Weekly Homework 10

Instructor: David Carchedi Topos Theory

 $\mathrm{July}\ 12,\ 2013$

Problem 1. Epimorphisms and Monomorphisms in a Topos

Let \mathscr{E} be a topos.

(a) Let $m: A \to B$ be a monomorphism in \mathscr{E} , and let

$$\phi_m: B \to \Omega$$

be a map to the subobject classifier of \mathscr{E} classifying m, and similarly denote by ϕ_B the map classifying the maximal subobject of B (i.e. id_B). Denote by

$$m': E = \varprojlim (B \rightrightarrows \Omega) \to B$$

the equalizer diagram for ϕ_m and ϕ_B . Show that m and m' represent the same subobject of B. Deduce that a morphism in a topos is an isomorphism if and only if it is both a monomorphism and an epimorphism.

(b) Let $f: X \to Y$ be a map of sets. Denote by

$$X \times_Y X \rightrightarrows X$$

the kernel pair of f and by

$$Y \rightrightarrows Y \coprod_X Y$$

the cokernel pair of f. Show that the coequalizer of the kernel pair and the equalizer of the cokernel pair both coincide with the set f(X). Deduce that for $f: X \to Y$ a map in \mathscr{E} ,

$$X \to \varprojlim \left(Y \rightrightarrows Y \coprod_X Y \right) \to Y$$

and

$$X \to \underline{\lim} (X \times_Y X \rightrightarrows X) \to Y$$

are both factorizations of f by an epimorphism follows by a monomorphism.

(c) Show that the factorization of a morphism f in $\mathscr E$ into an epimorphism followed by a monomorphism is unique up to isomorphism. Deduce that $f:X\to Y$ is an epimorphism, if and only if the canonical map

$$\varprojlim (X \times_Y X \rightrightarrows X) \to Y$$

is an isomorphism.

Problem 2. Geometric Morphisms between Presheaf Topoi

Let $\varphi:\mathscr{C}\to\mathscr{D}$ be a functor between small categories. Denote by

$$\varphi^*: \mathbf{Set}^{\mathscr{D}^{op}} o \mathbf{Set}^{\mathscr{C}^{op}}$$

the obvious restriction functor. Show:

- (a) φ^* has a left adjoint $\varphi_! := \operatorname{Lan}_{y_{\mathscr{C}}} y_{\mathscr{D}} \circ \varphi$.
- (b) φ^* preserves colimits. Deduce that it has a right adjoint φ_* given by

$$\varphi_*(Y)(D) = \operatorname{Hom}(\varphi^*y(D), Y).$$

- (c) Show the following are equivalent:
- i) The pair (φ_*, φ^*) is a geometric embedding.
- ii) The counit $\varphi^*\varphi_* \Rightarrow id$ is an isomorphism.
- iii) The unit $id \Rightarrow \varphi^*\varphi_!$ is an isomorphism.
- iv) The functor φ is full and faithful.

Problem 3. Étale Geometric Morphisms

Let $k: B \to A$ be a morphism in a topos \mathscr{E} . Show that the functor

$$k^*: \mathscr{E}/A \to \mathscr{E}/B$$

induced by pullback has both a left adjoint \sum_k and a right adjoint \prod_k . Conclude that the pair $(k_* = \prod_k, k^*)$ constitute a geometric morphism

$$\mathscr{E}/B \to \mathscr{E}/A$$
.

Geometric morphisms of this form are called **étale**.