Weekly Homework 2

Instructor: David Carchedi Topos Theory

April 22, 2013

Problem 1. Examples of Presheaves

(a) Let X, Y, and Z be topological spaces. Consider the presheaves $C(\cdot, Y)$ and $C(\cdot, Z)$ on X of continuous functions into Y and Z respectively, and consider their coproduct in the category $\mathbf{Set}^{\mathscr{O}(X)^{op}}$,

$$C\left(\cdot,Y\right)\prod C\left(\cdot,Z\right).$$

Show that it is not a sheaf (in general). Show that the sheaf $C(\cdot, Y \coprod Z)$ is a sheaf, and that it is the coproduct of $C(\cdot, Y)$ and $C(\cdot, Z)$ in the category $\mathbf{Sh}(X)$.

- (b) Consider the presheaf K_0 on the 2-sphere S^2 , which assigns each open subset U the set of isomorphism classes of finite dimensional vector bundles over U. Show that it is not separated.
- (c) Let $\pi: V \to X$ be a vector bundle. Show that the assignment to each open subset U the set of vector bundle automorphisms of $V|_U$ (covering the identity of U) assembles naturally into a presheaf $\mathbf{Aut}(V)$ on X. Prove $\mathbf{Aut}(V)$ is a sheaf, or give a counterexample.

Problem 2. Adjunctions and the Free Co-limit Co-completion

(a) Show that if

$$\mathscr{C} \stackrel{G}{\underset{F}{\longleftrightarrow}} \mathscr{D},$$

is an adjunction with F left adjoint to G (written $F \dashv G$), then the co-unit

 $\varepsilon: FG \Rightarrow id_{\mathscr{D}}$ is an isomorphism if and only if the right adjoint G is full and faithful.

- (b) Show every adjunction induces an equivalence between, on one hand, the full subcategory of \mathscr{C} on which the unit is an isomorphism, and on the other hand, the full subcategory of \mathscr{D} on which the co-unit is an isomorphism.
- (c) Let \mathscr{C} and \mathscr{D} be categories with \mathscr{C} small. Consider the functor

$$y^*: \mathscr{D}^{\mathbf{Set}^{\mathscr{C}^{op}}} \to \mathscr{D}^{\mathscr{C}}$$

given by precomposition with the Yoneda embedding y. Show that if \mathcal{D} is cocomplete, then y^* has a left adjoint, $\mathbf{Lan}_y(\cdot)$. Show that unit is always an isomorphism, and identify the essential image of $\mathbf{Lan}_y(\cdot)$ as those functors

$$\theta: \mathbf{Set}^{\mathscr{C}^{op}} o \mathscr{D}$$

which preserve small colimits, denoted by $\mathscr{D}_{cocont.}^{\mathbf{Set}^{\mathscr{C}^{op}}}$. Combine this with (a) to show that precomposition with y induces an equivalence of categories

$$\mathscr{D}^{\mathbf{Set}^{\mathscr{C}^{op}}}_{cocont.} \stackrel{\sim}{\longrightarrow} \mathscr{D}^{\mathscr{C}}.$$

In particular, this shows that any functor

$$F:\mathscr{C}\to\mathscr{D}$$

extends to a colimit preserving functor

$$\tilde{F}: \mathbf{Set}^{\mathscr{C}^{op}} \to \mathscr{D},$$

unique up to natural isomorphism, such that \tilde{F} agrees with F on representables.

(d) Use the Yoneda lemma to show that in the situation above, if $F : \mathscr{C} \to \mathscr{D}$, that $\mathbf{Lan}_y(F)$ has a right adjoint R_F , and give and explicit formula for R_F on objects. Show that if $\mathscr{C} = \Delta$ is the simplex category and

$$\Delta^{\bullet}: \Delta \to Top$$

is the standard cosimplicial space

$$[n] \mapsto \Delta^n = \{(t_0, \dots, t_n) \in \mathbb{R}^{n+1} | t_i \ge 0, t_i = 1\},\$$

then adjunction $\mathbf{Lan}_y(\Delta^{\bullet}) \dashv R_{\Delta^{\bullet}}$ is the standard geometric realization functor / singular nerve adjunction. If instead, one considers the full and faithful inclusion

$$i:\Delta\hookrightarrow\mathbf{Cat}$$

of Δ into the category of small categories, show that the right adjoint to $\mathbf{Lan}_{y}\left(i\right)$ is the functor

$$N:\mathbf{Cat}\to\mathbf{Set}^{\Delta^{op}}$$

assigning a small category its nerve.