Introduction to Quasi-variational Inequalities in Hilbert Spaces

Concerning sub-problems: Density and Solvers

C. N. Rautenberg

Department of Mathematical Sciences
George Mason University

Julius-Maximilians-
UN!!VERSITÄT WÜRZBURG

Contents

- Density of convex intersections

1. Motivation
2. Conditions for density and Gamma-convergence
3. Sufficient conditions for density
4. Counter-examples
5. Obstacles arising from PDEs

- Some notes about solvers

1. SSN and AL

Density of convex intersections Motivation

Motivation

- In general, the subproblems associated to solving an elliptic QVI are obtaining the solution $S\left(y_{n-1}\right)$ to a VI (for some y_{n-1}) where $S(\mathrm{w})$ is the unique solution to

Find $y \in \mathbf{K}(\mathrm{w}):\langle A(y)-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(\mathrm{w})$.

Motivation

- In general, the subproblems associated to solving an elliptic QVI are obtaining the solution $S\left(y_{n-1}\right)$ to a VI (for some $\left.y_{n-1}\right)$ where $S(\mathrm{w})$ is the unique solution to

Find $y \in \mathbf{K}(\mathbf{w}):\langle A(y)-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(\mathbf{w})$.

- In image processing, the following class of problems arises

Given $f \in L^{2}(\Omega)$ and $\alpha: \Omega \rightarrow \mathbb{R}$, consider

$$
\begin{equation*}
\min \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2} \quad \text { s.t } \quad \mathbf{p} \in \mathbf{K} \tag{P}
\end{equation*}
$$

where

$$
\mathbf{K}:=\left\{\mathbf{p} \in H_{0}(\text { div }):|\mathbf{p}|_{\infty} \leq \alpha\right\}
$$

and

$$
H_{0}(\operatorname{div}):=\left\{w \in L^{2}(\Omega)^{N}: \operatorname{div} w \in L^{2}(\Omega) \quad \& \quad \nu \cdot w=0 \text { on } \partial \Omega\right\}
$$

Motivation

The proper choice of α allows to denoise images incredibly well.
Given $f \in L^{2}(\Omega)$ and $\alpha: \Omega \rightarrow \mathbb{R}$, consider

$$
\begin{equation*}
\min \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2} \quad \text { s.t } \quad \mathbf{p} \in \mathbf{K}:=\left\{\mathbf{p} \in H_{0}(\operatorname{div}):|\mathbf{p}|_{\infty} \leq \alpha\right\} . \tag{P}
\end{equation*}
$$

Noisy observation

Reconstruction sequence

Sequence of α

Motivation

In order to approximate the solution to

$$
\begin{align*}
& \text { Given } f \in L^{2}(\Omega) \text { and } \alpha: \Omega \rightarrow \mathbb{R} \text {, consider } \\
& \qquad \min \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2} \quad \text { s.t } \quad \mathbf{p} \in \mathbf{K}:=\left\{\mathbf{p} \in H_{0}(\operatorname{div}):|\mathbf{p}|_{\infty} \leq \alpha\right\} \tag{P}
\end{align*}
$$

Motivation

In order to approximate the solution to
Given $f \in L^{2}(\Omega)$ and $\alpha: \Omega \rightarrow \mathbb{R}$, consider

$$
\begin{equation*}
\min \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2} \quad \text { s.t } \quad \mathbf{p} \in \mathbf{K}:=\left\{\mathbf{p} \in H_{0}(\text { div }):|\mathbf{p}|_{\infty} \leq \alpha\right\} . \tag{P}
\end{equation*}
$$

We consider the sequence of problems
Let $\gamma_{n} \rightarrow \infty$, and for each $n \in \mathbb{N}$ let \mathbf{p}_{n} be the solution to

$$
\min _{\mathbf{p} \in H_{0}^{1}(\Omega)^{N}} \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2}+\frac{\gamma_{n}}{2}\left\|[|\mathbf{p}|-\alpha]^{+}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2 \gamma_{n}}\|\nabla \mathbf{p}\|_{L^{2}(\Omega)} .\left(\mathbb{P}_{n}\right)
$$

The term

- $\frac{\gamma_{n}}{2}\left\|[|\mathbf{p}|-\alpha]^{+}\right\|_{L^{2}(\Omega)}^{2}$ is the Moreau-Yosida regularization of $I_{\mathbf{K}}$.
- $\frac{1}{2 \gamma_{n}}\|\nabla \mathbf{p}\|_{L^{2}(\Omega)}$ is a singular perturbation - lifts from $H_{0}(\mathrm{div})$ to $H_{0}^{1}(\Omega)$.

Motivation

Given $f \in L^{2}(\Omega)$ and $\alpha: \Omega \rightarrow \mathbb{R}$, consider

$$
\begin{equation*}
\min \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2} \quad \text { s.t } \quad \mathbf{p} \in \mathbf{K}:=\left\{\mathbf{p} \in H_{0}(\operatorname{div}):|\mathbf{p}|_{\infty} \leq \alpha\right\} . \tag{P}
\end{equation*}
$$

Let $\gamma_{n} \rightarrow \infty$, and for each $n \in \mathbb{N}$ let \mathbf{p}_{n} be the solution to

$$
\min _{\mathbf{p} \in H_{0}^{1}(\Omega)^{N}} \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2}+\frac{\gamma_{n}}{2}\left\|[|\mathbf{p}|-\alpha]^{+}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2 \gamma_{n}}\|\nabla \mathbf{p}\|_{L^{2}(\Omega)} \cdot\left(\mathbb{P}_{n}\right)
$$

Q: Does \mathbf{p}_{n} converges to a solution of (\mathbb{P}) ?

Motivation

Given $f \in L^{2}(\Omega)$ and $\alpha: \Omega \rightarrow \mathbb{R}$, consider

$$
\begin{equation*}
\min \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2} \quad \text { s.t } \quad \mathbf{p} \in \mathbf{K}:=\left\{\mathbf{p} \in H_{0}(\operatorname{div}):|\mathbf{p}|_{\infty} \leq \alpha\right\} . \tag{P}
\end{equation*}
$$

Let $\gamma_{n} \rightarrow \infty$, and for each $n \in \mathbb{N}$ let \mathbf{p}_{n} be the solution to

$$
\min _{\mathbf{p} \in H_{0}^{1}(\Omega)^{N}} \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2}+\frac{\gamma_{n}}{2}\left\|[|\mathbf{p}|-\alpha]^{+}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2 \gamma_{n}}\|\nabla \mathbf{p}\|_{L^{2}(\Omega)} . \quad\left(\mathbb{P}_{n}\right)
$$

Q: Does \mathbf{p}_{n} converges to a solution of (\mathbb{P}) ?
Well... div $\mathbf{p}_{n} \rightarrow \operatorname{div} \mathbf{p}^{*}$ where $\mathbf{p}^{*} \in H_{0}($ div $)$ solves

$$
\begin{equation*}
\min \frac{1}{2}\|\operatorname{div} \mathbf{p}+f\|_{L^{2}(\Omega)}^{2} \quad \text { s.t } \quad \mathbf{p} \in \overline{\mathbf{K} \cap H_{0}^{1}(\Omega)^{N}} H_{0}(\text { div }) . \tag{*}
\end{equation*}
$$

Motivation

- Will the regularity of α determines if

$$
\begin{aligned}
& \overline{\mathbf{K} \cap H_{0}^{1}(\Omega)^{N}} H_{0}(\text { div }) \\
& \text { where } \mathbf{K}=\left\{\mathbf{k} \in H_{0}(\text { div }):\right. \\
& \left.|\mathbf{p}|_{\infty} \leq \alpha\right\}
\end{aligned}
$$

- In the QVI setting, obstacles are implicit (not given a priori), hence understanding density issues becomes of the utmost importance.

Introduction and Further motivations

Introduction

Consider

- X a Banach space (separable, reflexive)
- $\mathrm{K} \subset X$ a closed, convex, and non-empty.
- $Y \subset X$ a dense subspace, i.e., $\bar{Y}^{X}=X$

We study the following density question:

Does $\overline{\mathbf{K} \cap Y}^{X}=\mathbf{K}$ hold true?

The typical example is the initial question one

$$
\begin{aligned}
& \mathbf{K}=\{f \in X:|f(x)| \leq \alpha(x) \text { a.e., } x \in \Omega\} \text {, } \\
& \text { where } \Omega \subset \mathbb{R}^{N}, X=W^{1, p}(\Omega) \text {, and } Y \text { is } \\
& \text { given by smooth maps on } \Omega \text {, e.g., } C^{\infty}(\bar{\Omega}) .
\end{aligned}
$$

Introduction

Consider

- X a Banach space (separable, reflexive)
- $\mathrm{K} \subset X$ a closed, convex, and non-empty.
- $Y \subset X$ a dense subspace, i.e., $\bar{Y}^{X}=X$

We study the following density question:

Does ${\overline{\mathbf{K}} \cap Y^{X}}^{X}=\mathbf{K}$ hold true?

The typical example is the initial question one

First answer
The dense embedding $Y \hookrightarrow X$ is not enough to guarantee

$$
{\overline{\mathbf{K} \cap Y^{\prime}}}^{X}=\mathbf{K}
$$

Counterexample in [HR(2015)]
$\mathbf{K}=\{f \in X:|f(x)| \leq \alpha(x)$ a.e., $x \in \Omega\}$, where $\Omega \subset \mathbb{R}^{N}, X=W^{1, p}(\Omega)$, and Y is given by smooth maps on Ω, e.g., $C^{\infty}(\bar{\Omega})$.

- Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces, J Math. Anal. Appl., 2015.

Introduction

Consider

- X a Banach space (separable, reflexive)
- $\mathrm{K} \subset X$ a closed, convex, and non-empty.
- $Y \subset X$ a dense subspace, i.e., $\bar{Y}^{X}=X$ We study the following density question:

Does $\overline{\mathbf{K} \cap Y}^{X}=\mathbf{K}$ hold true?

The typical example is the initial question one $\mathbf{K}=\{f \in X:|f(x)| \leq \alpha(x)$ a.e., $x \in \Omega\}$, where $\Omega \subset \mathbb{R}^{N}, X=W^{1, p}(\Omega)$, and Y is given by smooth maps on Ω, e.g., $C^{\infty}(\bar{\Omega})$.

First answer
The dense embedding $Y \hookrightarrow X$ is not enough to guarantee

$$
{\overline{\mathbf{K} \cap Y^{\prime}}}^{X}=\mathbf{K} .
$$

Counterexample in [HR(2015)]

Why do we care?

- Optimization: perturbations and duality.
- Algorithmic and approximation relevance.
- Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces, J Math. Anal. Appl., 2015.

Counterexample by Martin Hairer

$\overline{\mathbf{K} \cap Y}^{X}=\mathbf{K}$ is not necessarily inherited from embeddings!

Let $Y \subset L^{2}(\Omega)$ be constructed as follows. Define $g \in L^{2}(\Omega)$ be strictly positive and unbounded on a dense set in Ω, and define $h \in Y$ if $h=z g$ a.e. with $z \in C(\bar{\Omega})$. We endow Y with the norm $|h|_{Y}:=\sup _{x \in \Omega}|z(x)|$.
It follows that Y is dense in $L^{2}(\Omega)$, and if $\alpha>0$, then

$$
\mathbf{K}=\left\{f \in L^{2}(\Omega):|f(x)| \leq \alpha \text { a.e., } x \in \Omega\right\}, \quad \& \quad \mathbf{K} \cap Y=\{0\} .
$$

A continuous and dense embedding $Y \hookrightarrow X$ is not enough to guarantee

$$
{\overline{\mathbf{K} \cap Y^{\prime}}}^{X}=\mathbf{K}!
$$

Optimization and Regularization Methods

Consider the optimization problem

$$
\min F(u) \text { s.t. } u \in \mathbf{K} \quad(\mathbb{P})
$$

- $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is continuous, seq.-w.l.s.c., and coercive.

Optimization and Regularization Methods

Consider the optimization problem

$$
\begin{equation*}
\min F(u) \text { s.t. } u \in \mathbf{K} \tag{P}
\end{equation*}
$$

- $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is continuous, seq.-w.l.s.c., and coercive.

Consider the regularization of (\mathbb{P})

$$
\min F(u)+R_{n}(u) \quad\left(\mathbb{P}_{n}\right)
$$

- $R_{n}: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are perturbations of the indicator map $I_{\mathbf{K}}$.
- $I_{\mathbf{K}}(u)=0$ if $u \in \mathbf{K}, I_{\mathbf{K}}(u)=+\infty u \notin \mathbf{K}$.

Optimization and Regularization Methods

Consider the optimization problem

$$
\begin{equation*}
\min F(u) \quad \text { s.t. } \quad u \in \mathbf{K} \tag{P}
\end{equation*}
$$

- $F: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is continuous, seq.-w.l.s.c., and coercive.

Consider the regularization of (\mathbb{P})

$$
\min F(u)+R_{n}(u) \quad\left(\mathbb{P}_{n}\right)
$$

- $R_{n}: X \rightarrow \mathbb{R} \cup\{+\infty\}$ are perturbations of the indicator map $I_{\mathbf{K}}$.
$-I_{\mathbf{K}}(u)=0$ if $u \in \mathbf{K}, I_{\mathbf{K}}(u)=+\infty u \notin \mathbf{K}$.

Examples for R_{n}

1. Tikhonov regularization $\left(\gamma_{n} \rightarrow+\infty\right)$

$$
R_{n}(u)=I_{\mathbf{K}}(u)+\frac{1}{2 \gamma_{n}}|u|_{Y}^{\alpha} .
$$

2. Moreau-Yosida-Tikhonov regularization:

$$
R_{n}(u)=\frac{\gamma_{n}}{2} \inf _{v \in \mathbf{K}}|u-v|_{X}^{2}+\frac{1}{2 \gamma_{n}}|u|_{Y}^{\alpha} .
$$

3. Conformal disc. $X_{n} \subset X_{n+1} \subset X$, $\operatorname{dim}\left(X_{n}\right)<\infty, \forall n \in \mathbb{N}$

$$
R_{n}(u)=I_{\mathbf{K} \cap X_{n}}(u), \quad Y:=\cup_{n \in \mathbb{N}} X_{n} .
$$

4. Conf. disc. + Moreau-Yosida reg:

$$
\begin{aligned}
& R_{n}(u)=\frac{\gamma_{n}}{2} \inf _{v \in \mathbf{K}}|u-v|_{X}^{2}+I_{X_{n}}(u), \\
Y & :=\cup_{n \in \mathbb{N}} X_{n} .
\end{aligned}
$$

Optimization and Regularization Methods (Obstacle example)

The obstacle problem $\min \frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x-\int_{\Omega} f u \mathrm{~d} x$
subject to $u \in \mathbf{K}$,

The regularized obstacle problem

$$
\begin{aligned}
& \min \frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x-\int_{\Omega} f u \mathrm{~d} x+R_{n}(u) \\
& \text { over } u \in H_{0}^{1}(\Omega) .
\end{aligned}
$$

where for some $\alpha: \Omega \rightarrow \mathbb{R}$ we consider $\mathbf{K}:=\left\{w \in H_{0}^{1}(\Omega): u \leq \alpha\right\}$

Examples for R_{n}

1. (Tikhonov) Suppose $\gamma_{n} \rightarrow \infty, Y=W_{0}^{1, p}(\Omega)$ with $p>2$,

$$
R_{n}(u)=I_{\mathbf{K}}(u)+\frac{1}{2 \gamma_{n}} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x
$$

2. (Moreau-Yosida-Tikhonov) regularization:

$$
R_{n}(u)=\frac{\gamma_{n}}{2} \int_{\Omega} \max (0, u-\alpha)^{2} \mathrm{~d} x+\frac{1}{2 \gamma_{n}} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x .
$$

Variational Inequalities and singular perturbations

Let X, Y be Hilbert space, with $Y \hookrightarrow X$ dense

- $A: X \rightarrow X^{*}$, and $A_{1}: Y \rightarrow Y^{*}$ Lipschitz and strongly monotone.
- $\mathbf{K} \subset X$ closed, convex, and non-empty, and $\mathbf{K} \cap Y$ non-empty.

Consider the sequence of problems

$$
\text { Find } u_{n} \in Y:\left\langle A\left(u_{n}\right)+\frac{1}{\gamma_{n}} A_{1}\left(u_{n}\right)-f, v-u_{n}\right\rangle \geq 0, \quad \forall v \in \mathbf{K} \cap Y
$$

Variational Inequalities and singular perturbations

Let X, Y be Hilbert space, with $Y \hookrightarrow X$ dense

- $A: X \rightarrow X^{*}$, and $A_{1}: Y \rightarrow Y^{*}$ Lipschitz and strongly monotone.
- $\mathbf{K} \subset X$ closed, convex, and non-empty, and $\mathbf{K} \cap Y$ non-empty.

Consider the sequence of problems

$$
\text { Find } u_{n} \in Y:\left\langle A\left(u_{n}\right)+\frac{1}{\gamma_{n}} A_{1}\left(u_{n}\right)-f, v-u_{n}\right\rangle \geq 0, \quad \forall v \in \mathbf{K} \cap Y
$$

The limit problem is given by

$$
\text { Find } u \in X:\left\langle A(u)-f, v-u_{n}\right\rangle \geq 0, \quad \forall v \in \overline{\mathbf{K} \cap Y}^{X}
$$

Variational Inequalities and Galerkin methods

Consider the non-monotone Galerkin approximation

$$
\text { Find } u_{n} \in X:\left\langle A\left(u_{n}\right)-f, v-u_{n}\right\rangle \geq 0, \quad \forall v \in \mathbf{K}_{n}
$$

where, in general, $\mathbf{K}_{n} \not \subset \mathbf{K}, \mathbf{K}_{n+1} \not \subset \mathbf{K}_{n}$.

- Mosco convergence of FEM-discretized \mathbf{K}_{n} required for consistency+stability.
- Recovery sequences requires interpolation procedure which is only defined on the (supposedly) dense subset $\mathbf{K} \cap Y$ of \mathbf{K} where typically $Y=C^{\infty}(\bar{\Omega})$ or $Y=C(\bar{\Omega})$.

Gamma-convergence

The Role of Γ-convergence

$$
\begin{equation*}
\min F(u) \text { s.t. } \quad u \in \mathbf{K} \tag{P}
\end{equation*}
$$

$$
\min F(u)+R_{n}(u) \quad\left(\mathbb{P}_{n}\right)
$$

What guarantees that the minimizers of $\left(\mathbb{P}_{n}\right)$ are related to the ones of (\mathbb{P}) ?

The Role of Γ-convergence

$$
\begin{equation*}
\min F(u) \text { s.t. } \quad u \in \mathbf{K} \quad(\mathbb{P}) \quad \min F(u)+R_{n}(u) \quad\left(\mathbb{P}_{n}\right) \tag{P}
\end{equation*}
$$

What guarantees that the minimizers of $\left(\mathbb{P}_{n}\right)$ are related to the ones of (\mathbb{P}) ?

$$
\text { We say } G_{n}=F+\frac{\Gamma-\text { convergence }}{R_{n} \quad \Gamma \text {-converges to } \quad G=F+I_{\mathrm{K}} \text { if }}
$$

The Role of Γ-convergence

$$
\begin{equation*}
\min F(u) \text { s.t. } \quad u \in \mathbf{K} \quad(\mathbb{P}) \quad \min F(u)+R_{n}(u) \quad\left(\mathbb{P}_{n}\right) \tag{P}
\end{equation*}
$$

What guarantees that the minimizers of $\left(\mathbb{P}_{n}\right)$ are related to the ones of (\mathbb{P}) ?

$$
\text { We say } G_{n}=F+R_{n} \quad \Gamma \text {-converges to convence } \quad G=F+I_{\mathbf{K}} \text { if }
$$

1. If $u_{n} \rightarrow u$ then $G(u) \leq \liminf G_{n}\left(u_{n}\right)$.

The Role of Γ-convergence

$$
\min F(u) \text { s.t. } \quad u \in \mathbf{K} \quad(\mathbb{P}) \quad \min F(u)+R_{n}(u) \quad\left(\mathbb{P}_{n}\right)
$$

What guarantees that the minimizers of $\left(\mathbb{P}_{n}\right)$ are related to the ones of (\mathbb{P}) ?

$$
\text { We say } G_{n}=F+R_{n} \frac{\Gamma-\text { convergence }}{} \quad \text {-converges to } \quad G=F+I_{\mathbf{K}} \text { if }
$$

1. If $u_{n} \rightarrow u$ then $G(u) \leq \liminf G_{n}\left(u_{n}\right)$.
2. For every u, there is a sequence $\left\{u_{n}\right\}$ converging to u such

$$
G(u) \geq \limsup G_{n}\left(u_{n}\right)
$$

The Role of Γ-convergence

$$
\begin{equation*}
\min F(u) \quad \text { s.t. } \quad u \in \mathbf{K} \quad(\mathbb{P}) \quad \min F(u)+R_{n}(u) \tag{P}
\end{equation*}
$$

What guarantees that the minimizers of $\left(\mathbb{P}_{n}\right)$ are related to the ones of (\mathbb{P}) ?

$$
\text { We say } G_{n}=F+\frac{\Gamma-\text { convergence }}{R_{n} \quad \Gamma-\text { converges to } \quad G=F+I_{\mathrm{K}} \text { if }}
$$

1. If $u_{n} \rightarrow u$ then $G(u) \leq \liminf G_{n}\left(u_{n}\right)$.
2. For every u, there is a sequence $\left\{u_{n}\right\}$ converging to u such

$$
G(u) \geq \limsup G_{n}\left(u_{n}\right) .
$$

Then minimizers converge to minimizers: Every cluster point of the sequence of minimizers $\left\{u_{n}\right\}$ to G_{n} is a minimizer of G.

Density and Γ-convergence

The density property links (\mathbb{P}) and $\left(\mathbb{P}_{n}\right)$ through Γ-convergence:
Theorem - HRR(2017)
Sufficiency. If $\overline{\mathbf{K} \cap Y^{X}}=\mathbf{K}$ holds true, then

$$
\Gamma-\lim _{n \rightarrow \infty}\left(F+R_{n}\right)=F+I_{\mathbf{K}},
$$

in both, the weak and strong topology.
Provided that $\left(\mathbb{P}_{n}\right)$ admits a minimizer u_{n}, each weak cluster point of $\left\{u_{n}\right\}$ is a minimizer to (\mathbb{P}).
Necessity. In case R_{n} involves the Moreau-Yosida regularization (examples 2 \& 4) then,

$$
\Gamma-\lim _{n \rightarrow \infty}\left(F+R_{n}\right)=F+I_{{\overline{\mathbf{K}} \cap Y^{\prime}}^{x} .} .
$$

Sufficient conditions

Going back to the initial motivation

Let $\Omega \subset \mathbb{R}^{N}$ be a domain with smooth boundary $\partial \Omega$ and let $1 \leq p<+\infty$.
Then smooth functions are dense in Sobolev spaces:

$$
{\overline{C^{\infty}(\bar{\Omega})}}^{W^{1, p}(\Omega)}=W^{1, p}(\Omega),
$$

where $W^{1, p}(\Omega)=$ Functions in $L^{p}(\Omega)$ with weak gradients in $L^{p}(\Omega)^{N}$.

Going back to the initial motivation

Let $\Omega \subset \mathbb{R}^{N}$ be a domain with smooth boundary $\partial \Omega$ and let $1 \leq p<+\infty$.
Then smooth functions are dense in Sobolev spaces:

$$
{\overline{C^{\infty}(\bar{\Omega})}}^{W^{1, p}(\Omega)}=W^{1, p}(\Omega),
$$

where $W^{1, p}(\Omega)=$ Functions in $L^{p}(\Omega)$ with weak gradients in $L^{p}(\Omega)^{N}$.

Consider an "obstacle" $\alpha: \Omega \rightarrow \mathbb{R}$. Does it hold that

$$
\overline{\left\{f \in C^{\infty}(\bar{\Omega}):|f| \leq \alpha \text { a.e. }\right\}^{W^{1, p}(\Omega)}}=\left\{f \in W^{1, p}(\Omega):|f| \leq \alpha \text { a.e. }\right\} \text { ? }
$$

Going back to the initial motivation

Let $\Omega \subset \mathbb{R}^{N}$ be a domain with smooth boundary $\partial \Omega$ and let $1 \leq p<+\infty$.
Then smooth functions are dense in Sobolev spaces:

$$
{\overline{C^{\infty}(\bar{\Omega})}}^{W^{1, p}(\Omega)}=W^{1, p}(\Omega),
$$

where $W^{1, p}(\Omega)=$ Functions in $L^{p}(\Omega)$ with weak gradients in $L^{p}(\Omega)^{N}$.

Consider an "obstacle" $\alpha: \Omega \rightarrow \mathbb{R}$. Does it hold that

$$
\overline{\left\{f \in C^{\infty}(\bar{\Omega}):|f| \leq \alpha \text { a.e. }\right\}^{W^{1, p}(\Omega)}}=\left\{f \in W^{1, p}(\Omega):|f| \leq \alpha \text { a.e. }\right\} \text { ? }
$$

- Is (in this case) the density of $C^{\infty}(\bar{\Omega})$ into $W^{1, p}(\Omega)$ enough to guarantee the density result?
- Does the regularity of α play a role?

Sufficient conditions on $\alpha: \Omega \rightarrow \mathbb{R}$ for density

Let Ω be Lipschitz, $\alpha \in C(\bar{\Omega})$ with ess $\inf _{x \in \Omega} \alpha(x)>0$, consider the the set

$$
\mathbf{K}_{G}(X):=\{f \in X:|(G f)(x)| \leq \alpha(x) \text { a.e., } x \in \Omega\},
$$

where for $1 \leq p<\infty$
$\triangleright G \in\{\mathrm{id}, \nabla, \operatorname{div}\} . \quad X \in\left\{L^{p}(\Omega), W_{0}^{1, p}(\Omega), W^{1, p}(\Omega), H_{0}(\operatorname{div} ; \Omega)\right\}$,
where

$$
H_{0}(\operatorname{div}, \Omega):=\left\{\mathbf{v} \in L^{2}(\Omega)^{N}: \operatorname{div} \mathbf{v} \in L^{2}(\Omega), \mathbf{v} \cdot \mathbf{n}=0 \text { on } \partial \Omega\right\}
$$

and $W_{0}^{1, p}(\Omega)=\left\{v \in L^{p}(\Omega):|\nabla v| \in L^{p}(\Omega)^{N}, v=0\right.$ on $\left.\partial \Omega\right\}$.

Sufficient conditions on $\alpha: \Omega \rightarrow \mathbb{R}$ for density

Let Ω be Lipschitz, $\alpha \in C(\bar{\Omega})$ with ess $\inf _{x \in \Omega} \alpha(x)>0$, consider the the set

$$
\mathbf{K}_{G}(X):=\{f \in X:|(G f)(x)| \leq \alpha(x) \text { a.e., } x \in \Omega\},
$$

where for $1 \leq p<\infty$
$\rightarrow G \in\{\mathrm{id}, \nabla, \operatorname{div}\}>X \in\left\{L^{p}(\Omega), W_{0}^{1, p}(\Omega), W^{1, p}(\Omega), H_{0}(\operatorname{div} ; \Omega)\right\}$
Theorem - HR(2015)-HRR(2017)

1. For $X \in\left\{L^{p}(\Omega), W_{0}^{1, p}(\Omega), H_{0}(\operatorname{div} ; \Omega)\right\}$, and $G=\mathrm{id}$

$$
{\overline{\mathbf{K}_{G}(X) \cap C_{c}^{\infty}(\Omega)}}^{X}=\mathbf{K}_{G}(X),
$$

2. If $X=W_{0}^{1, p}(\Omega) \& G=\nabla$, or $X=H_{0}($ div; $\Omega) \& G=$ div, the above holds.
3. If $X=W^{1, p}(\Omega)$, then

$$
{\overline{\mathbf{K}_{\mathrm{id}}(X) \cap C^{\infty}(\bar{\Omega})}}^{X}=\mathbf{K}_{\mathrm{id}}(X) .
$$

- Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces, J Math. Anal. Appl., 2015.
- Hintermüller, R., Rösel, Density of convex intersections and applic. , Proc. Royal Soc. A, 2017.

Some obstacles are bad!

Are there obstacles $\alpha: \Omega \rightarrow \mathbb{R}$ such that the density property of interest does not hold?

Some obstacles are bad!

Are there obstacles $\alpha: \Omega \rightarrow \mathbb{R}$ such that the density property of interest does not hold?

THEOREM - [HRR(2017)]

Let $\Omega \subset \mathbb{R}^{N}$ with $N \geq 2$, then there exists $\alpha \in W^{1, N}(\Omega) \cap L^{\infty}(\Omega)$ with ess $\inf _{x \in \Omega} \alpha(x)>0$, such that

1. For $1 \leq p \leq \infty$

$$
\overline{\mathbf{K}_{\mathrm{id}}\left(L^{p}(\Omega)\right) \cap C(\Omega)}{ }^{L^{p}(\Omega)} \subsetneq \mathbf{K}_{\mathrm{id}}\left(L^{p}(\Omega)\right) .
$$

2. For $1 \leq p \leq N$, and for $X \in\left\{W^{1, p}(\Omega), W_{0}^{1, p}(\Omega)\right\}$

$$
\overline{\mathbf{K}_{\mathrm{id}}(X) \cap C(\Omega)}{ }^{L^{p}(\Omega)} \subsetneq \mathbf{K}_{\mathrm{id}}(X) .
$$

- A highly oscillatory α destroys density!
- Hintermüller, R., Rösel, Density of convex intersections and applications, Proc. Royal Soc. A, 2017.

Obstacle arising from PDEs

- Consider a second order differential operator in divergence form:

$$
B=\sum_{i, j=1}^{N}-\frac{\partial}{\partial x_{i}} b_{i j}(x) \frac{\partial}{\partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}}+b_{0}(x)
$$

where $b_{i j}, b_{i}, b_{0} \in L^{\infty}(\Omega)$ for $1 \leq i, j \leq N$, the matrix $\left[b_{i j}(x)\right]$ is symmetric a.e. in Ω and such that B is uniformly monotone over $H_{0}^{1}(\Omega)$, i.e. there exists $\kappa>0$ such that

$$
\langle B u, u\rangle \geq \kappa|u|_{H_{0}^{1}(\Omega)}^{2}, \quad \forall u \in H_{0}^{1}(\Omega)
$$

- We consider

$$
\mathbf{K}(X):=\{f \in X:|f(x)| \leq \alpha(x) \text { a.e., } x \in \Omega\},
$$

suppose that

$$
B \alpha=g
$$

where $g \in H^{1}(\Omega)^{*}$, and $\langle g, v\rangle \geq 0$ for all non-negative $v \in H_{0}^{1}(\Omega)$.

Obstacle arising from PDEs

THEOREM - [HRR(2017)]

Suppose that $\alpha \in H^{1}(\Omega)$ such that for $B \alpha \geq 0$ in $H^{-1}(\Omega)$, for some B as before. Then

$$
\overline{\mathbf{K}\left(Y \cap H_{0}^{1}(\Omega)\right)}{ }^{H_{0}^{1}(\Omega)}=\mathbf{K}\left(H_{0}^{1}(\Omega)\right)
$$

in the following cases:

$$
\begin{array}{ll}
\text { 1. } \partial \Omega \in C^{0,1}, b_{i j} \in C^{0,1}(\Omega) \text { or } b_{i j} \in C^{1}(\Omega): & Y=H_{\text {loc }}^{2}(\Omega), \\
\text { 2. } \partial \Omega \in C^{1,1} \text { or } \Omega \text { convex, } b_{i j} \in C^{0,1}(\Omega): & Y=H^{2}(\Omega), \\
\text { 3. } \partial \Omega \in C^{0,1}, b_{i j}, b_{i}, b_{0} \in C^{m+1}(\Omega), m \in \mathbb{N}_{0}: & Y=H_{\text {loc }}^{m+2}(\Omega), \\
\text { 4. } \partial \Omega \in C^{m+2}, a_{i j}, b_{i}, c \in C^{m+1}(\bar{\Omega}), m \in \mathbb{N}_{0}: & Y=H^{m+2}(\Omega) .
\end{array}
$$

- Hintermüller, R., Rösel, Density of convex intersections and applications, Proc. Royal Soc. A, 2017.

A sample of solvers for problems/subproblems

Solvers - A sample of methods

- In the obstacle case, subproblems may reduce to

For $\gamma>0$, consider

$$
F(y):=A y-f+\gamma(y-\Phi(y))^{+}=0,
$$

or

$$
F(y):=A y-f+\gamma\left(y-\Phi\left(y_{n-1}\right)\right)^{+}=0 .
$$

- In the gradient case,

$$
F(y)=A y-f+\gamma \nabla^{*}\left(\left(|\nabla y|-\Phi\left(y_{n-1}\right)\right)^{+} \frac{\nabla y}{|\nabla y|}\right)=0 .
$$

Solvers - A sample of methods

Semismooth Newton

In order to solve

$$
F(y)=0
$$

we consider $y_{0} \in V$, and the Newton iteration

$$
y_{k+1}=y_{k}-G_{F}\left(y_{k}\right)^{-1} F\left(y_{k}\right), \quad k=0,1,2, \ldots
$$

where $G_{F}(y)$ is a (presumably invertible) Newton derivative of F, which is defined to satisfy

$$
\lim _{h \rightarrow 0} \frac{\left\|F(y+h)-F(y)-G_{F}(y+h) h\right\|}{\|h\|}=0
$$

Solvers - A sample of methods

Semismooth Newton

In order to solve

$$
F(y)=0,
$$

we consider $y_{0} \in V$, and the Newton iteration

$$
y_{k+1}=y_{k}-G_{F}\left(y_{k}\right)^{-1} F\left(y_{k}\right), \quad k=0,1,2, \ldots
$$

where $G_{F}(y)$ is a (presumably invertible) Newton derivative of F, which is defined to satisfy

$$
\lim _{h \rightarrow 0} \frac{\left\|F(y+h)-F(y)-G_{F}(y+h) h\right\|}{\|h\|}=0 .
$$

Provided $F\left(y^{*}\right)=0,\left\|G_{F}(y)^{-1}\right\| \leq m$ for $y \in N\left(y^{*}\right)$ then $\left\{y_{n}\right\}$ converges superlinearly to a solution y^{*} of $F(y)=0$ provided $\left\|y_{0}-y^{*}\right\|$ is sufficiently small.

From Fréchet to Newton...

Fréchet derivative

$F: D \subset X \rightarrow Z$ is called Fréchet differentiable on an open set $U \subset D$ if there exists $G(x) \in \mathcal{L}(X, Z)$ such that, for every $x \in U$,

$$
\lim _{|h|_{X} \rightarrow 0} \frac{|F(x+h)-F(x)-G(x) h|_{Z}}{|h|_{X}}=0
$$

From Fréchet to Newton...

Fréchet derivative

$F: D \subset X \rightarrow Z$ is called Fréchet differentiable on an open set $U \subset D$ if there exists $G(x) \in \mathcal{L}(X, Z)$ such that, for every $x \in U$,

$$
\lim _{|h|_{X} \rightarrow 0} \frac{|F(x+h)-F(x)-G(x) h|_{Z}}{|h|_{X}}=0 .
$$

Newton derivative

$F: D \subset X \rightarrow Z$ is called Newton differentiable on an open set $U \subset D$ if there exists a family of mappings $G: U \rightarrow \mathcal{L}(X, Z)$ such that, for every $x \in U$,

$$
\lim _{|h|_{X} \rightarrow 0} \frac{|F(x+h)-F(x)-G(x+h) h|_{Z}}{|h|_{X}}=0
$$

The map G is called a Newton derivative of F.

Facts on the Newton derivative

Newton derivatives need not be unique...

Newton derivative - obstacle type case

Denote $F_{\max }: L^{q}(\Omega) \rightarrow L^{p}(\Omega)$ the pointwise max operator $F_{\max }(x)=$ $\max (0, x)$ and define

$$
G_{\max }(x)(s)=\left\{\begin{array}{l}
0, x(s)<0 \\
\delta, x(s)=0 \\
1, x(s)>0
\end{array}\right.
$$

Then,

- $G_{\max }$ is not in general a N-derivative for $\max (0, \cdot): L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ for $1 \leq p \leq \infty$.
- The map $\max (0, \cdot): L^{q}(\Omega) \rightarrow L^{p}(\Omega)$ with $1 \leq p<q \leq \infty$ is N-differentiable on $L^{q}(\Omega)$ and G is an N-derivative. (norm gap phenomenon)

Facts on the Newton derivative

Newton derivative - gradient case

Let $W=W_{0}^{1, p}(\Omega)$ and $X=W_{0}^{1, s^{\prime}}(\Omega)$ where $1 / s+1 / s^{\prime}=1$ and $3 \leq 3 s \leq$ $p<+\infty$ Denote $F_{\nabla}: W \rightarrow X^{\prime}$ to

$$
\left\langle F_{\nabla}(y), y\right\rangle_{X^{\prime}, X}=\int_{\Omega^{+}(y)} P(\nabla y) \cdot \nabla w \mathrm{~d} x=\int_{\Omega^{+}(y)}(|\nabla y|-\varphi)^{+} \frac{\nabla y \cdot \nabla w}{|\nabla y|} \mathrm{d} x
$$

where

$$
P(\nabla y)=q(\nabla y) b(\nabla y)
$$

with $q(v)=v /|v|$ and $b(z)=(|z|-\varphi)^{+}$.

Facts on the Newton derivative

Newton derivative - gradient case

Let $W=W_{0}^{1, p}(\Omega)$ and $X=W_{0}^{1, s^{\prime}}(\Omega)$ where $1 / s+1 / s^{\prime}=1$ and $3 \leq 3 s \leq$ $p<+\infty$ Denote $F_{\nabla}: W \rightarrow X^{\prime}$ to

$$
\left\langle F_{\nabla}(y), y\right\rangle_{X^{\prime}, X}=\int_{\Omega^{+}(y)} P(\nabla y) \cdot \nabla w \mathrm{~d} x=\int_{\Omega^{+}(y)}(|\nabla y|-\varphi)^{+} \frac{\nabla y \cdot \nabla w}{|\nabla y|} \mathrm{d} x
$$

where

$$
P(\nabla y)=q(\nabla y) b(\nabla y)
$$

with $q(v)=v /|v|$ and $b(z)=(|z|-\varphi)^{+}$.
Then, $G_{\nabla}(y): W \rightarrow X^{\prime}$ given by

$$
\left\langle G_{\nabla}(y) v, w\right\rangle_{X^{\prime}, X}=\int_{\Omega^{+}(y)}\left(G_{P}(\nabla y) \nabla v\right) \cdot \nabla w \mathrm{~d} x
$$

for all $y, v \in W$ and $w \in X$ is a Newton derivative of F_{∇}.

Newton derivative - gradient case

Let $P(\nabla y)=q(\nabla y) b(\nabla y)$ with $q(v)=v /|v|$ and $b(z)=(|z|-\varphi)^{+}$. Then, $G_{\nabla}(y): W \rightarrow X^{\prime}$ given by

$$
\left\langle G_{\nabla}(y) v, w\right\rangle_{X^{\prime}, X}=\int_{\Omega^{+}(y)}\left(G_{P}(\nabla y) \nabla v\right) \cdot \nabla w \mathrm{~d} x
$$

for all $y, v \in W$ and $w \in X$ is a Newton derivative of F_{∇}, where $G_{P}(y)$: $L^{p}(\Omega)^{n} \rightarrow L^{s}(\Omega)^{n}$ with $3 \leq 3 s \leq p<\infty$ given by

$$
G_{P}(y)=q(y) G_{b}(y)+b(y) Q(y)
$$

is a Newton derivative of P.
Here $G_{b} \in \mathcal{L}\left(L^{p}(\Omega)^{n}, L^{s}(\Omega)\right)$ for $1 \leq \hat{s}<\hat{p} \leq \infty$ given by

$$
G_{b}(y)=G_{\max }(|y|-\varphi) y^{T} /|y|
$$

is the Newton derivative of $b: L^{\hat{p}}(\Omega)^{n} \rightarrow L^{\hat{s}}(\Omega)$, and Q is given by

$$
Q(y)=\frac{1}{|y|}\left(\mathrm{id}-\frac{y y^{T}}{|y|^{2}}\right)
$$

An augmented Lagrangian methods from Kanzow and Steck

Let $A: V \rightarrow V^{\prime}$ and $f \in V^{\prime}$ for some (real) Hilbert space V. Consider
Find $y \in \mathbf{K}(y):\langle A(y)-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(y)$
where for $G(w, z)=\Phi(w)-\Psi(G z)$, we take

$$
\mathbf{K}(w):=\{z \in V: G(w, z) \geq 0\} .
$$

The following Lagrangian can be considered if Ψ is smooth

$$
\mathcal{L}_{\rho}(y, \lambda) h=\langle A(y)-f, h\rangle+\rho\left(G(y, y)+\frac{\lambda}{\rho}-P_{[0,+\infty)}\left(G(y, y)+\frac{\lambda}{\rho}\right), \Psi^{\prime}(G y) G h\right),
$$

and provided that you have a good solver for

$$
\mathcal{L}_{\rho}(y, \lambda)=0,
$$

and augmented Lagrangian algorithm can be considered with function space convergent properties and applicability to a wide variety of examples!

Thanks for your attention!

Thanks Christian, Daniel, Silke, and all people involved in the organization!

The speakers felt at home in Würzburg!

