Introduction to Quasi-variational Inequalities in Hilbert Spaces Concerning sub-problems: Density and Solvers





- Density of convex intersections
- 1. Motivation
- 2. Conditions for density and Gamma-convergence
- 3. Sufficient conditions for density
- 4. Counter-examples
- 5. Obstacles arising from PDEs
- Some notes about solvers
- 1. SSN and AL

# Density of convex intersections Motivation

▶ In general, the subproblems associated to solving an elliptic QVI are obtaining the solution  $S(y_{n-1})$  to a VI (for some  $y_{n-1}$ ) where  $S(\mathbf{w})$  is the unique solution to

Find  $y \in \mathbf{K}(\mathbf{w}) : \langle A(y) - f, v - y \rangle \ge 0, \quad \forall v \in \mathbf{K}(\mathbf{w}).$ 

▶ In general, the subproblems associated to solving an elliptic QVI are obtaining the solution  $S(y_{n-1})$  to a VI (for some  $y_{n-1}$ ) where  $S(\mathbf{w})$  is the unique solution to

Find 
$$y \in \mathbf{K}(\mathbf{w}) : \langle A(y) - f, v - y \rangle \ge 0, \quad \forall v \in \mathbf{K}(\mathbf{w}).$$

► In image processing, the following class of problems arises

Given 
$$f \in L^2(\Omega)$$
 and  $\boldsymbol{\alpha} : \Omega \to \mathbb{R}$ , consider  

$$\min \frac{1}{2} \| \operatorname{div} \mathbf{p} + f \|_{L^2(\Omega)}^2 \quad \text{s.t} \quad \mathbf{p} \in \mathbf{K}, \qquad (\mathbb{P})$$
where  

$$\mathbf{K} := \{ \mathbf{p} \in H_0(\operatorname{div}) : |\mathbf{p}|_{\infty} \le \boldsymbol{\alpha} \},$$
and  

$$H_0(\operatorname{div}) := \{ w \in L^2(\Omega)^N : \operatorname{div} w \in L^2(\Omega) \quad \& \quad \nu \cdot w = 0 \text{ on } \partial\Omega \}.$$



The proper choice of  $\alpha$  allows to denoise images incredibly well.

Given 
$$f \in L^2(\Omega)$$
 and  $\boldsymbol{\alpha} : \Omega \to \mathbb{R}$ , consider  

$$\min \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 \quad \text{s.t} \quad \mathbf{p} \in \mathbf{K} := \{\mathbf{p} \in H_0(\operatorname{div}) : |\mathbf{p}|_{\infty} \leq \boldsymbol{\alpha}\}. \quad (\mathbb{P})$$



Noisy observation

Reconstruction sequence

Sequence of  $\alpha$ 



In order to approximate the solution to

Given 
$$f \in L^2(\Omega)$$
 and  $\alpha : \Omega \to \mathbb{R}$ , consider  

$$\min \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 \quad \text{s.t} \quad \mathbf{p} \in \mathbf{K} := \{\mathbf{p} \in H_0(\operatorname{div}) : |\mathbf{p}|_{\infty} \leq \alpha\}. \quad (\mathbb{P})$$



In order to approximate the solution to

Given 
$$f \in L^2(\Omega)$$
 and  $\boldsymbol{\alpha} : \Omega \to \mathbb{R}$ , consider  

$$\min \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 \quad \text{s.t} \quad \mathbf{p} \in \mathbf{K} := \{\mathbf{p} \in H_0(\operatorname{div}) : |\mathbf{p}|_{\infty} \leq \boldsymbol{\alpha}\}. \quad (\mathbb{P})$$

We consider the sequence of problems

Let 
$$\gamma_n \to \infty$$
, and for each  $n \in \mathbb{N}$  let  $\mathbf{p}_n$  be the solution to  

$$\min_{\mathbf{p}\in H_0^1(\Omega)^N} \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 + \frac{\gamma_n}{2} \|[|\mathbf{p}| - \alpha]^+\|_{L^2(\Omega)}^2 + \frac{1}{2\gamma_n} \|\nabla \mathbf{p}\|_{L^2(\Omega)}. \quad (\mathbb{P}_n)$$

The term

- $\blacktriangleright \frac{\gamma_n}{2} \| [|\mathbf{p}| \alpha]^+ \|_{L^2(\Omega)}^2$  is the Moreau-Yosida regularization of  $I_{\mathbf{K}}$ .
- $\blacktriangleright \frac{1}{2\gamma_n} \|\nabla \mathbf{p}\|_{L^2(\Omega)}$  is a singular perturbation lifts from  $H_0(\operatorname{div})$  to  $H_0^1(\Omega)$ .



Given 
$$f \in L^2(\Omega)$$
 and  $\boldsymbol{\alpha} : \Omega \to \mathbb{R}$ , consider  

$$\min \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 \quad \text{s.t} \quad \mathbf{p} \in \mathbf{K} := \{\mathbf{p} \in H_0(\operatorname{div}) : |\mathbf{p}|_{\infty} \le \boldsymbol{\alpha}\}. \quad (\mathbb{P})$$

Let 
$$\gamma_n \to \infty$$
, and for each  $n \in \mathbb{N}$  let  $\mathbf{p}_n$  be the solution to

$$\min_{\mathbf{p}\in H_0^1(\Omega)^N} \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 + \frac{\gamma_n}{2} \|[|\mathbf{p}| - \boldsymbol{\alpha}]^+\|_{L^2(\Omega)}^2 + \frac{1}{2\gamma_n} \|\nabla \mathbf{p}\|_{L^2(\Omega)}. \quad (\mathbb{P}_n)$$

Q: Does  $\mathbf{p}_n$  converges to a solution of ( $\mathbb{P}$ )?

Given 
$$f \in L^2(\Omega)$$
 and  $\boldsymbol{\alpha} : \Omega \to \mathbb{R}$ , consider  

$$\min \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 \quad \text{s.t} \quad \mathbf{p} \in \mathbf{K} := \{\mathbf{p} \in H_0(\operatorname{div}) : |\mathbf{p}|_{\infty} \le \boldsymbol{\alpha}\}. \quad (\mathbb{P})$$

Let  $\gamma_n \to \infty$ , and for each  $n \in \mathbb{N}$  let  $\mathbf{p}_n$  be the solution to

$$\min_{\mathbf{p}\in H_0^1(\Omega)^N} \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 + \frac{\gamma_n}{2} \|[|\mathbf{p}| - \boldsymbol{\alpha}]^+\|_{L^2(\Omega)}^2 + \frac{1}{2\gamma_n} \|\nabla \mathbf{p}\|_{L^2(\Omega)}. \quad (\mathbb{P}_n)$$

Q: Does  $\mathbf{p}_n$  converges to a solution of ( $\mathbb{P}$ )?

Well... div  $\mathbf{p}_n \to \mathsf{div} \ \mathbf{p}^*$  where  $\mathbf{p}^* \in H_0(\mathsf{div})$  solves

$$\min \frac{1}{2} \|\operatorname{div} \mathbf{p} + f\|_{L^2(\Omega)}^2 \quad \text{s.t} \quad \mathbf{p} \in \overline{\mathbf{K} \cap H_0^1(\Omega)^N}^{H_0(\operatorname{div})}.$$
 (P\*)

8/34

QVIs

 $\blacktriangleright$  Will the regularity of  $\alpha$  determines if

$$\overline{\mathbf{K} \cap H^1_0(\Omega)^N}^{H_0(\operatorname{div})} \equiv \mathbf{K},$$

where  $\mathbf{K} = \{\mathbf{p} \in H_0(\mathsf{div}) : |\mathbf{p}|_\infty \leq \boldsymbol{\alpha}\}.$ 

► In the QVI setting, obstacles are implicit (not given a priori), hence understanding density issues becomes of the utmost importance.



# Introduction and Further motivations

M

# Introduction

Consider

- ► X a Banach space (separable, reflexive)
- $\blacktriangleright$   $\mathbf{K} \subset X$  a closed, convex, and non-empty.
- ▶  $Y \subset X$  a dense subspace, i.e.,  $\overline{Y}^X = X$

We study the following density question:

Does  $\overline{\mathbf{K} \cap Y}^X = \mathbf{K}$  hold true?

The typical example is the initial question one

$$\mathbf{K} = \{ f \in X : |f(x)| \le \alpha(x) \text{ a.e., } x \in \Omega \},\$$

where  $\Omega \subset \mathbb{R}^N$ ,  $X = W^{1,p}(\Omega)$ , and Y is given by smooth maps on  $\Omega$ , e.g.,  $C^{\infty}(\overline{\Omega})$ .



# Introduction

Consider

X a Banach space (separable, reflexive)
K ⊂ X a closed, convex, and non-empty.
Y ⊂ X a dense subspace, i.e., Y
<sup>X</sup> = X
We study the following density question:

Does  $\overline{\mathbf{K} \cap Y}^X = \mathbf{K}$  hold true?

First answer

The dense embedding  $Y \, \hookrightarrow \, X$  is not enough to guarantee

$$\overline{\mathbf{K} \cap Y}^X = \mathbf{K}.$$

Counterexample in [HR(2015)]

The typical example is the initial question one

$$\mathbf{K} = \{ f \in X : |f(x)| \le \alpha(x) \text{ a.e., } x \in \Omega \},\$$

where  $\Omega \subset \mathbb{R}^N$ ,  $X = W^{1,p}(\Omega)$ , and Y is given by smooth maps on  $\Omega$ , e.g.,  $C^{\infty}(\overline{\Omega})$ .

 Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces, J Math. Anal. Appl., 2015.



# Introduction

Consider

X a Banach space (separable, reflexive)
 K ⊂ X a closed, convex, and non-empty.
 Y ⊂ X a dense subspace, i.e., Y
 <sup>X</sup> = X
 We study the following density question:

Does  $\overline{\mathbf{K} \cap Y}^X = \mathbf{K}$  hold true?

The typical example is the initial question one

$$\mathbf{K} = \{ f \in X : |f(x)| \le \alpha(x) \text{ a.e., } x \in \Omega \},\$$

where  $\Omega \subset \mathbb{R}^N$ ,  $X = W^{1,p}(\Omega)$ , and Y is given by smooth maps on  $\Omega$ , e.g.,  $C^{\infty}(\overline{\Omega})$ .

### First answer

The dense embedding  $Y \, \hookrightarrow \, X$  is not enough to guarantee

$$\overline{\mathbf{K} \cap Y}^X = \mathbf{K}.$$

Counterexample in [HR(2015)]

### Why do we care?

- Optimization: perturbations and duality.
   Algorithmic and approximation relevance.
- Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces, J Math. Anal. Appl., 2015.



 $\overline{\mathbf{K} \cap Y}^{X} = \mathbf{K}$  is not necessarily inherited from embeddings!

Let  $Y \subset L^2(\Omega)$  be constructed as follows. Define  $g \in L^2(\Omega)$  be strictly positive and unbounded on a dense set in  $\Omega$ , and define  $h \in Y$  if h = zg a.e. with  $z \in C(\overline{\Omega})$ . We endow Y with the norm  $|h|_Y := \sup_{x \in \Omega} |z(x)|$ .

It follows that Y is dense in  $L^2(\Omega)$ , and if  $\alpha > 0$ , then

 $\mathbf{K} = \{ f \in L^2(\Omega) : |f(x)| \le \alpha \text{ a.e., } x \in \Omega \}, \qquad \& \qquad \mathbf{K} \cap Y = \{ 0 \}.$ 

A continuous and dense embedding  $Y \hookrightarrow X$  is not enough to guarantee  $\overline{\mathbf{K} \cap Y}^X = \mathbf{K}!$ 



# **Optimization and Regularization Methods**

### Consider the optimization problem

 $\min F(u) \quad \text{s.t.} \quad u \in \mathbf{K} \quad \ (\mathbb{P})$ 

▶  $F: X \to \mathbb{R} \cup \{+\infty\}$  is continuous, seq.-w.l.s.c., and coercive.

# **Optimization and Regularization Methods**

| Consider the optimization problem                                                  | Consider the regularization of ( $\mathbb{P}$ )                                                                              |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $ \qquad \qquad \min F(u)  \text{s.t.}  u \in \mathbf{K}  (\mathbb{P}) $           | $\left  \begin{array}{c} \min F(u) + R_n(u)  (\mathbb{P}_n) \end{array} \right $                                             |
| ▶ $F: X \to \mathbb{R} \cup \{+\infty\}$ is continuous, seqw.l.s.c., and coercive. | ► $R_n : X \to \mathbb{R} \cup \{+\infty\}$ are perturbations of the indicator map $I_{\mathbf{K}}$ .                        |
|                                                                                    | $\blacktriangleright I_{\mathbf{K}}(u) = 0 \text{ if } u \in \mathbf{K}, I_{\mathbf{K}}(u) = +\infty \ u \notin \mathbf{K}.$ |



# **Optimization and Regularization Methods**



2. Moreau-Yosida-Tikhonov regularization:

$$R_n(u) = \frac{\gamma_n}{2} \inf_{v \in \mathbf{K}} |u - v|_X^2 + \frac{1}{2\gamma_n} |u|_Y^{\alpha}.$$

4. Conf. disc. + Moreau-Yosida reg:

$$R_n(u) = \frac{\gamma_n}{2} \inf_{v \in \mathbf{K}} |u - v|_X^2 + I_{X_n}(u),$$
$$Y := \bigcup_{n \in \mathbb{N}} X_n.$$

# Optimization and Regularization Methods (Obstacle example)

The obstacle problem

The regularized obstacle problem

$$\min \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x - \int_{\Omega} f u \, \mathrm{d}x$$
  
subject to  $u \in \mathbf{K}$ ,

$$\min \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x - \int_{\Omega} f u \, \mathrm{d}x + R_n(u)$$
  
over  $u \in H_0^1(\Omega)$ .

where for some  $\alpha:\Omega\to\mathbb{R}$  we consider  $\mathbf{K}:=\{w\in H^1_0(\Omega):u\leq\alpha\}$ 

### Examples for $R_n$

**1.** (Tikhonov) Suppose 
$$\gamma_n \to \infty$$
,  $Y = W_0^{1,p}(\Omega)$  with  $p > 2$ ,

$$R_n(u) = I_{\mathbf{K}}(u) + \frac{1}{2\gamma_n} \int_{\Omega} |\nabla u|^p \, \mathrm{d}x$$

2. (Moreau-Yosida-Tikhonov) regularization:

$$R_n(u) = \frac{\gamma_n}{2} \int_{\Omega} \max(0, u - \alpha)^2 \, \mathrm{d}x + \frac{1}{2\gamma_n} \int_{\Omega} |\nabla u|^p \, \mathrm{d}x.$$



# Variational Inequalities and singular perturbations

Let X,Y be Hilbert space, with  $Y \hookrightarrow X$  dense

- $A: X \to X^*$ , and  $A_1: Y \to Y^*$  Lipschitz and strongly monotone.
- $\mathbf{K} \subset X$  closed, convex, and non-empty, and  $\mathbf{K} \cap Y$  non-empty.

Consider the sequence of problems

Find 
$$u_n \in Y : \left\langle A(u_n) + \frac{1}{\gamma_n} A_1(u_n) - f, v - u_n \right\rangle \ge 0, \quad \forall v \in \mathbf{K} \cap Y$$

# Variational Inequalities and singular perturbations

Let X, Y be Hilbert space, with  $Y \hookrightarrow X$  dense

- $A: X \to X^*$ , and  $A_1: Y \to Y^*$  Lipschitz and strongly monotone.
- $\mathbf{K} \subset X$  closed, convex, and non-empty, and  $\mathbf{K} \cap Y$  non-empty.

Consider the sequence of problems

Find 
$$u_n \in Y : \left\langle A(u_n) + \frac{1}{\gamma_n} A_1(u_n) - f, v - u_n \right\rangle \ge 0, \quad \forall v \in \mathbf{K} \cap Y$$

The limit problem is given by

Find 
$$u \in X : \langle A(u) - f, v - u_n \rangle \ge 0, \quad \forall v \in \overline{\mathbf{K} \cap Y}^X$$



# Variational Inequalities and Galerkin methods

Consider the non-monotone Galerkin approximation

Find 
$$u_n \in X : \langle A(u_n) - f, v - u_n \rangle \ge 0$$
,  $\forall v \in \mathbf{K}_n$   
where, in general,  $\mathbf{K}_n \not\subset \mathbf{K}$ ,  $\mathbf{K}_{n+1} \not\subset \mathbf{K}_n$ .

- Mosco convergence of FEM-discretized  $\mathbf{K}_n$  required for consistency+stability.
- Recovery sequences requires interpolation procedure which is only defined on the (supposedly) dense subset  $\mathbf{K} \cap Y$  of  $\mathbf{K}$  where typically  $Y = C^{\infty}(\overline{\Omega})$  or  $Y = C(\overline{\Omega})$ .



# Gamma-convergence



 $\min F(u)$  s.t.  $u \in \mathbf{K}$  (P)

$$\min F(u) + R_n(u) \qquad (\mathbb{P}_n)$$

What guarantees that the minimizers of  $(\mathbb{P}_n)$  are related to the ones of  $(\mathbb{P})$ ?



 $\min F(u)$  s.t.  $u \in \mathbf{K}$  (P)

$$\min F(u) + R_n(u) \qquad (\mathbb{P}_n)$$

What guarantees that the minimizers of  $(\mathbb{P}_n)$  are related to the ones of  $(\mathbb{P})$ ?

 $\Gamma$ -convergence

We say 
$$G_n = F + R_n$$
  $\Gamma$ -converges to  $G = F + I_K$  if

 $\min F(u)$  s.t.  $u \in \mathbf{K}$  (P)

$$\min F(u) + R_n(u) \qquad (\mathbb{P}_n)$$

What guarantees that the minimizers of  $(\mathbb{P}_n)$  are related to the ones of  $(\mathbb{P})$ ?

 $\Gamma$ -convergence

We say 
$$G_n = F + R_n$$
  $\Gamma$ -converges to  $G = F + I_K$  if

1. If  $u_n \to u$  then  $G(u) \leq \liminf G_n(u_n)$ .

 $\min F(u)$  s.t.  $u \in \mathbf{K}$  (P)

 $\min F(u) + R_n(u) \qquad (\mathbb{P}_n)$ 

What guarantees that the minimizers of  $(\mathbb{P}_n)$  are related to the ones of  $(\mathbb{P})$ ?

 $\Gamma$ -convergence

We say 
$$G_n = F + R_n$$
  $\Gamma$ -converges to  $G = F + I_K$  if

1. If  $u_n \to u$  then  $G(u) \leq \liminf G_n(u_n)$ .

2. For every u, there is a sequence  $\{u_n\}$  converging to u such  $G(u) \ge \limsup G_n(u_n)$ .

 $\min F(u)$  s.t.  $u \in \mathbf{K}$  (P)

 $\min F(u) + R_n(u) \qquad (\mathbb{P}_n)$ 

What guarantees that the minimizers of  $(\mathbb{P}_n)$  are related to the ones of  $(\mathbb{P})$ ?

 $\Gamma$ -convergence

We say 
$$G_n = F + R_n$$
  $\Gamma$ -converges to  $G = F + I_K$  if

1. If  $u_n \to u$  then  $G(u) \leq \liminf G_n(u_n)$ .

2. For every u, there is a sequence  $\{u_n\}$  converging to u such  $G(u) \ge \limsup G_n(u_n)$ .

Then **minimizers converge to minimizers**: Every cluster point of the sequence of minimizers  $\{u_n\}$  to  $G_n$  is a minimizer of G.





The density property links ( $\mathbb{P}$ ) and ( $\mathbb{P}_n$ ) through  $\Gamma$ -convergence:

Theorem - HRR(2017)

Sufficiency. If  $\overline{\mathbf{K} \cap Y}^X = \mathbf{K}$  holds true, then

$$\Gamma - \lim_{n \to \infty} (F + R_n) = F + I_{\mathbf{K}},$$

in both, the weak and strong topology.

Provided that  $(\mathbb{P}_n)$  admits a minimizer  $u_n$ , each weak cluster point of  $\{u_n\}$  is a minimizer to  $(\mathbb{P})$ .

**Necessity.** In case  $R_n$  involves the *Moreau-Yosida regularization* (examples 2 & 4) then,

$$\Gamma - \lim_{n \to \infty} (F + R_n) = F + I_{\overline{\mathbf{K} \cap Y}^X}.$$



# Sufficient conditions



# Going back to the initial motivation

Let  $\Omega \subset \mathbb{R}^N$  be a domain with smooth boundary  $\partial \Omega$  and let  $1 \leq p < +\infty$ .

Then smooth functions are dense in Sobolev spaces:

$$\overline{C^{\infty}(\overline{\Omega})}^{W^{1,p}(\Omega)} = W^{1,p}(\Omega),$$

where  $W^{1,p}(\Omega)$ = Functions in  $L^p(\Omega)$  with weak gradients in  $L^p(\Omega)^N$ .



# Going back to the initial motivation

Let  $\Omega \subset \mathbb{R}^N$  be a domain with smooth boundary  $\partial \Omega$  and let  $1 \leq p < +\infty$ .

Then smooth functions are dense in Sobolev spaces:

$$\overline{C^{\infty}(\overline{\Omega})}^{W^{1,p}(\Omega)} = W^{1,p}(\Omega),$$

where  $W^{1,p}(\Omega)$ = Functions in  $L^p(\Omega)$  with weak gradients in  $L^p(\Omega)^N$ .

Consider an "obstacle"  $\alpha : \Omega \to \mathbb{R}$ . Does it hold that  $\overline{\{f \in C^{\infty}(\overline{\Omega}) : |f| \leq \alpha \text{ a.e.}\}}^{W^{1,p}(\Omega)} = \{f \in W^{1,p}(\Omega) : |f| \leq \alpha \text{ a.e.}\} ?$ 

# Going back to the initial motivation

Let  $\Omega \subset \mathbb{R}^N$  be a domain with smooth boundary  $\partial \Omega$  and let  $1 \leq p < +\infty$ .

Then smooth functions are dense in Sobolev spaces:

$$\overline{C^{\infty}(\overline{\Omega})}^{W^{1,p}(\Omega)} = W^{1,p}(\Omega),$$

where  $W^{1,p}(\Omega)$ = Functions in  $L^p(\Omega)$  with weak gradients in  $L^p(\Omega)^N$ .

Consider an "obstacle"  $\alpha : \Omega \to \mathbb{R}$ . Does it hold that  $\overline{\{f \in C^{\infty}(\overline{\Omega}) : |f| \leq \alpha \text{ a.e.}\}}^{W^{1,p}(\Omega)} = \{f \in W^{1,p}(\Omega) : |f| \leq \alpha \text{ a.e.}\}$ ?

- ► Is (in this case) the density of  $C^{\infty}(\overline{\Omega})$  into  $W^{1,p}(\Omega)$  enough to guarantee the density result?
- **b** Does the regularity of  $\alpha$  play a role?



### Sufficient conditions on $\alpha : \Omega \to \mathbb{R}$ for density

Let  $\Omega$  be Lipschitz,  $\alpha \in C(\overline{\Omega})$  with  $\operatorname{ess\,inf}_{x\in\Omega}\alpha(x) > 0$ , consider the the set  $\mathbf{K}_G(X) := \{f \in X : |(Gf)(x)| \le \alpha(x) \text{ a.e., } x \in \Omega\},\$ where for  $1 \le p < \infty$  $\triangleright G \in \{\operatorname{id}, \nabla, \operatorname{div}\}.$   $\triangleright X \in \{L^p(\Omega), W_0^{1,p}(\Omega), W^{1,p}(\Omega), H_0(\operatorname{div}; \Omega)\},\$ 

where

$$H_0(\operatorname{div},\Omega) := \{ \mathbf{v} \in L^2(\Omega)^N : \operatorname{div} \mathbf{v} \in L^2(\Omega), \mathbf{v} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega \},$$
  
and  $W_0^{1,p}(\Omega) = \{ v \in L^p(\Omega) : |\nabla v| \in L^p(\Omega)^N, v = 0 \text{ on } \partial\Omega \}.$ 

### Sufficient conditions on $\alpha : \Omega \to \mathbb{R}$ for density

Let  $\Omega$  be Lipschitz,  $\alpha \in C(\overline{\Omega})$  with  $\operatorname{ess\,inf}_{x \in \Omega} \alpha(x) > 0$ , consider the the set

$$\mathbf{K}_G(X) := \{ f \in X : |(Gf)(x)| \le \alpha(x) \text{ a.e., } x \in \Omega \},\$$

where for  $1 \le p < \infty$ 

 $\blacktriangleright G \in \{ \mathrm{id}, \nabla, \mathrm{div} \} \qquad \blacktriangleright X \in \{ L^p(\Omega), W_0^{1,p}(\Omega), W^{1,p}(\Omega), H_0(\mathrm{div}; \Omega) \}$ 

Theorem - HR(2015)-HRR(2017)

1. For  $X \in \{L^p(\Omega), W^{1,p}_0(\Omega), H_0(\operatorname{div}; \Omega)\}$ , and  $G = \operatorname{id}$ 

$$\overline{\mathbf{K}_G(X) \cap C_c^{\infty}(\Omega)}^X = \mathbf{K}_G(X),$$

2. If  $X = W_0^{1,p}(\Omega)$  &  $G = \nabla$ , or  $X = H_0(\operatorname{div}; \Omega)$  &  $G = \operatorname{div}$ , the above holds. 3. If  $X = W^{1,p}(\Omega)$ , then

$$\overline{\mathbf{K}_{\mathrm{id}}(X) \cap C^{\infty}(\overline{\Omega})}^X = \mathbf{K}_{\mathrm{id}}(X).$$

- Hintermüller, R., On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces, J Math. Anal. Appl., 2015.
- Hintermüller, R., Rösel, Density of convex intersections and applic., Proc. Royal Soc. A, 2017.



### Some obstacles are bad!

Are there obstacles  $\alpha:\Omega\to\mathbb{R}$  such that the density property of interest does not hold?



Are there obstacles  $\alpha : \Omega \to \mathbb{R}$  such that the density property of interest does not hold?

### THEOREM - [HRR(2017)]

Let  $\Omega \subset \mathbb{R}^N$  with  $N \geq 2$ , then there exists  $\alpha \in W^{1,N}(\Omega) \cap L^{\infty}(\Omega)$  with ess  $\inf_{x \in \Omega} \alpha(x) > 0$ , such that 1. For  $1 \leq p \leq \infty$  $\overline{\mathbf{K}_{\mathrm{id}}(L^p(\Omega)) \cap C(\Omega)}^{L^p(\Omega)} \subsetneq \mathbf{K}_{\mathrm{id}}(L^p(\Omega)).$ 2. For  $1 \leq p \leq N$ , and for  $X \in \{W^{1,p}(\Omega), W_0^{1,p}(\Omega)\}$  $\overline{\mathbf{K}_{\mathrm{id}}(X) \cap C(\Omega)}^{L^p(\Omega)} \subsetneq \mathbf{K}_{\mathrm{id}}(X).$ 

### > A highly oscillatory $\alpha$ destroys density!

 Hintermüller, R., Rösel, Density of convex intersections and applications, Proc. Royal Soc. A, 2017.

23/34 QVIs

# Obstacle arising from PDEs

Consider a second order differential operator in divergence form:

$$B = \sum_{i,j=1}^{N} -\frac{\partial}{\partial x_i} b_{ij}(x) \frac{\partial}{\partial x_j} + \sum_{i=1}^{N} b_i(x) \frac{\partial}{\partial x_i} + b_0(x)$$

where  $b_{ij}, b_i, b_0 \in L^{\infty}(\Omega)$  for  $1 \leq i, j \leq N$ , the matrix  $[b_{ij}(x)]$  is symmetric a.e. in  $\Omega$  and such that B is uniformly monotone over  $H_0^1(\Omega)$ , i.e. there exists  $\kappa > 0$ such that

$$\langle Bu, u \rangle \ge \kappa |u|^2_{H^1_0(\Omega)}, \quad \forall u \in H^1_0(\Omega).$$

• We consider

$$\mathbf{K}(X) := \{ f \in X : |f(x)| \le \alpha(x) \text{ a.e., } x \in \Omega \},\$$

suppose that

$$B\alpha = g,$$

where  $g \in H^1(\Omega)^*$ , and  $\langle g, v \rangle \ge 0$  for all non-negative  $v \in H^1_0(\Omega)$ .



### THEOREM - [HRR(2017)]

Suppose that  $\alpha \in H^1(\Omega)$  such that for  $B\alpha \ge 0$  in  $H^{-1}(\Omega)$ , for some B as before. Then

$$\overline{\mathbf{K}(Y \cap H_0^1(\Omega))}^{H_0^1(\Omega)} = \mathbf{K}(H_0^1(\Omega))$$

in the following cases:

- 1.  $\partial \Omega \in C^{0,1}, b_{ij} \in C^{0,1}(\Omega) \text{ or } b_{ij} \in C^1(\Omega)$ :  $Y = H^2_{loc}(\Omega),$ 2.  $\partial \Omega \in C^{1,1}$  or  $\Omega$  convex,  $b_{ij} \in C^{0,1}(\Omega)$ :  $Y = H^2(\Omega),$ 3.  $\partial \Omega \in C^{0,1}, b_{ij}, b_i, b_0 \in C^{m+1}(\Omega), m \in \mathbb{N}_0$ :  $Y = H^{m+2}_{loc}(\Omega),$ 4.  $\partial \Omega \in C^{m+2}, a_{ij}, b_i, c \in C^{m+1}(\overline{\Omega}), m \in \mathbb{N}_0$ :  $Y = H^{m+2}(\Omega).$
- Hintermüller, R., Rösel, Density of convex intersections and applications, Proc. Royal Soc. A, 2017.



# A sample of solvers for problems/subproblems

In the obstacle case, subproblems may reduce to

For  $\gamma > 0$ , consider

$$F(y) := Ay - f + \gamma (y - \Phi(y))^{+} = 0,$$

or

$$F(y) := Ay - f + \gamma (y - \Phi(y_{n-1}))^+ = 0.$$

### ► In the gradient case,

$$F(y) = Ay - f + \gamma \nabla^* \left( (|\nabla y| - \Phi(y_{n-1}))^+ \frac{\nabla y}{|\nabla y|} \right) = 0.$$

М



### Semismooth Newton

In order to solve

$$F(y) = 0,$$

we consider  $y_0 \in V$ , and the Newton iteration

$$y_{k+1} = y_k - G_F(y_k)^{-1}F(y_k), \qquad k = 0, 1, 2, \dots$$

where  $G_F(y)$  is a (presumably invertible) Newton derivative of F, which is defined to satisfy

$$\lim_{h \to 0} \frac{\|F(y+h) - F(y) - G_F(y+h)h\|}{\|h\|} = 0.$$

### Semismooth Newton

In order to solve

$$F(y) = 0,$$

we consider  $y_0 \in V$ , and the Newton iteration

$$y_{k+1} = y_k - G_F(y_k)^{-1}F(y_k), \qquad k = 0, 1, 2, \dots$$

where  $G_F(y)$  is a (presumably invertible) Newton derivative of F, which is defined to satisfy

$$\lim_{h\to 0} \frac{\|F(y+h) - F(y) - G_F(y+h)h\|}{\|h\|} = 0.$$
  
Provided  $F(y^*) = 0$ ,  $\|G_F(y)^{-1}\| \le m$  for  $y \in N(y^*)$  then  $\{y_n\}$  converges **superlinearly** to a solution  $y^*$  of  $F(y) = 0$  provided  $\|y_0 - y^*\|$  is sufficiently small.



#### Fréchet derivative

$$\begin{split} F: D \subset X \to Z \text{ is called Fréchet differentiable on an open set } U \subset D \text{ if there} \\ \text{exists } G(x) \in \mathcal{L}(X, Z) \text{ such that, for every } x \in U, \\ \lim_{|h|_X \to 0} \frac{|F(x+h) - F(x) - G(x)h|_Z}{|h|_X} = 0. \end{split}$$



### Fréchet derivative

 $F: D \subset X \to Z$  is called Fréchet differentiable on an open set  $U \subset D$  if there exists  $G(x) \in \mathcal{L}(X, Z)$  such that, for every  $x \in U$ ,  $|F(x+h) - F(x) - G(x)h|_Z = 0$ 

$$\lim_{|h|_X \to 0} \frac{|F(x+h) - F(x) - G(x)h|_Z}{|h|_X} = 0.$$

#### Newton derivative

 $F: D \subset X \to Z$  is called Newton differentiable on an open set  $U \subset D$  if there exists a family of mappings  $G: U \to \mathcal{L}(X, Z)$  such that, for every  $x \in U$ ,

$$\lim_{h|_X \to 0} \frac{|F(x+h) - F(x) - G(x+h)h|_Z}{|h|_X} = 0.$$

The map  ${\cal G}$  is called a Newton derivative of  ${\cal F}$  .



Newton derivatives need not be unique...

Newton derivative - obstacle type case

Denote  $F_{\max}: L^q(\Omega) \to L^p(\Omega)$  the pointwise max operator  $F_{\max}(x) = \max(0,x)$  and define

$$G_{\max}(x)(s) = \begin{cases} 0, \ x(s) < 0; \\ \delta, \ x(s) = 0; \\ 1, \ x(s) > 0. \end{cases}$$

Then,

30/34

- $G_{\max}$  is not in general a N-derivative for  $\max(0, \cdot) : L^p(\Omega) \to L^p(\Omega)$  for  $1 \le p \le \infty$ .
- The map  $\max(0, \cdot): L^q(\Omega) \to L^p(\Omega)$  with  $1 \le p < q \le \infty$  is N-differentiable on  $L^q(\Omega)$  and G is an N-derivative. (norm gap phenomenon)



### Newton derivative - gradient case

Let  $W=W^{1,p}_0(\Omega)$  and  $X=W^{1,s'}_0(\Omega)$  where 1/s+1/s'=1 and  $3\leq 3s\leq p<+\infty$  Denote  $F_\nabla:W\to X'$  to

$$\langle F_{\nabla}(y), y \rangle_{X',X} = \int_{\Omega^+(y)} P(\nabla y) \cdot \nabla w \, \mathrm{d}x = \int_{\Omega^+(y)} (|\nabla y| - \varphi)^+ \frac{\nabla y \cdot \nabla w}{|\nabla y|} \, \mathrm{d}x$$

where

$$P(\nabla y) = q(\nabla y)b(\nabla y),$$

with q(v) = v/|v| and  $b(z) = (|z| - \varphi)^+$ .

#### Newton derivative - gradient case

Let  $W = W_0^{1,p}(\Omega)$  and  $X = W_0^{1,s'}(\Omega)$  where 1/s + 1/s' = 1 and  $3 \le 3s \le p < +\infty$  Denote  $F_{\nabla} : W \to X'$  to

$$\langle F_{\nabla}(y), y \rangle_{X',X} = \int_{\Omega^+(y)} P(\nabla y) \cdot \nabla w \, \mathrm{d}x = \int_{\Omega^+(y)} (|\nabla y| - \varphi)^+ \frac{\nabla y \cdot \nabla w}{|\nabla y|} \, \mathrm{d}x$$

where

$$P(\nabla y) = q(\nabla y)b(\nabla y),$$

with 
$$q(v) = v/|v|$$
 and  $b(z) = (|z| - \varphi)^+$ .

Then,  $G_{\nabla}(y): W \to X'$  given by

$$\langle G_{\nabla}(y)v, w \rangle_{X',X} = \int_{\Omega^+(y)} (G_P(\nabla y)\nabla v) \cdot \nabla w \, \mathrm{d}x,$$

for all  $y, v \in W$  and  $w \in X$  is a Newton derivative of  $F_{\nabla}$ .



#### Newton derivative - gradient case

Let  $P(\nabla y) = q(\nabla y)b(\nabla y)$  with q(v) = v/|v| and  $b(z) = (|z| - \varphi)^+$ . Then,  $G_{\nabla}(y): W \to X'$  given by

$$\langle G_{\nabla}(y)v, w \rangle_{X',X} = \int_{\Omega^+(y)} (G_P(\nabla y)\nabla v) \cdot \nabla w \, \mathrm{d}x,$$

for all  $y, v \in W$  and  $w \in X$  is a Newton derivative of  $F_{\nabla}$ , where  $G_P(y) : L^p(\Omega)^n \to L^s(\Omega)^n$  with  $3 \leq 3s \leq p < \infty$  given by

$$G_P(y) = q(y)G_b(y) + b(y)Q(y),$$

is a Newton derivative of P.

Here  $G_b \in \mathcal{L}(L^p(\Omega)^n, L^s(\Omega))$  for  $1 \le \hat{s} < \hat{p} \le \infty$  given by  $G_b(y) = G_{\max}(|y| - \varphi)y^T/|y|$ 

is the Newton derivative of  $b:L^{\hat{p}}(\Omega)^n\to L^{\hat{s}}(\Omega),$  and Q is given by

$$Q(y) = \frac{1}{|y|} \left( \operatorname{id} - \frac{yy^T}{|y|^2} \right)$$



Let  $A: V \to V'$  and  $f \in V'$  for some (real) Hilbert space V. Consider Find  $y \in \mathbf{K}(y) : \langle A(y) - f, v - y \rangle \ge 0$ ,  $\forall v \in \mathbf{K}(y)$  (QVI) where for  $G(w, z) = \Phi(w) - \Psi(Gz)$ , we take  $\mathbf{K}(w) := \{z \in V : G(w, z) \ge 0\}.$ 

The following Lagrangian can be considered if  $\Psi$  is smooth

$$\mathcal{L}_{\rho}(y,\lambda)h = \langle A(y) - f,h \rangle + \rho \left( G(y,y) + \frac{\lambda}{\rho} - P_{[0,+\infty)} \left( G(y,y) + \frac{\lambda}{\rho} \right), \Psi'(Gy)Gh \right),$$

and provided that you have a good solver for

$$\mathcal{L}_{\rho}(y,\lambda) = 0,$$

and augmented Lagrangian algorithm can be considered with function space convergent properties and applicability to a wide variety of examples!



# Thanks for your attention!

# Thanks Christian, Daniel, Silke, and all people involved in the organization!

# The speakers felt at home in Würzburg!

