Weekly Homework 9

Instructor: David Carchedi Topos Theory

July 8, 2013

Problem 1. Prime elements.

Definition 1. An element $u \in \mathbb{L}$ of a locale is **prime** if

i) $u \neq 1$ and

- ii) For all a and $b \in \mathbb{L}$, if $a \wedge b \leq u$ then either $a \leq u$ or $b \leq u$.
- 1. a) Show that for any locale \mathbb{L} , there is a natural bijection between points of \mathbb{L} and prime elements of \mathbb{L} .
- 1. b) Show that for a topological space X, an element $U \in \mathscr{O}(X)$ is prime if and only if it is the compliment of an irreducible closed subset.

Problem 2. A "pointless" locale

Let \mathbb{L} be the sublattice of $\mathscr{O}(\mathbb{R})$ consisting of those open subsets U such that

$$\overline{\mathrm{Int}\,(U)} = U.$$

(These are called **regular** open subsets.) Show that:

(a) \mathbb{L} is a locale

(b) \mathbb{L} has no points.

Problem 3. Stone Duality

(a) Show that the functor

 $\mathscr{O}:\mathbb{TOP}\to\mathbb{LOC}$

is left adjoint to

$$pt : \mathbb{LOC} \to \mathbb{TOP}.$$

- (b) Show that η_X is an isomorphism if and only if X is sober, where η is the unit of the adjunction.
- (c) Show that $\epsilon_{\mathbb{L}}$ is an isomorphism if and only if \mathbb{L} is spatial, where ϵ is the co-unit of the adjunction.
- (d) Deduce that $\mathscr{O} \dashv pt$ restricts to an equivalence between sober topological spaces and spatial locales.
- (e) Deduce that sober spaces are reflective in \mathbb{TOP} .

Problem 4. The Sierpiński space

Definition 2. The Sierpiński space Sp is the set $\{0,1\}$ equipped with the topology

$$\mathscr{O}(Sp) = \{\{1\}, \emptyset, \{0, 1\}\}\$$

- (a) Show that the Sierpiński space is sober.
- (b) Show that there is a functor, defined on objects as

$$\begin{aligned} \operatorname{Fr}\left(\,\cdot\,\right) : \mathbf{Set} &\to \operatorname{Frm} \\ A &\mapsto \mathscr{O}\left(Sp^{A}\right), \end{aligned}$$

which is left adjoint to the forgetful functor from frames to sets. (In particular, one sees that $\mathscr{O}(Sp)$ is the free frame on one generator.)

Remark. The functor $Fr(\cdot)$ sends a set A to the free frame on the set A. From this exercise we see that free frames are spatial. Since every frame is the quotient frame of a free frame, it follows dually that any locale is a sublocale of a spatial locale.

Problem 5. Locales from a topos.

Let \mathcal{E} be a topos and E and object in \mathcal{E} . Show that the poset of subobjects of E naturally form a locale.