreading evolution can be determined in a relatively straightforward manner. The
Young–Laplace equation dictates that the droplet shape is part of a sphere represented
by r = RL(z, t), where

R2
L(z, t) =

a2

cos2(θ − π
2 )

−
(
z − a tan

(
θ − π

2

))2

.(3.1)

Here a(t) is the contact line position, θ(t) is the contact angle, z is a vertical coordi-
nate, and r is a radial coordinate (see Figure 4.1a). The spherical geometry requires

VL =
π

3

a3

sin3 θ

[
2− 3 cos θ + cos3 θ

]
,(3.2)

which relates a(t) and θ(t) since the droplet volume VL is conserved during spreading.
One possible description of how such a drop evolves in time expresses the contact

line speed as a function of the contact angle (e.g., Hoffman [41]). One such case has
been considered by Ehrhard and Davis, who take

da

dt
= κ(θ − θA)

m,(3.3)

where κ is a characteristic contact line speed, θA is an advancing contact angle, and m
is a spreading exponent. The parameters appearing in (3.3) in general depend on the
specific liquid and substrate under consideration [16]. The parameter κ is typically
related to the velocity scale defined by γ/µ multiplied by additional modeling factors,
as we note below. In the development of our model we shall interpret κ as an inde-
pendent parameter that represents a characteristic contact line speed. Equation (3.3)
relates the apparent contact angle to the speed of the contact line and, in building
in the micron-scale physics in this way, allows the contact line to be addressed on a
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macroscopic level. Such relationships have been examined by Dussan V. [2], Ehrhard
and Davis [5], Ehrhard [16], among others. Glick [20] showed that a similar rela-
tionship, based on the work of McHale, Rowan, and Newton [42], coupled with the
spherical cap approximation provided an accurate characterization of the spreading
of polystyrene on a glass surface under isothermal conditions. In particular, McHale,
Rowan, and Newton [42] used

da

dt
=

3γ

4µJw
tan(θ/2)(cos θA − cos θ),(3.4)

where Jw is a modeling factor associated with cutting off the viscous dissipation
near the contact line. (Other contact line models have also been considered in the
literature. In Hocking’s model [7] the contact angle is assumed to be constant, but
the meniscus shape is modified in the vicinity of the contact line so that a different
apparent contact angle can be defined. The model of de Gennes [4] addresses the
physics of a precursor film. Bertozzi et al. [43] use a mathematical condition of
complete wetting to account for the contact line. Barenblatt, Beretta, and Bertsch
[44] model the spreading problem by invoking an “autonomy principle” in a region
between the bulk drop and the precursor film.)

In the limit of a thin drop with small capillary number in which the profile becomes
approximately parabolic, Ehrhard and Davis [5] show that, for example, if θA = 0 in
the above contact line condition (3.3), the axisymmetric drop evolution can be solved
explicitly to find

a(t)

a0
=

[
1 + (3m+ 1)θm0

κt

a0

] 1
3m+1

,(3.5)

where θ0 is the initial contact angle and a0 is the initial contact line position. The
contact angle θ and the droplet shape are then also easily expressed explicitly in
terms of t. Ehrhard [16] has performed experiments that support this simple model
and provide values of κ, θA, and m for a given liquid on a given substrate. As can
be observed in (3.5) if time is made dimensionless by a0/κ, the dependence of the
spreading dynamics on κ can be scaled out of the problem so that the solutions are
self-similar with respect to this parameter.

For a spherical drop with a large contact angle it may not be possible to write
down explicit forms for a and θ as functions of time, but their evolution is governed by
a straightforward differential algebraic system of (3.2) and (3.3) which can be solved
numerically. Such solutions are also self-similar with respect to κ.

The central idea here is that in the capillary-dominated limit (spherical cap ap-
proximation) and with the use of a contact line speed versus contact angle condi-
tion (3.3) the droplet shape evolution can be determined without many of the other
complications in the problem (e.g., the fluid velocity is decoupled from the shape evo-
lution problem). It is in this spirit that we shall develop the spreading and melting
droplet model; that is, we shall identify an analogous simple model for the spreading
and melting droplet configuration.

4. Spreading and melting: Hot plate configuration. The general problem
of the spreading and melting droplet involves solving a thermal transport problem in
the solid and liquid phases that accounts for phase transformation, and simultane-
ously solving the hydrodynamic equations of motion in the liquid phase, all of which
is coupled with the free-boundary problem in which the solid–liquid interface, the
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liquid–vapor interface, the solid–vapor interface, the contact line, and the trijunction
positions must be determined as part of the solution.

We would like to obtain from the general problem a model in which the free-
boundary problem is effectively decoupled from the bulk hydrodynamics. We shall
accomplish this by considering exclusively the physical limit of small capillary num-
ber C → 0 in which surface tension forces control the shape of the liquid–vapor
interface (Marangoni flows are not considered). In this limit, the momentum equa-
tion requires that the liquid pressure p is spatially uniform and the normal-stress
boundary condition on the liquid–vapor interface determines the liquid pressure in
terms of the liquid–vapor interface curvature (this is the Young–Laplace condition).
Since the pressure can depend only on time, the curvature is uniform in space and
the liquid–vapor shape evolution is quasi-steady.

In conjunction with the small capillary number limit, we shall make the following
simplifying assumptions regarding the thermal field and free-boundary problem. First,
we shall assume that the thermal problem is diffusion-controlled so that convective
effects are negligible. This decouples the hydrodynamic problem from the thermal
problem except through the geometry. Second, we shall neglect gravity. Third, we
shall assume that the solid–liquid phase boundary is planar and remains parallel to
the substrate for all time so that its position z = h(t) is a function of time only. As
we shall see in section 4.2 this allows a simple description of the thermal problem but
still retains a nonisothermal system that accounts for the change of phase.

The presence of phase-change in the spreading and melting droplet configura-
tion gives rise to additional modeling issues not present in the isothermal spreading
problem, in particular the treatment of the motion of solid phase and the trijunction.

An equation of motion for the solid [45] can be written as

d

dt
�P (t) =

∑
i

�Fi,(4.1)

where �P (t) = MS(t)�VCM is the linear momentum of the solid, MS(t) is the mass of

the solid, �VCM is the velocity of the center of mass of the solid, and �Fi are the forces
acting on the solid. Here we consider only symmetric droplets and therefore address
only vertical motion of the solid. For the general spreading and melting droplet (in
the absence of gravity) this equation of motion is (in dimensionless form)

ρRe
d

dt

(
MS(t)�VCM

)
= − 1

C

∫
∂ΩSL

pn̂dS +

∫
∂ΩSL

[∇�u+ (∇�u)T ] · n̂dS

+
1

C

∫
tj

sin(π − φ)(−k̂)dl,(4.2)

where ρ is the density ratio (solid to liquid), Re = R0κ/ν is the Reynolds number, ν
is the kinematic viscosity, �u is the fluid velocity, φ is the angle through the liquid at
the trijunction, and k̂ is a unit vector in the z direction (see Figure 4.1). Lengths have
been made dimensionless with the initial radius of the spherical drop R0, time with
R0/κ, velocities with κ, and pressure with γ/R0. Also, ∂ΩSL represents the solid–
liquid interface and tj represents the trijunction. Here all normal vectors are assumed
to be outward from the solid. The forces accounted for in (4.2) are the pressure
and viscous forces along the solid–liquid interface and surface tension forces at the
trijunction. We have assumed that the force on the solid due to surface tension is
γ sin(π−φ) in the −k̂ direction. Note that if we were to include gravitational effects,
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(a)

(b)

Fig. 4.1. In part (a) a sketch of the isothermal liquid droplet (oven) configuration is shown. The
droplet is axisymmetric and evolves in time t. The vertical coordinate is z and radial coordinate
is r. The liquid–vapor interface is identified by r = RL(z, t). The radial position of the contact
line is given by r = a(t) and the contact angle is θ(t). The volume of this drop is constant in
time. In part (b) a sketch of the spreading and melting droplet (hot plate) configuration is shown.
The temperature of the hot plate is TH and the isotherm Tg separates the solid and liquid phases
(TH > Tg). Note that the liquid phase is between the hot plate and the solid portion of the droplet.
The solid–liquid interface is assumed planar and is given by z = h(t). The total droplet volume is
divided between solid and liquid volumes, VS(t) and VL(t), respectively. The droplet is axisymmetric
with solid–vapor interface given by r = RS(z, t) and liquid–vapor interface given by r = RL(z, t).
The contact line is given by r = a(t) and the associated contact angle is θ(t). The radial position
of the trijunction is given by r = R(t). The angle through the liquid phase at the trijunction is
φ(t), while that through the solid phase is α(t). Finally, we identify the highest point of the drop by
z = HMAX(t).
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there would be a force MS(t)g downward and a buoyancy force that would enter
through the pressure integral. In the simplified model we consider, with C → 0 and a
planar solid–liquid interface, the equation of motion (4.2) reduces to its equilibrium
form

0 = −πR2p+ 2πR sin(π − φ),(4.3)

where R is the radial position of the trijunction.
We note that in solidification problems, it is common to impose at the trijunction

a condition on the “growth angle,” which is the angle between the tangents to the
solid–vapor and liquid–vapor interfaces at the trijunction [37, 39, 34, 36]. It is possible
that some sort of growth angle, analogous to that for solidification, prevails at the
trijunction here (perhaps it would be better termed a “melting” angle); however, the
authors know of no experimental measurements of such an angle. We note that in the
work of Surek and Coriell [35] on the float-zone problem, a growth angle condition
was applied at the freezing front but not at the melting front. We shall find that
in our model the equation of motion for the solid plays the role of the trijunction
condition in a natural way in that it incorporates the capillary force associated with
the trijunction and that it closes the mathematical model. Consequently, we shall
refrain from imposing any additional conditions at the trijunction. The trijunction
angle, in fact, comes out as part of the solution (Figure 4.4). We note that if the
equation of motion is neglected in favor of a trijunction condition such as a fixed
growth angle condition, the model fails to yield physical results (see section 5).

Based on the above assumptions, the hydrodynamic problem is decoupled from
the thermal and shape (or free-boundary) problems. Below we describe the shape
problem as it stands in the light of the above assumptions. A simple thermal model
then couples to the shape problem only through the dynamics of h(t).

4.1. The shape problem. We present the model in terms of dimensionless
variables. Lengths are made dimensionless with the initial radius of the spherical
drop R0, time with R0/κ and pressure with γ/R0.

The unknown quantities that depend on space and time are the liquid–vapor
interface position r = RL(z, t) and the solid–vapor interface position r = RS(z, t).
Quantities that depend on time only are the maximum height of the dropletHMAX(t),
the volume of the solid VS(t), the angle through the solid at the trijunction α(t), the
radial position of the trijunction R(t), the height of the solid–liquid interface z = h(t),
the volume of the liquid VL(t), the radial position of the contact line a(t), the contact
angle in the liquid at the substrate θ(t), the angle in the liquid at the trijunction φ(t),
and the pressure in the liquid p(t) (see Figure 4.1b).

We consider the evolution from an initially spherical drop given by

R2
S(z, 0) = 1− [z + cosα(0)]

2
,(4.4)

where α(0) is the angle of contact the sphere makes with the substrate at time zero
(α(0) = π for a perfect sphere). We can express the volume of the solid at any later
time in terms of the angle α as

VS =
π

3

[
2− 3 cosα+ cos3 α

]
,(4.5)

the trijunction position as

R = sinα,(4.6)
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and the maximum height as

HMAX = h+ (1− cosα).(4.7)

A global mass balance requires

VL =
π

3
ρ
[−3 cosα(0) + cos3 α(0) + 3 cosα− cos3 α

]
.(4.8)

The normal stress balance condition at the liquid–vapor interface gives p(t) =
∇ · n̂, where the unit normal of the liquid–vapor interface n̂ can be expressed as

n̂ =
(1,−RLz)√
1 +RL

2
z

(4.9)

and represents an equation for the shape of this interface. This equation is subject to
the conditions at the contact line

RL(0, t) = a,(4.10)

∂RL

∂z
(0, t) = tan

(
θ − π

2

)
(4.11)

and also the conditions at the trijunction

RL(h, t) = R,(4.12)

∂RL

∂z
(h, t) = − tan

(
φ− π

2

)
.(4.13)

Furthermore, the pressure p, angle φ, and position R must conform to the equation
of motion (4.3). It is worth noting that the general shape satisfying p = ∇ · n̂ is
not necessarily one in which the liquid–vapor interface is spherical (it only requires
constant curvature). However, the condition on pressure given by the equation of
motion (4.3) in conjunction with conditions (4.10)–(4.13) does lead to a liquid–vapor
interface that is part of a sphere given by

R2
L(z, t) = a2 sec2

(
θ − π

2

)
−
[
z − a tan

(
θ − π

2

)]2

,(4.14)

with

h = R tan
(
φ− π

2

)
+ a tan

(
θ − π

2

)
,(4.15)

sin θ

a
=

sinφ

R
,(4.16)

and

p =
2 sinφ

R
.(4.17)

Note that this spherical shape has a radius and a center that are not necessarily those
of the initial solid shape. A further geometrical condition gives the liquid volume from
the above shape in (4.14) as

VL =
π

3

a3

sin3 θ

[−3 cosφ− 3 cos θ + cos3 φ+ cos3 θ
]
.(4.18)
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Special considerations are required at the initial time and these are discussed in the
context of our solution method. The above results complete the geometrical and mass
balance laws that can be derived if surface tension controls the shape of the liquid–
vapor interface. Coupled with these geometrical considerations are a contact-line
condition (3.3) and the dynamics of h(t) which are determined through the thermal
problem as described below.

4.2. Simple thermal model. In the above formulation we have assumed that
the solid–liquid interface is planar and its position z = h(t) depends only on time.
The thermal problem determines h(t) since this boundary is defined as the location
of the solid–liquid interface temperature. In general, the thermal problem must in-
clude convective effects in the liquid; however, as mentioned above we neglect them
here. We assume that the solid and liquid thermal properties are equal and the la-
tent heat is zero. The use of zero latent heat is consistent with the idea of a glass
transition between a highly viscous phase and a much less viscous phase as in Glick’s
experiments. For materials undergoing first-order phase transitions such as metals
and alloys, where the effect of latent heat may be significant, this assumption may
not be appropriate. We shall effectively treat the thermal problem for this system as
that for a semi-infinite slab in which two-dimensional effects are neglected and the
vapor phase is not distinguished from the droplet. With the above approximations in
mind, we identify a standard similarity solution for the thermal field [46], described
as follows.

Consider one-dimensional heat flow from a heated planar boundary of tempera-
ture TH > 0 and a far-field temperature of −1, where temperatures are made dimen-
sionless through

T =
Tdimensional − Tg

Tg − TA
,(4.19)

where Tg is the interface melting temperature and TA is the ambient far-field tem-
perature in the vapor. The temperature throughout the droplet satisfies the heat
equation

Pe
∂T

∂t
=
∂2T

∂z2
,(4.20)

where Pe = R0κ/D
th is the Peclet number and Dth is the thermal diffusivity. Equa-

tion (4.20) with the boundary conditions T = TH at z = 0 and T → −1 as z → ∞
admits a similarity solution of the form

T = TH − (1 + TH)
2√
π

∫ η

0

e−u2

du = TH − (1 + TH)erf(η),(4.21)

where erf(η) is the error function and η is the similarity variable defined by

η =
z

2
√
t/Pe

.(4.22)

We define ηg as the value of η corresponding to the solid–liquid interface temperature
T = 0 so that

erf(ηg) =
TH

1 + TH
.(4.23)
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Therefore, the position of the solid–liquid interface is given by

z = h(t) = 2ηg
√
t/Pe,(4.24)

corresponding to square-root in time growth.
We note that a much broader class of dynamics for the solid–liquid interface is

possible. In addition to a nonplanar interface, it is also possible that the height of the
front is nonmonotonic in time due to both thermodynamic and hydrodynamic effects.
These more general shapes and dynamics are not considered here.

4.3. Geometrical model: Solution method. The ten equations (4.5), (4.6),
(4.7), (4.8), (4.15), (4.16), (4.17), (4.18), (4.24), and (3.3) determine the ten unknowns
a(t), R(t), h(t), HMAX(t), θ(t), φ(t), α(t), p(t), VL(t), VS(t) and constitute the
geometrical model. However, we can express the model in terms of a reduced set of
variables a(h), α(h), θ(h), and φ(h) with the independent variable h. These variables
are governed by the differential algebraic system

da

dh
=

1

2
KT (θ − θA)

mh,(4.25)

0 = sin θ sinα− a sinφ,(4.26)

0 = ρ sin3 θ
[
3 cosα− cos3 α− 3 cosα(0) + cos3 α(0)

]
− a3

[−3 cosφ− 3 cos θ + cos3 φ+ cos3 θ
]
,(4.27)

0 = a cosφ+ h sin θ + a cos θ.(4.28)

The remaining unknowns can be expressed in terms of these variables as

p =
2 sin θ

a
,(4.29)

VL =
π

3

a3

sin3 θ

[
4− (1 + cos θ)2(2− cos θ)− (1 + cosφ)2(2− cosφ)

]
,(4.30)

VS =
π

3

[
4− (1 + cosα)2(2− cosα)

]
,(4.31)

R = sinα,(4.32)

HMAX = h+ (1− cosα),(4.33)

t =
1

4
KTh

2.(4.34)

We have solved the above system (4.25)–(4.28) using the code DASSL [47].
The parameters appearing in this model are the spreading/heating parameter

KT , the density ratio ρ, the advancing contact angle θA, and the spreading ex-
ponent m. The first of these parameters is a combination of two others, namely,
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KT ≡ Pe/η2
g = (R0κ)/(D

thη2
g). The parameter KT measures the contact line spread-

ing dynamics relative to the thermal dynamics of the phase transformation process.
Consequently, if θA and m are not temperature-dependent, for a given material on a
given substrate only KT changes as the substrate temperature changes. Small values
of KT correspond to slow spreading with relatively fast thermal dynamics and large
values KT correspond to rapid spreading with relatively slow thermal dynamics. As
the results will show, large values of KT lead to spreading dynamics that differ strongly
from the isothermal spreading case since a greater percentage of the spreading occurs
in the presence of the solid phase. When KT is small, the spreading dynamics much
more closely resemble that of isothermal spreading.

The initial conditions for the droplet evolution for the hot plate calculations are
set up as follows. The equations are solved numerically by specifying an initial time
0 < t0 
 1 and the initial values of h0, a(h0) and α(h0), θ(h0), and φ(h0) which
follow from expanding the governing equations,

h(t0) = 2
√
t0/KT ≡ h0,

a(h0) = a(0) + ã,

α(h0) = α(0)− α̃,(4.35)

θ(h0) = θ(0)− θ̃,

φ(h0) = φ(0) + φ̃,

where for a(0) = 0, α(0) = π, θ(0) = π, and φ(0) = 0 we have

ã =
1

4
KT (θ(0)− θA)

mh2
0,(4.36)

α̃ =

√
h0

ρ
+

1

ρ

√
h2

0 + 2ρh0ã2,(4.37)

θ̃ =
2h0

ã

1

(α̃/ã)2 − 1
,(4.38)

φ̃ =
α̃θ̃

ã
.(4.39)

Here, a(0), α(0) are the true initial values for the initial solid shape (e.g., a(0) = 0 and
α(0) = π for a perfect sphere). We note that although θ(0) and φ(0) are technically
not defined at t = 0, we have taken a(0) = R(0) = 0, θ(0) = α(0) = π, and φ(0) = 0
in these initial conditions and in the computations described below.

Given these initial conditions, (4.25)–(4.28) are integrated until the trijunction
radius vanishes, R(tF ) = 0, at some final time t = tF . At that time, the droplet
continues to evolve according to the oven (isothermal spreading) model (given by
(3.2) and (3.3)) with initial conditions a(tF ), θ(tF ), and VL(tF ). We describe the
results below.

4.4. Geometrical model: Results. In the hot plate cases, we shall use exclu-
sively the contact line condition (3.3) where, unless otherwise specified, we have used
θA = 0.1π, m = 3, and ρ = 1. Figure 4.2 shows cos θ versus the dimensionless time
calculated for the hot plate cases shown in A–I in Table 4.1 and also the corresponding
curve for the oven calculation. The solutions for the hot plate cases A–C nearly coin-
cide with the oven result (these are the rightmost curves in the lower portion of the
plot and the leftmost near the top). Increasing KT corresponds to greater changes
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Fig. 4.2. This plot shows cos θ(t) versus the dimensionless time calculated for the hot plate
cases shown in A–I in Table 4.1 and also the corresponding curve for the oven calculation. The
solutions for the oven case (rightmost curve at the bottom and leftmost curve at the top) and the hot
plate cases A–C appear to nearly coincide. Only for cases D–I (KT greater than or equal to unity)
can a noticeable change be observed on this scale. Increasing KT amplifies the difference between
the oven and hot plate cases by bending the curve to the left near the bottom and to the right near
the top, as shown.

Table 4.1
This table shows material parameters for the experiments of Glick [20] and the corresponding

value of KT calculated using κ = γ/µ and Dth = 0.8 mm2/s. The values of tF are those predicted
by the present model. In some of the figures we also show results for additional values of the
dimensionless parameter KT = 5, 10, 15, and 30, which we refer to as cases F, G, H, and I,
respectively.

TH (◦C) ηg γ (mN/m) µ (Pa · s) γ/µ (mm/s) KT tF (s)

A 99 0.2761 36 45,000 0.0008 0.0131 15.9
B 108 0.3456 35 8,300 0.004 0.0419 8.9
C 118 0.4109 34 900 0.038 0.281 3.5
D 131 0.4820 33 150 0.22 1.184 1.6
E 138 0.5154 33 52 0.63 2.96 1.1

in θ at early times; this trend is reversed for longer times. Note that there is not
a universal curve characterizing the evolution for all temperatures for the hot plate
configuration, as there is in the oven case.

Figure 4.3 shows the value of a(t) corresponding to θ(t) in the previous figure. The
leftmost curve in this figure shows the evolution of the oven case. For the hot plate
evolution as KT is increased, the curves shift to the right; as in the previous figure
there is not a noticeable difference between the oven and hot plate cases on this scale
until KT is greater than unity. Figures 4.2 and 4.3 show together that the contact
line becomes less mobile as KT increases despite the fact that the contact angle, at
least at early times, changes more rapidly. Consequently, the hot plate configuration
leads to a less mobile contact line (wetting area) but a more “mobile” contact angle.
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Fig. 4.3. This plot shows a(t) versus the dimensionless time calculated for the oven and hot
plate cases shown in Figure 4.2. The oven case corresponds to the uppermost curve; increasing KT

moves the curve downwards, as shown. It is clear in this figure and Figure 4.2 that the solutions
for the hot plate case are not self-similar with respect to a simple rescaling of time. Note that this
figure shows that the contact line is less mobile as KT increases despite the fact that the contact
angle, at least initially, changes more rapidly.

Figure 4.4 shows the evolution of the angle between the solid–vapor interface and
the liquid–vapor interface at the trijunction φ(t)+α(t)−π for the hot plate cases F–I.
We see several features from this plot. First, this angle starts out at zero, reaches
a maximum, and then decreases monotonically to zero; the slope discontinuity at
the trijunction varies dynamically. Second, the maximum amplitude of this quantity
increases as KT increases. Third, the time at which the droplet is completely melted
varies with KT ; this result is discussed in more detail in Figure 4.9. Note that the
angle plotted in Figure 4.4 is not defined in the oven configuration.

Figure 4.5 compares a(t), θ(t), p(t), and HMAX(t) for the hot plate case I (KT =
30) and the oven case. As in the previous comparisons we see that the droplet in the
hot plate case evolves more slowly with respect to the contact line position a(t) than
does the oven case (the presence of the solid inhibits spreading). On the other hand,
at least in the initial stages, the contact angle departs from its initial value more
quickly in the hot plate configuration. The pressure shows a peak in the hot plate
configuration before a monotonic decline, while it declines monotonically for the oven
case. Finally, the maximum height of the drop HMAX(t) decreases monotonically but
has a noticeable change in slope around t ≈ 4 where the solid disappears.

Figure 4.6 shows the variation of R(t), VL(t), α(t), and φ(t) for the hot plate case I
(see caption to Table 4.1). These quantities, with the exception of VL, are not defined
for the oven configuration. As is required for the spherical geometry, the trijunction
position R(t) begins at zero, reaches a maximum of unity, and then decreases to zero
at the final time tF ≈ 4. The liquid volume increases monotonically in time, the solid
angle α(t) decreases monotonically in time, and the liquid angle φ(t) at the trijunction
increases monotonically from 0 to π.
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Fig. 4.4. This plot shows the variation of the angle φ(t) + α(t) − π between the solid–vapor
interface and the liquid–vapor interface at the trijunction versus the dimensionless time calculated
for the hot plate case with the value of KT given next to each curve. Nonzero values of φ(t)+α(t)−π
indicate a slope discontinuity at the trijunction.

Fig. 4.5. This plot shows the contact line position a(t), contact angle θ(t), pressure p(t),
and maximum height HMAX(t) versus the dimensionless time for the hot plate case I (KT = 30)
and the oven case. The time at which the solid portion of the drop has completely disappeared is
approximately tF ≈ 4. There is a noticeable change in the slope of HMAX(t) at this point.
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Fig. 4.6. This plot shows the trijunction position R(t), the liquid volume VL(t), the solid angle
α(t), and the liquid angle at the trijunction φ(t) versus the dimensionless time for the hot plate case
I (KT = 30). Note that in the oven case, these variables, with the exception of the liquid volume
which remains constant, are not defined.

Fig. 4.7. This plot shows the shape evolution of the spreading and melting droplet as a function
of time for KT = 0.884. A comparison with Figure 4.8 shows qualitative differences between drop
spreading with small and large values of KT .

Figures 4.7 and 4.8 show the shape evolution in the hot plate configuration for
small KT = 0.884 and large KT = 30, respectively. In Figure 4.7 the spreading is
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Fig. 4.8. This plot shows the shape evolution of the spreading and melting droplet as a function
of time for KT = 30.

relatively slow in comparison to the thermal dynamics of the melting drop. Note
that if the spreading were stopped completely (KT = 0), then the profile would re-
main an exact sphere for all time and the melting front would simply pass through
the motionless sphere. Figure 4.8 (KT = 30) shows that the liquid profile departs
significantly from the original spherical shape. Note that at a fixed dimensionless
time, say, t = 1, the droplet in Figure 4.7 has completely melted and spread fur-
ther than the droplet at the same time in Figure 4.8. However, the contact line
position at the instant the solid disappears in Figure 4.8 is greater than that in Fig-
ure 4.7, indicating that for larger KT more spreading occurs in the presence of the
solid phase.

In order to understand the effect of spreading on melting, we examine the disap-
pearance time of the solid as KT varies. First, we note that for the thermal field used
in our model, t = (h/2)2KT . Therefore, if we imagine a horizontal isotherm passing
from the bottom of a fixed sphere (of unit radius) to the top, the time it would take
is tF = KT since the value of h at the top of the sphere is 2. This result is shown
by the dashed line in Figure 4.9. With this in mind, we examine the disappearance
time of the solid for the hot plate case (where the sphere is spreading, not fixed) as
KT varies. Figure 4.9 shows that the dimensionless disappearance time (solid line)
increases with increasing KT but that the overall effect of spreading is to promote
melting since these values are less than the corresponding ones represented by the
line t = KT for all KT . Note that the time scale used in the nondimensionalization of
the time is R0/κ. For cases A–E in Table 4.1 the predicted final dimensional times
based on the velocity scale γ/µ are shown; these decrease with increasing tempera-
ture as expected. If one examines the dimensional final time as the parameter κ varies
with all other parameters held constant, the result is that the dimensional final time
decreases with increasing κ, again indicating that spreading promotes melting. Our
physical explanation of why spreading promotes melting in this model is that enhanc-
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Fig. 4.9. This plot shows the dimensionless disappearance time for the solid versus KT (solid
line). Note that if the sphere were motionless and if one kept track of the position of the melting
temperature isotherm, the time for it to reach the top of the drop would equal KT , since tF =
(htop/2)2KT and htop = 2 in that case. This situation is shown by the dashed line. Therefore, since
the actual tF is everywhere less than KT , we conclude that spreading promotes melting.

ing the spreading has the effect of bringing the remaining solid closer to the substrate
where heating is more effective. The spreading effect does not modify the solid–liquid
interface height h(t), but it does modify the mass flux through this interface which is
related to the velocity difference ht − hMAXt.

As described in section 3, the simple model for isothermal spreading allows the
derivation of an explicit representation for the dynamics of a(t). In the particular
case of the Ehrhard and Davis [5] contact line model (3.3) the contact line position
for a thin axisymmetric drop was found to follow the power law a(t) ∼ t1/(3m+1). We
do not have an analytical expression in the spreading and melting case but can gain
insight on the general scaling properties by examining the numerical solutions.

Figure 4.10 shows a log–log plot of a(t) versus t for the oven case and several hot
plate cases as KT is varied. Here we have taken ρ = 1, θA = 0, and m = 3. In this
figure, the uppermost solid curve corresponds to the oven case. The curves for the hot
plate case deviate from this curve as KT increases and display at least three distinct
regions. The dashed line on the left corresponds to a slope of unity indicating linear
growth at early times. The dashed line on the right has a slope of 1/(3m+1) = 1/10,
corresponding to that of Ehrhard and Davis for a thin isothermal liquid droplet. At
intermediate times, where the droplet is still spreading and melting, there is an overall
trend between a linear scaling and the 1/10 scaling of the isothermally spreading liquid
drop. Although the evolution does not fit a specific power law here, a scaling behavior
of t1/3 is an approximate fit to the overall trend. We note that this scaling is a function
of the exponent m, as shown in Figure 4.11.

Figure 4.11 shows a log–log plot of a(t) versus t with fixed KT = 45, ρ = 1,
θA = 0 and different values for m. The initial region maintains a linear scaling for
sufficiently small times, but the intermediate and long time scalings both change with
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Fig. 4.10. This plot shows the contact line position a(t) versus dimensionless time for the oven
case and for a number of hot plate cases as KT varies (m = 3, θA = 0). The uppermost solid curve
corresponds to the oven case, as indicated. Results for the hot plate case (values of KT used are
2.96, 5.0, 10.0, 15.0, 30.0, 45.0, 60.0, 100.0, 200.0) deviate from the oven case as shown. The dashed
line on the left corresponds to a slope of unity, indicating that a(t) initially grows linearly in time.
The dashed line on the right has a slope of 1/(3m+1) = 1/10 which corresponds to that of Ehrhard
and Davis for a thin isothermal drop and applies here when the droplet has completely melted and
is thin enough. At intermediate times, where the droplet is still spreading and melting, there is an
overall trend that is slower than linear but faster than the 1/10 scaling; however, this evolution does
not appear to follow a specific power law.

Fig. 4.11. This plot shows the contact line position a(t) versus dimensionless time for the hot
plate case with KT = 45, θA = 0, and different values for m as shown next to each curve. The
dashed line has slope 1/4 which seems to agree with the intermediate time evolution for the larger
values of m. It can also be seen that the case for m = 1 approaches a t1/4 scaling for long times,
when the drop is completely liquid and thin.
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m. The dashed line has slope 1/4, which matches the intermediate time evolution for
the larger values of m. It can also be seen that when m = 1, or 1/(3m+1) = 1/4, the
dynamics of a(t) approach a t1/4 scaling for long times, when the drop is completely
liquid and thin.

5. Discussion. As mentioned earlier, our modeling has been motivated by the
hot plate and oven experiments of Glick [20]. One point of comparison between the
experimental results and the predictions of the present model are the temperature-
dependent length scale Reff data identified by Glick in the hot plate case. In his
work, it was observed that if a temperature-dependent length scale was introduced, the
contact angle versus time data for the hot plate case collapsed to a master curve. This
temperature-dependent length scale increased with increasing substrate temperature.
Since the contact line model used by Glick (see (3.4)) had as the characteristic contact
line velocity the temperature-dependent quantity γ(T )/µ(T ) the need for additional
temperature-dependence suggested another length scale in the problem not already
taken into account by the isothermal (oven) spreading model.

There is no suggestion in our predictions that the solution is self-similar with
respect to the parameter KT in the hot plate case. However, there are a number
of length scales that can be identified in our model, and we have shown these in
comparison with the values of Reff obtained by Glick in Table 5.1 as they vary with
the single parameter KT . The results of Table 5.1 show in dimensionless terms the
final time tF where the solid disappears and the associated values of the contact
line position a(tF ) and the droplet height HMAX(tF ). The quantity a� has been
identified as the value of a at which the hot plate dynamics first deviate noticeably
from the oven dynamics as observed in Figure 4.10. There is an associated time t�,
trijunction radius R�, and measures of the liquid volume (3V �

L/4π)
1/3 and the solid

volume (3V �
S /4π)

1/3 (shown in parentheses in the last column). The significance of
this point in time is that it appears to be the onset of the dynamics characterized by
simultaneous spreading and melting.

We see that there is no noticeable difference between the hot plate and oven
predictions for small values of KT (and so no a� is identified). The general trends
in all the length scales shown with the exception of a(tF ) and (3V �

S /4π)
1/3 indicate

the opposite trend of that observed by Glick (see Table 5.1). The solid volume mea-
sure (3V �

S /4π)
1/3 may be in the general range of Reff (T ), indicating that Reff (T )

may be related to a length scale associated with the solid, but identification of this
quantity is not clear for the smaller values of KT where the experiments were per-
formed.

Part of the difference between Glick’s data and the present theory may be as-
sociated with the interpretation of KT and its dependence on temperature. Recall
that this parameter is defined as KT = (R0κ)/(D

thη2
g). The parameter ηg is an

increasing function of T and so if this were the only temperature-dependent quan-
tity in this parameter group, then KT would decrease with increasing temperature.
However, if one interprets κ = γ/µ as the characteristic spreading velocity, then
there is an additional temperature dependence, which, as indicated by Glick’s data
in Table 4.1, causes KT to increase with increasing temperature. In the present
model for spreading and melting, as KT → 0 the hot plate dynamics approach that
of the oven configuration since small KT means that very little spreading occurs
before the droplet is completely melted. Glick’s interpretation of the temperature-
dependent length scale, on the other hand, noted that Reff approached the radius of
the original sphere R0 as the temperature approached infinity (that is, Reff = R0
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Table 5.1
The values for Reff are from Glick [20]. All lengths in the table are given in units of R0

and times are given in units of R0/κ. Here ρ = 1, θA = 0, and m = 3. The starred quantities
represent the hot plate spreading case at the moment the dynamics of a(t) deviate noticeably from
that in the oven case (e.g., see Figure 4.10). In the final column the quantity in parentheses shows
(3V �

S /4π)1/3. For the first three cases shown here there is no significant difference between the oven
and hot plate results. The estimates involving the starred quantities are only approximate and only
increasing or decreasing trends should be taken from this information.

KT Reff tF a(tF ) HMAX(tF ) t� a� R� (3V �
L/4π)1/3

0.0131 0.2 0.0124 0.326 1.95 - - - -

0.0419 0.2 0.0328 0.684 1.77 - - - -

0.281 0.5 0.112 1.26 1.26 - - - -

2.96 0.8 0.526 1.71 0.843 0.03 0.6 0.9 0.5 (0.9)

10 - 1.26 1.90 0.710 0.01 0.4 0.5 0.2 (1)

30 - 2.77 2.05 0.614 0.01 0.3 0.4 0.1 (1)

60 - 4.70 2.16 0.557 0.009 0.2 0.3 0.1 (1)

100 - 6.76 2.24 0.520 0.008 0.2 0.3 0.09 (1)

200 - 11.3 2.35 0.476 0.007 0.2 0.2 0.06 (1)

if the substrate temperature is high enough to liquify the drop rapidly relatively to
the spreading effect). Therefore, Glick’s data suggests taking KT → ∞ to recover
the oven scaling Reff → R0, while the model suggests KT → 0 in order to re-
cover the oven model predictions. Consequently, we cannot identify with confidence
a temperature-dependent length scale that is consistent with the one identified by
Glick.

We note that even with a length scale that behaved perfectly consistently to
the Reff identified by Glick, our contact angle versus time data is not self-similar
in that the shape of the curve cos θ versus t (e.g., see Figure 4.2) varies with the
parameter KT and therefore does not collapse to a single master curve with a rescaling
of time.

A second point of discussion is that in our preliminary work on this problem we
had developed a geometrical spreading and melting model as described above in the
thin drop limit, where instead of imposing the equation of motion for the solid we
considered an independent relationship at the trijunction. Specifically, drawing an
analogy with the work of Anderson, Worster, and Davis [36], we imposed a condition
that the tangents of the solid–vapor interface and the liquid–vapor interface at the
trijunction met there with the same slope—the “zero growth angle” condition. We
found, however, upon solving this slightly different system that a nonphysical result
was obtained. Specifically, the melting droplet evolved in such a way that required
a reversal in time in order for the trijunction position R(t) to reach zero and for
the solid to disappear. In the results of the model described in this paper where we
have taken into account the equation of motion for the solid, we have shown that the
tangents to the solid–vapor and liquid–vapor interfaces at the trijunction do not meet
at an angle that stays fixed in time (see Figure 4.4). This can also be easily observed
in the droplet profiles in Figures 4.7 and 4.8. We also point out that the zero growth
angle condition does not in general require that the pressure in the liquid be positive
and that a negative pressure corresponds to a concave up (or concave out) interface.
In contrast, the trijunction condition derived from the equation of motion requires a
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positive liquid pressure to supply a force which balances the downward capillary force
on the solid at the trijunction.

Finally, the equation of motion is a central ingredient for this spreading and
melting droplet geometry. Our simplified model incorporates the equilibrium version
of this condition. With the present thermal model, the solid–liquid interface advances
monotonically in time as t1/2. However, it is quite possible in reality that the motion of
the solid–liquid interface is nonmonotonic. The solid–liquid interface could remain at
a constant level if, for example, the solid was massive enough to create a squeeze film of
constant thickness as the solid melted. Alternatively a suction-type of hydrodynamic
effect, perhaps due to rapid advance of the contact line, could reduce the height of the
solid–liquid interface during melting. Such effects are beyond the scope of the present
work, but the geometrical model developed here may provide a basis upon which to
begin to address these situations.

6. Conclusions. We have derived a simple model which describes the simul-
taneous spreading and melting of an initially spherical solid droplet. The model
contains a moving contact line, a moving trijunction, and an internal solid–liquid
boundary in a nonisothermal setting. A key physical parameter in this system is
KT = (R0κ)/(D

thη2
g), where R0 is the initial radius of the spherical drop, κ is the

characteristic contact line velocity, Dth is the thermal diffusivity of the material (as-
sumed equal in both solid and liquid phases), and ηg is a thermal parameter that
accounts for the temperature of the hot plate. The only other parameters in the
model are the advancing contact angle θA, the spreading exponent m (see (3.3)) and
the density ratio ρ = ρS/ρL.

The model has been derived around the following assumptions. (1) The initial
solid droplet shape is a perfect sphere. (2) The liquid phase, once formed, is capillary-
dominated so that the liquid–vapor interface has constant curvature (the solution
shows that it is in fact part of a sphere). (3) Gravity is negligible. (4) The melting
droplet is axisymmetric so that the solid portion of the drop moves only vertically. (5)
The thermal field is controlled by vertical diffusion only (there is no transverse heat
loss and no convective heat transfer) and there is no latent heat release at the solid–
liquid interface, which is taken to be planar. Thermal properties are asssumed to be
constant and equal in both phases. (6) We adopt a standard phenomenology for the
contact line dynamics and keep this relation the same for both the oven (isothermal
spreading) and hot plate (spreading and melting) configurations as a control. In this
physical regime, spreading and melting are characterized by the single parameter KT .
This observation means that our model isolates the spreading and melting interactions
with all other physics controlled, albeit simplified.

The main conclusions we find are the following. First, the difference between
the oven case (isothermal liquid spreading) and the hot plate case (spreading and
simultaneous melting) is amplified as the parameter KT is increased. Large values of
KT correspond to a relatively strong (or fast) contact line dynamics and a relatively
weak (or slow) phase change dynamics. Second, the contact line in the spreading and
melting configuration is less mobile than that in the isothermal liquid spreading con-
figuration (the presence of the solid inhibits spreading relative to a completely liquid
droplet). Third, the contact angle in the spreading and melting configuration tends
to relax faster initially compared to the isothermal liquid spreading case. Finally, if
the spreading effect is increased with all other thermal controls held fixed, the time
for the solid to completely melt is decreased (spreading promotes melting).
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