Math 686: Chapter 3b Homework – Spring 2020 Due: Tuesday, February 18, 2020

1. Exercise 3.4 in the textbook.

2. Consider y' = f(t, y) where

$$f(t,y) = -(1+y^4)y + g(t), \quad y(0) = 1, \quad 0 \le t \le 1,$$

where

$$g(t) = e^{-t} \left[-10\sin(10t) + e^{-4t}(\cos(10t))^5 \right].$$

This equation has exact solution $y_{exact}(t) = e^{-t} \cos(10t)$.

Explore numerically using Matlab a suite of 2-state Explicit Runge-Kutta Methods of the form

$$y_{n+1} = y_n + h [w_1 f(t_n, y_n) + w_2 f(t_n + \tau_2 h, \xi_2)], \quad n = 1, 2, 3, \dots,$$

where

$$\xi_2 = y_n + ha_{21}f(t_n, y_n),$$

and $w_2 = 1 - w_1$, $\tau_2 = 1/(2w_2)$ and $a_{21} = \tau_2$ and where w_1 is varied on the interval [0, 1/2].

Make a table of the infinity norm of the error, that is, $||y - y_{exact}||_{\infty}$, for three values $w_1 = 0$, $w_1 = 1/4$ and $w_1 = 1/2$ for N = 5, 10, 20, 40, 80, 160, 320, 640, 1280 where the step size h = 1/N. You do not need to turn in any plots for this case — just your code and table.

Additionally, for the case N = 80 make a plot of the error $||y - y_{exact}||_{\infty}$ as a function of w_1 for $w_1 \in [0, 1/2]$ with enough resolution (i.e. enough values of w_1) for a smooth curve. What is your estimate for the best value of w_1 to minimize the error? Test out another ODE with a different exact solution to test the hypothesis that the best w_1 is problem dependent. You don't need to report a detailed error analysis here but make a comment about the new optimal w_1 .