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Motivation

▶ In general, the subproblems associated to solving an elliptic QVI are obtaining the
solution S(yn−1) to a VI (for some yn−1) where S(w) is the unique solution to

Find y ∈ K(w) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(w).

▶ In image processing, the following class of problems arises

Given f ∈ L2(Ω) and α : Ω → R, consider

min 1
2

∥div p + f∥2
L2(Ω) s.t p ∈ K, (P)

where
K := {p ∈ H0(div) : |p|∞ ≤ α},

and

H0(div) := {w ∈ L2(Ω)N : div w ∈ L2(Ω) & ν · w = 0 on ∂Ω}.
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Motivation

The proper choice of α allows to denoise images incredibly well.

Given f ∈ L2(Ω) and α : Ω → R, consider

min 1
2

∥div p + f∥2
L2(Ω) s.t p ∈ K := {p ∈ H0(div) : |p|∞ ≤ α}. (P)

Noisy observation Reconstruction sequence Sequence of α
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Motivation

In order to approximate the solution to

Given f ∈ L2(Ω) and α : Ω → R, consider

min 1
2

∥div p + f∥2
L2(Ω) s.t p ∈ K := {p ∈ H0(div) : |p|∞ ≤ α}. (P)

We consider the sequence of problems

Let γn → ∞, and for each n ∈ N let pn be the solution to

min
p∈H1

0(Ω)N

1
2
∥div p + f∥2

L2(Ω) + γn

2
∥[|p| − α]+∥2

L2(Ω) + 1
2γn

∥∇p∥L2(Ω). (Pn)

The term

▶ γn

2 ∥[|p| − α]+∥2
L2(Ω) is the Moreau-Yosida regularization of IK.

▶ 1
2γn

∥∇p∥L2(Ω) is a singular perturbation - lifts from H0(div) to H1
0(Ω).
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Motivation
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L2(Ω) + 1
2γn
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Q: Does pn converges to a solution of (P)?

Well... div pn → div p∗ where p∗ ∈ H0(div) solves

min 1
2

∥div p + f∥2
L2(Ω) s.t p ∈ K ∩ H1

0(Ω)N
H0(div)

. (P∗)
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Motivation

▶ Will the regularity of α determines if

K ∩ H1
0(Ω)N

H0(div)
≡ K,

where K = {p ∈ H0(div) : |p|∞ ≤ α}.

▶ In the QVI setting, obstacles are implicit (not given a priori), hence understanding
density issues becomes of the utmost importance.
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Introduction and Further motivations

9/34 QVIs



Introduction

Consider

▶ X a Banach space (separable, reflexive)

▶ K ⊂ X a closed, convex, and non-empty.

▶ Y ⊂ X a dense subspace, i.e., Y
X = X

We study the following density question:

Does K ∩ Y
X = K hold true?

The typical example is the initial question one

K = {f ∈ X : |f (x)| ≤ α(x) a.e., x ∈ Ω},

where Ω ⊂ RN , X = W 1,p(Ω), and Y is
given by smooth maps on Ω, e.g., C∞(Ω).

First answer

The dense embedding Y ↪→ X
is not enough to guarantee

K ∩ Y
X = K.

Counterexample in [HR(2015)]

Why do we care?

▶ Optimization:
perturbations and duality.

▶ Algorithmic and
approximation relevance.

Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in
Sobolev spaces, J Math. Anal. Appl., 2015.
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Counterexample by Martin Hairer

K ∩ Y
X = K is not necessarily inherited from embeddings!

Let Y ⊂ L2(Ω) be constructed as follows. Define g ∈ L2(Ω) be strictly positive and
unbounded on a dense set in Ω, and define h ∈ Y if h = zg a.e. with z ∈ C(Ω).
We endow Y with the norm |h|Y := supx∈Ω |z(x)|.
It follows that Y is dense in L2(Ω), and if α > 0, then

K = {f ∈ L2(Ω) : |f (x)| ≤ α a.e., x ∈ Ω}, & K ∩ Y = {0}.

A continuous and dense embedding Y ↪→ X is not enough to guarantee

K ∩ Y
X = K!
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Optimization and Regularization Methods

Consider the optimization problem

min F (u) s.t. u ∈ K (P)

▶ F : X → R ∪ {+∞} is continuous,
seq.-w.l.s.c., and coercive.

Consider the regularization of (P)

min F (u) + Rn(u) (Pn)

▶ Rn : X → R ∪ {+∞} are
perturbations of the indicator map IK.

▶ IK(u) = 0 if u ∈ K, IK(u) = +∞ u /∈ K.

Examples for Rn

1. Tikhonov regularization (γn → +∞)

Rn(u) = IK(u) + 1
2γn

|u|αY .

2. Moreau-Yosida-Tikhonov regularization:

Rn(u) = γn

2
inf
v∈K

|u − v|2X + 1
2γn

|u|αY .

3. Conformal disc. Xn ⊂ Xn+1 ⊂ X ,
dim(Xn) < ∞, ∀n ∈ N

Rn(u) = IK∩Xn
(u), Y := ∪n∈NXn.

4. Conf. disc. + Moreau-Yosida reg:

Rn(u) = γn

2
inf
v∈K

|u − v|2X + IXn
(u),

Y := ∪n∈NXn.
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Optimization and Regularization Methods (Obstacle example)

The obstacle problem

min 1
2

∫
Ω

|∇u|2 dx −
∫

Ω
fu dx

subject to u ∈ K,

The regularized obstacle problem

min 1
2

∫
Ω

|∇u|2 dx −
∫

Ω
fu dx + Rn(u)

over u ∈ H1
0(Ω).

where for some α : Ω → R we consider K := {w ∈ H1
0(Ω) : u ≤ α}

Examples for Rn

1. (Tikhonov) Suppose γn → ∞, Y = W 1,p
0 (Ω) with p > 2,

Rn(u) = IK(u) + 1
2γn

∫
Ω

|∇u|p dx

2. (Moreau-Yosida-Tikhonov) regularization:

Rn(u) = γn

2

∫
Ω

max(0, u − α)2 dx + 1
2γn

∫
Ω

|∇u|p dx.
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VariationaI Inequalities and singular perturbations

Let X, Y be Hilbert space, with Y ↪→ X dense

A : X → X∗, and A1 : Y → Y ∗ Lipschitz and strongly monotone.

K ⊂ X closed, convex, and non-empty, and K ∩ Y non-empty.

Consider the sequence of problems

Find un ∈ Y :
⟨

A(un) + 1
γn

A1(un) − f, v − un

⟩
≥ 0, ∀v ∈ K ∩ Y

The limit problem is given by

Find u ∈ X : ⟨A(u) − f, v − un⟩ ≥ 0, ∀v ∈ K ∩ Y
X
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VariationaI Inequalities and Galerkin methods

Consider the non-monotone Galerkin approximation

Find un ∈ X : ⟨A(un) − f, v − un⟩ ≥ 0, ∀v ∈ Kn

where, in general, Kn ̸⊂ K, Kn+1 ̸⊂ Kn.

Mosco convergence of FEM-discretized Kn required for consistency+stability.

Recovery sequences requires interpolation procedure which is only defined on
the (supposedly) dense subset K ∩ Y of K where typically Y = C∞(Ω) or
Y = C(Ω).
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Gamma-convergence
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The Role of Γ-convergence

min F (u) s.t. u ∈ K (P) min F (u) + Rn(u) (Pn)

What guarantees that the minimizers of (Pn) are related to the ones of (P)?

Γ−convergence

We say Gn = F + Rn Γ−converges to G = F + IK if

1. If un → u then G(u) ≤ lim inf Gn(un).
2. For every u, there is a sequence {un} converging to u such

G(u) ≥ lim sup Gn(un).
Then minimizers converge to minimizers: Every cluster point of the sequence

of minimizers {un} to Gn is a minimizer of G.
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Density and Γ-convergence

The density property links (P) and (Pn) through Γ-convergence:

Theorem - HRR(2017)

Sufficiency. If K ∩ Y
X = K holds true, then

Γ − lim
n→∞

(F + Rn) = F + IK,

in both, the weak and strong topology.
Provided that (Pn) admits a minimizer un, each weak cluster point of {un} is a
minimizer to (P).
Necessity. In case Rn involves the Moreau-Yosida regularization (examples 2 &
4) then,

Γ − lim
n→∞

(F + Rn) = F + IK∩Y
X .
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Sufficient conditions
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Going back to the initial motivation

Let Ω ⊂ RN be a domain with smooth boundary ∂Ω and let 1 ≤ p < +∞.

Then smooth functions are dense in Sobolev spaces:

C∞(Ω)
W 1,p(Ω)

= W 1,p(Ω),

where W 1,p(Ω)= Functions in Lp(Ω) with weak gradients in Lp(Ω)N .

Consider an “obstacle” α : Ω → R. Does it hold that

{f ∈ C∞(Ω) : |f | ≤ α a.e.}
W 1,p(Ω)

= {f ∈ W 1,p(Ω) : |f | ≤ α a.e.} ?

▶ Is (in this case) the density of C∞(Ω) into W 1,p(Ω) enough to guarantee the
density result?

▶ Does the regularity of α play a role?
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Sufficient conditions on α : Ω → R for density

Let Ω be Lipschitz, α ∈ C(Ω) with ess infx∈Ωα(x) > 0, consider the the set

KG(X) := {f ∈ X : |(Gf )(x)| ≤ α(x) a.e., x ∈ Ω},

where for 1 ≤ p < ∞
▶ G ∈ {id, ∇, div}. ▶ X ∈ {Lp(Ω), W 1,p

0 (Ω), W 1,p(Ω), H0(div; Ω)},

where

H0(div, Ω) := {v ∈ L2(Ω)N : div v ∈ L2(Ω), v · n = 0 on ∂Ω},

and W 1,p
0 (Ω) = {v ∈ Lp(Ω) : |∇v| ∈ Lp(Ω)N , v = 0 on ∂Ω}.

21/34 QVIs



Sufficient conditions on α : Ω → R for density
Let Ω be Lipschitz, α ∈ C(Ω) with ess infx∈Ωα(x) > 0, consider the the set

KG(X) := {f ∈ X : |(Gf )(x)| ≤ α(x) a.e., x ∈ Ω},

where for 1 ≤ p < ∞
▶ G ∈ {id, ∇, div} ▶ X ∈ {Lp(Ω), W 1,p

0 (Ω), W 1,p(Ω), H0(div; Ω)}
Theorem - HR(2015)-HRR(2017)

1. For X ∈ {Lp(Ω), W 1,p
0 (Ω), H0(div; Ω)}, and G = id

KG(X) ∩ C∞
c (Ω)X = KG(X),

2. If X = W 1,p
0 (Ω) & G = ∇, or X = H0(div; Ω) & G = div, the above holds.

3. If X = W 1,p(Ω), then

Kid(X) ∩ C∞(Ω)
X

= Kid(X).

Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in
Sobolev spaces, J Math. Anal. Appl., 2015.

Hintermüller, R., Rösel, Density of convex intersections and applic. , Proc. Royal Soc. A, 2017.
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Some obstacles are bad!

Are there obstacles α : Ω → R such that the density property of interest does
not hold?

THEOREM - [HRR(2017)]

Let Ω ⊂ RN with N ≥ 2, then there exists α ∈ W 1,N(Ω) ∩ L∞(Ω) with
ess infx∈Ωα(x) > 0, such that

1. For 1 ≤ p ≤ ∞

Kid(Lp(Ω)) ∩ C(Ω)Lp(Ω)
⊊ Kid(Lp(Ω)).

2. For 1 ≤ p ≤ N , and for X ∈ {W 1,p(Ω), W 1,p
0 (Ω)}

Kid(X) ∩ C(Ω)Lp(Ω)
⊊ Kid(X).

▶ A highly oscillatory α destroys density!

Hintermüller, R., Rösel, Density of convex intersections and applications, Proc. Royal Soc. A,
2017.
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not hold?

THEOREM - [HRR(2017)]

Let Ω ⊂ RN with N ≥ 2, then there exists α ∈ W 1,N(Ω) ∩ L∞(Ω) with
ess infx∈Ωα(x) > 0, such that

1. For 1 ≤ p ≤ ∞

Kid(Lp(Ω)) ∩ C(Ω)Lp(Ω)
⊊ Kid(Lp(Ω)).

2. For 1 ≤ p ≤ N , and for X ∈ {W 1,p(Ω), W 1,p
0 (Ω)}

Kid(X) ∩ C(Ω)Lp(Ω)
⊊ Kid(X).

▶ A highly oscillatory α destroys density!

Hintermüller, R., Rösel, Density of convex intersections and applications, Proc. Royal Soc. A,
2017.
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Obstacle arising from PDEs

▶ Consider a second order differential operator in divergence form:

B =
N∑

i,j=1
− ∂

∂xi
bij(x) ∂

∂xj
+

n∑
i=1

bi(x) ∂

∂xi
+ b0(x)

where bij, bi, b0 ∈ L∞(Ω) for 1 ≤ i, j ≤ N , the matrix [bij(x)] is symmetric a.e.
in Ω and such that B is uniformly monotone over H1

0(Ω), i.e. there exists κ > 0
such that

⟨Bu, u⟩ ≥ κ|u|2H1
0(Ω), ∀u ∈ H1

0(Ω).
▶ We consider

K(X) := {f ∈ X : |f (x)| ≤ α(x) a.e., x ∈ Ω},

suppose that
Bα = g,

where g ∈ H1(Ω)∗, and ⟨g, v⟩ ≥ 0 for all non-negative v ∈ H1
0(Ω).
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Obstacle arising from PDEs

THEOREM - [HRR(2017)]

Suppose that α ∈ H1(Ω) such that for Bα ≥ 0 in H−1(Ω), for some B as
before. Then

K(Y ∩ H1
0(Ω))

H1
0(Ω)

= K(H1
0(Ω))

in the following cases:

1. ∂Ω ∈ C0,1, bij ∈ C0,1(Ω) or bij ∈ C1(Ω): Y = H2
loc(Ω),

2. ∂Ω ∈ C1,1 or Ω convex, bij ∈ C0,1(Ω): Y = H2(Ω),
3. ∂Ω ∈ C0,1, bij, bi, b0 ∈ Cm+1(Ω), m ∈ N0: Y = Hm+2

loc (Ω),
4. ∂Ω ∈ Cm+2, aij, bi, c ∈ Cm+1(Ω), m ∈ N0: Y = Hm+2(Ω).

Hintermüller, R., Rösel, Density of convex intersections and applications, Proc. Royal Soc. A,
2017.
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A sample of solvers for
problems/subproblems
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Solvers - A sample of methods

▶ In the obstacle case, subproblems may reduce to

For γ > 0, consider

F (y) := Ay − f + γ(y − Φ(y))+ = 0,

or

F (y) := Ay − f + γ(y − Φ(yn−1))+ = 0.

▶ In the gradient case,

F (y) = Ay − f + γ∇∗
(

(|∇y| − Φ(yn−1))+ ∇y

|∇y|

)
= 0.
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Solvers - A sample of methods

Semismooth Newton
In order to solve

F (y) = 0,

we consider y0 ∈ V , and the Newton iteration
yk+1 = yk − GF (yk)−1F (yk), k = 0, 1, 2, . . .

where GF (y) is a (presumably invertible) Newton derivative of F , which is defined
to satisfy

lim
h→0

∥F (y + h) − F (y) − GF (y + h)h∥
∥h∥

= 0.

Provided F (y∗) = 0, ∥GF (y)−1∥ ≤ m for y ∈ N(y∗) then {yn} converges
superlinearly to a solution y∗ of F (y) = 0 provided ∥y0 − y∗∥ is sufficiently
small.
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From Fréchet to Newton...

Fréchet derivative
F : D ⊂ X → Z is called Fréchet differentiable on an open set U ⊂ D if there
exists G(x) ∈ L(X, Z) such that, for every x ∈ U ,

lim
|h|X→0

|F (x + h) − F (x) − G(x)h|Z
|h|X

= 0.

Newton derivative
F : D ⊂ X → Z is called Newton differentiable on an open set U ⊂ D if there
exists a family of mappings G : U → L(X, Z) such that, for every x ∈ U ,

lim
|h|X→0

|F (x + h) − F (x) − G(x+h)h|Z
|h|X

= 0.

The map G is called a Newton derivative of F .
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Facts on the Newton derivative

Newton derivatives need not be unique...
Newton derivative - obstacle type case

Denote Fmax : Lq(Ω) → Lp(Ω) the pointwise max operator Fmax(x) =
max(0, x) and define

Gmax(x)(s) =

 0, x(s) < 0;
δ, x(s) = 0;
1, x(s) > 0.

Then,

Gmax is not in general a N -derivative for max(0, ·) : Lp(Ω) → Lp(Ω) for
1 ≤ p ≤ ∞.

The map max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞ is
N -differentiable on Lq(Ω) and G is an N -derivative. (norm gap
phenomenon)
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Facts on the Newton derivative

Newton derivative - gradient case

Let W = W 1,p
0 (Ω) and X = W 1,s′

0 (Ω) where 1/s + 1/s′ = 1 and 3 ≤ 3s ≤
p < +∞ Denote F∇ : W → X ′ to

⟨F∇(y), y⟩X ′,X =
∫

Ω+(y)
P (∇y) · ∇w dx =

∫
Ω+(y)

(|∇y| − φ)+∇y · ∇w

|∇y|
dx

where
P (∇y) = q(∇y)b(∇y),

with q(v) = v/|v| and b(z) = (|z| − φ)+.

Then, G∇(y) : W → X ′ given by

⟨G∇(y)v, w⟩X ′,X =
∫

Ω+(y)
(GP (∇y)∇v) · ∇w dx,

for all y, v ∈ W and w ∈ X is a Newton derivative of F∇.
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Newton derivative - gradient case

Let P (∇y) = q(∇y)b(∇y) with q(v) = v/|v| and b(z) = (|z| − φ)+. Then,
G∇(y) : W → X ′ given by

⟨G∇(y)v, w⟩X ′,X =
∫

Ω+(y)
(GP (∇y)∇v) · ∇w dx,

for all y, v ∈ W and w ∈ X is a Newton derivative of F∇, where GP (y) :
Lp(Ω)n → Ls(Ω)n with 3 ≤ 3s ≤ p < ∞ given by

GP (y) = q(y)Gb(y) + b(y)Q(y),

is a Newton derivative of P .

Here Gb ∈ L(Lp(Ω)n, Ls(Ω)) for 1 ≤ ŝ < p̂ ≤ ∞ given by

Gb(y) = Gmax(|y| − φ)yT/|y|

is the Newton derivative of b : Lp̂(Ω)n → Lŝ(Ω), and Q is given by

Q(y) = 1
|y|

(
id − yyT

|y|2

)
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An augmented Lagrangian methods from Kanzow and Steck

Let A : V → V ′ and f ∈ V ′ for some (real) Hilbert space V . Consider

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y) (QVI)

where for G(w, z) = Φ(w) − Ψ(Gz), we take

K(w) := {z ∈ V : G(w, z) ≥ 0}.

The following Lagrangian can be considered if Ψ is smooth

Lρ(y, λ)h = ⟨A(y) − f, h⟩ + ρ

(
G(y, y) + λ

ρ
− P[0,+∞)

(
G(y, y) + λ

ρ

)
, Ψ′(Gy)Gh

)
,

and provided that you have a good solver for

Lρ(y, λ) = 0,

and augmented Lagrangian algorithm can be considered with function space
convergent properties and applicability to a wide variety of examples!
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Thanks for your attention!

Thanks Christian, Daniel, Silke,
and all people involved in the

organization!

The speakers felt at home in
Würzburg!
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