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Motivation

» In general, the subproblems associated to solving an elliptic QVI are obtaining the
solution S(y,,_1) to a VI (for some y,,_1) where S(w) is the unique solution to

Findy € K(w) : (A(y) — f,v—y) >0, Yve K(w).
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Motivation

» In general, the subproblems associated to solving an elliptic QVI are obtaining the
solution S(y,,_1) to a VI (for some y,,_1) where S(w) is the unique solution to

Findy € K(w) : (A(y) — f,v—y) >0, Yve K(w).

» In image processing, the following class of problems arises

Given f € L*(Q)) and o : 2 — R, consider
1
min§ |divp + f||%2(9) st p €K,

where
K = {p € Hy(div) : |p|sc < a},

and
Hoy(div) == {w € L*(Q)" :divw € L*(Q) & v-w =0 on 90Q}.
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Motivation

The proper choice of « allows to denoise images incredibly well.

Given f € L*(Q)) and o : 2 — R, consider

. .
nin o |div p + f||%2(ﬂ) st pe K:={pe€ Hy(div): |p|le < a}. (P

Noisy observation Reconstruction sequence Sequence of «
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Motivation

In order to approximate the solution to

Given f € L*(Q)) and o : 2 — R, consider

L .
min |div p + fH%z(Q) st pe K :={pe€ Hydiv): |plw <a}. (P
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Motivation

In order to approximate the solution to

Given f € L*(Q)) and o : 2 — R, consider

. ,
min 5 |div p + fH%z(Q) st pe K :={pe€ Hydiv): |plw <a}. (P
We consider the sequence of problems
Let v,, — o0, and for each n € N let p,, be the solution to
1
in  —||di ; - L v (P
L SV P+ fllzaq) + H[Ip\ o] [[720) + o IVDlr2@). @)
The term

> 2||[|lp| — Oz]+||%2(9) is the Moreau-Yosida regularization of /.

> iHVpHLz(Q) is a singular perturbation - lifts from H(div) to H3((2).
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Motivation

Given f € L*(Q)and o : 2 — R, consider

1 .
min |div p + fH%Q(Q) st peK :={pe€ Hydiv): |ple <a}. (P

Let v, — 00, and for each n € N let p,, be the solution to

: Lo 2 Tn +112
perl—l}(}l(rle)N §||d1V p + f||L2(Q) + ?H“p‘ — q HL2(Q) +

1

20). (Pr,
5 IVPlso)- (B

Q: Does p,, converges to a solution of (IP)?
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Motivation

Given f € L*(Q)and o : 2 — R, consider

1 .
min |div p + fH%Q(Q) st peK :={pe€ Hydiv): |ple <a}. (P

Let v, — 00, and for each n € N let p,, be the solution to

1 o/ 1
in  —||di 2 el = o] 5200y + =—IIV . (P,
pegl(}l(f(lw 2|| VP + f||L2(Q) + 9 Illp| — @ HL?(Q) 2%H PHL?(Q) (I5)
r Q: Does p,, converges to a solution of (IP)?
Well... div p,, — div p* where p* € Hy(div) solves
1 Hy(div
miné |divp + fH%z(Q) st pe KNnHI Q)N o), (P*)
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Motivation

» Will the regularity of v determines if

KnHN "™ = K,

where K = {p € Hy(div) : |p|o < a}.

» In the QVI setting, obstacles are implicit (not given a priori), hence understanding
density issues becomes of the utmost importance.

8/34 QVls M



Introduction and Further motivations
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Introduction

Consider

» X a Banach space (separable, reflexive)
» K C X aclosed, convex, and non-empty.
» Y C X adense subspace, i.e., V=X
We study the following density question:

— X
Does KNY =K holdtrue?

The typical example is the initial question one
K={fec X |f(x)] <a(xr)ae,xz e},
where O C RY, X = WP(Q), and Y is

given by smooth maps on €2, e.g., C*°(12).
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Introduction

Consider First answer
» X aBanach space (separable, reflexive) The dense embedding Y — X
» K C X aclosed, convex, and non-empty. is not enough to guarantee
=X
» Y C X adense subspace, i.e.,Y =X KN YX K.
We study the following density question:
Does KN YX = K hold true? Counterexample in [HR(2015)]

The typical example is the initial question one
K={fec X |f(x)] <a(xr)ae,xz e},
where O C RY, X = WP(Q), and Y is

given by smooth maps on €2, e.g., C*°(12).

= Hintermdller, R., On the density of classes of closed convex sets with pointwise constraints in
Sobolev spaces, J Math. Anal. Appl., 2015.
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Introduction

Consider First answer
» X aBanach space (separable, reflexive) The dense embedding Y — X
» K C X aclosed, convex, and non-empty. is not enough to guarantee

—X

i — X
» Y C X adense subspace, i.e., Y X KOV = K.
We study the following density question:
Does KN YX = K hold true? Counterexample in [HR(2015)]

The typical example is the initial question one Why do we care?

K={fecX:|f(2)] <alz)ae,z e Q} » Optimization:

perturbations and duality.
where ) C RN, X = Wl’p<Q>, angY IS » Algorithmic and

given by smooth maps on €2, e.g., C*°(12). approximation relevance.

= Hintermdller, R., On the density of classes of closed convex sets with pointwise constraints in
Sobolev spaces, J Math. Anal. Appl., 2015.
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Counterexample by Martin Hairer

———X
K NY = Kis not necessarily inherited from embeddings!

Let Y C L?(Q2) be constructed as follows. Define g € L*(£) be strictly positive and

unbounded on a dense set in {2, and define h € Y if h = zg a.e. with z € C(€2).
We endow Y with the norm |h|y := sup,cq |2(7)].

It follows that Y is dense in LZ(Q), and if a > 0, then
K:{fGLQ(Q):|f(x)|§oza.e.,x€§2}, & KNY = {0}.

A continuous and dense embedding Y — X is not enough to guarantee

KNy =K
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Optimization and Regularization Methods

Consider the optimization problem

min F(u) st. ue K (P)

» F: X — RU{+o0} is continuous,
seq.-w.l.s.c., and coercive.
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Optimization and Regularization Methods

Consider the optimization problem Consider the regularization of (IP)

min F(u) st. ue K (P min F(u) + R,(u)  Py)

» F': X - RU{+o0} is continuous, » R, : X - RU {400} are
seq.-w.l.s.c., and coercive. perturbations of the indicator map /k.

» Ix(u)=0ifu e K, Ix(u) = +oou ¢ K.
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Optimization and Regularization Methods

Consider the optimization problem

Consider the regularization of (IP)

min F(u) st. ue K (P)

min F(u) + R,(u)  Py)

» [': X — RU {400} is continuous, » R, : X — RU{+o0} are

seq.-w.l.s.c., and coercive.

perturbations of the indicator map /k.
» Ix(u) =0ifu e K, Ix(u) = +oou ¢ K.

Examples for R,

1. Tikhonov regularization (y,, — +00)
1

R,(u) = Ix(u) + ﬁw?f

2. Moreau-Yosida-Tikhonov regularization:

In 1
2Yn

Ry (u) = - inf [u—vf5 + —uly-

3. Conformal disc. X,, C X,,11 C X,
dim(X,) < oo,Vn € N

Ry(u) = Ixnx, (u),

4. Conf. disc. + Moreau-Yosida reg:

Y = U?’LENX?’L

In .
Ry(u) = - inf |u—ofy + Ix,(u),
Y = UneNXn.
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Optimization and Regularization Methods (Obstacle example)

The obstacle problem

The regularized obstacle problem

1
min—/|Vu\2dx—/fudx
2 Ja Q

subject to u € K,

1

min—/|Vu|2 d:z:—/fudx+Rn(u)
2 Jo Q

over u € Hy(Q).

where for some « : 2 — R we consider K := {w € H}(Q) : u < a}

Examples for R,

1. (Tikhonov) Suppose v, — 00, Y = Wol’p(Q) with p > 2,

QVn/\Vu]p da

R,(u) =

2. (Moreau-Yosida-Tikhonov) regularization:

R, (u) z—n/QmaX(O,u—oz dx+g/ IVul? de.
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Variational Inequalities and singular perturbations

Let X, Y be Hilbert space, with Y — X dense
s A: X - X* and A; : Y — Y Lipschitz and strongly monotone.
= K C X closed, convex, and non-empty, and K MY non-empty.

Consider the sequence of problems

1
Find u, € Y : <A(un) + —Ai(uy) — f,v — un> >0, YoveKnY

Tn
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Variational Inequalities and singular perturbations

Let X, Y be Hilbert space, with Y — X dense
s A: X - X* and A; : Y — Y Lipschitz and strongly monotone.
= K C X closed, convex, and non-empty, and K MY non-empty.

Consider the sequence of problems

1
Find u, € Y : <A(un) + —Ai(uy) — f,v — un> >0, YoveKnY

Tn

The limit problem is given by

Findu € X : (A(u) — f,v —uy,) >0, weKnY
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Variational Inequalities and Galerkin methods

Consider the non-monotone Galerkin approximation

Find u, € X : (A(u,) — f,v—u,) >0, YveK,
where, ingeneral, K,, Z K, K,,.1 ¢ K,,.

= Mosco convergence of FEM-discretized K, required for consistency-+stability.

= Recovery sequences requires interpolation procedure which is only defined on

the (supposedly) dense subset K MY of K where typically Y = C"*°(£2) or

Y = C(9Q).
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Gamma-convergence
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The Role of I'-convergence

min F(u) st ueK

(IP)

min F'(u) + R, (u)

(IP)

What guarantees that the minimizers of (IP,,) are related to the ones of (IP)?
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The Role of I'-convergence

min F(u) st. ue K (P)

min F'(u) + R, (u)

(IP)

What guarantees that the minimizers of (IP,,) are related to the ones of (IP)?

['—convergence

Wesay G, = FF'+ R, I'—convergesto G = F + Ik if

1. If u, = uthen G(u) < liminf Gy, (uy,).




The Role of I'-convergence

min F(u) st. ue K (P)

min F'(u) + R, (u)

(IP)

What guarantees that the minimizers of (IP,,) are related to the ones of (IP)?

['—convergence

Wesay G, = FF'+ R, I'—convergesto G = F + Ik if

1. If u, = uthen G(u) < liminf Gy, (uy,).

2. For every u, there is a sequence {u,, } converging to u such

G(u) > limsup G, (uy,).




The Role of I'-convergence

min F(u) st ue K (P min F(u) + Ry(u)  (Py)

What guarantees that the minimizers of (IP,,) are related to the ones of (IP)?

['—convergence
Wesay G, = FF'+ R, I'—convergesto G = F + Ik if

1. If u, = uthen G(u) < liminf Gy, (uy,).

2. For every u, there is a sequence {u,, } converging to u such
G(u) > limsup G, (uy,).

Then minimizers converge to minimizers: Every cluster point of the sequence
of minimizers {u,, } to GG, is a minimizer of G.
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Density and |'-convergence

The density property links (IP) and (IP,,) through I'-convergence:
Theorem - HRR(2017)

Sufficiency. If K N YX = K holds true, then
['— lim (F+ R, =F + I,

n—oo

in both, the weak and strong topology.
Provided that (I,;) admits a minimizer u,,, each weak cluster point of {u,} is a
minimizer to (IP).
Necessity. In case R,, involves the Moreau-Yosida regularization (examples 2 &
4) then,

['— lim(F+ R, =F+ I—x.

n—00 KNy
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Sufficient conditions
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Going back to the initial motivation

Let O C R” be a domain with smooth boundary 92 and let 1 < p < +o0.

Then smooth functions are dense in Sobolev spaces:

—le(Q) )
C>(9) = W(Q),

where TW1?(Q))= Functions in L?({2) with weak gradients in L?(£2)%.
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Let O C R” be a domain with smooth boundary 92 and let 1 < p < +o0.

Then smooth functions are dense in Sobolev spaces:

—le(Q) )
C>(9) = W(Q),

where TW1?(Q))= Functions in L?({2) with weak gradients in L?(£2)%.
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Going back to the initial motivation

Let O C R” be a domain with smooth boundary 92 and let 1 < p < +o0.

Then smooth functions are dense in Sobolev spaces:

—le(Q) )
C>(9) = W(Q),

where TW1?(Q))= Functions in L?({2) with weak gradients in L?(£2)%.

Consider an “obstacle” « : {2 — R. Does it hold that
WLlr(Q)

{feC>Q):|fl <aae} —{feWQ):|f|<aael ?

» Is (in this case) the density of C'°°(£) into W1(Q) enough to guarantee the
density result?

» Does the regularity of o play a role?
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Sufficient conditions on « : {2 — R for density

Let € be Lipschitz, o € C/(Q) with ess inf,cqa(x) > 0, consider the the set

Kao(X) ={fe X |(Gf)(z)] <a(r)ae,z e Q},
where for 1 < p < o0
> G e {id, V,div}. » X € {LP(Q), W, P(Q), W'P(Q), Hy(div;Q)},

where
Hoy(div, Q) = {v € L*(Q)" : divv € L*(Q),v-n = 0on 9Q},
and W,?(Q) = {v € LP(Q) : |Vu| € LP(Q)N, v = 0 on OO}
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Sufficient conditions on « : {2 — R for density

Let €2 be Lipschitz, a € C'(£2) with ess inf ,cqoa(x) > 0, consider the the set

Ko(X) ={fe X |(Gf)(z)] <a(r)ae,x e Q},
where for 1 < p < o0
> G e {id,V,div} » X e {L(Q), W, ?(Q), W(Q), Ho(div; Q)}
Theorem - HR(2015)-HRR(2017)

1. For X € {LP(Q), W, ?(Q), Hy(div;Q)}, and G = id

X
Ka(X) N Ce@) = Ka(X),
2. 11 X = W,P(Q) & G =V, or X = Hy(div; Q) & G = div, the above holds.

3. If X = WP(Q), then

Ko(X) N C~[) = Ku(X).

= Hintermdller, R., On the density of classes of closed convex sets with pointwise constraints in
Sobolev spaces, J Math. Anal. Appl., 2015.

= Hintermdller, R., Résel, Density of convex intersections and applic. , Proc. Royal Soc. A, 2017.
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Some obstacles are bad!

Are there obstacles « : {2 — R such that the density property of interest does
not hold?
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Some obstacles are bad!

Are there obstacles « : {2 — IR such that the density property of interest does
not hold?

THEOREM - [HRR(2017)]

Let O C RN with N > 2, then there exists « € W1 (Q) N L°(Q) with
ess inf,eqa(x) > 0, such that

1.Forl <p <0

Ka(ZP(Q) N CQ)" ¢ Kia(L().

2. Forl < p< N,andfor X € {W'?(Q), W,"(Q)}
L(Q)

K (X)NnC(Q) "< Kia(X).

» A highly oscillatory o destroys density!

= Hintermdller, R., Résel, Density of convex intersections and applications, Proc. Royal Soc. A,
2017.
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Obstacle arising from PDEs

» Consider a second order differential operator in divergence form:

S, I %
B = — b;; — + b; + b
where b;;, b, by € L>(Q2) for 1 <4, j < N, the matrix [b;;(x)] is symmetric a.e.
in (2 and such that B is uniformly monotone over H2((2), i.e. there exists k£ > 0

such that
(Bu,u) > /<a|u\%]3(m, Yu € Hy(Q).

» We consider
KX)={feX |f(x)|<alx)ae,x €}

suppose that
Ba =g,

where g € H'(2)*, and (g, v) > 0 for all non-negative v € Hj(12).
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Obstacle arising from PDEs

THEOREM - [HRR(2017)]

Suppose that o € H'()) such that for Ba > 0 in H (), for some B as
before. Then

K NE©Q) " = K(HH)
in the following cases:
1.0Q € OV, b;; € CVHQ) or b € CHQ): Y = HZ (Q),
2. 002 € C''or Q convex, b;; € CU1(Q): Y = H*(Q),
3. 00 € C% b, b;,bg € CHH(Q), m € Ny: Y = H™(Q),

4. 0F) € Om+2, Q55 bi,c € Oerl(ﬁ), m € Np: Y = Hm+2<Q)

= Hintermdller, R., Résel, Density of convex intersections and applications, Proc. Royal Soc. A,
2017.
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A sample of solvers for
problems/subproblems
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Solvers - A sample of methods

» In the obstacle case, subproblems may reduce to

For v > 0, consider
F(y) = Ay — f+~(y — d(y))" =0,

or

F(y) == Ay — f+7(y = P(y,-1))" = 0.

» In the gradient case,

Fly)=Ay — f+V* ((IVy\ - @(yn_l))+|§—z|) = 0.
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Solvers - A sample of methods

Semismooth Newton

In order to solve
F(y) =0,

we consider iy € V', and the Newton iteration
Yerr =Yk — Grlye) "Fly), k=0,1,2,...

where G (y) is a (presumably invertible) Newton derivative of F', which is defined
to satisfy
o I+ h) — Fly) = Gely + WA

0.
h—0 Al




Solvers - A sample of methods

Semismooth Newton

In order to solve
F(y) =0,
we consider iy € V', and the Newton iteration
Ye+1 = Yk — GF(yk>_1F(yk), Ek=0,1,2, ...

where G (y) is a (presumably invertible) Newton derivative of F', which is defined
to satisfy
o I+ h) — Fly) = Gely + WA
h—0 ||

Provided F'(y*) = 0, ||Gr(y) || < mfory € N(y*) then {y,} converges
superlinearly to a solution y* of F'(y) = 0 provided ||yo — y*|| is sufficiently
small.

0.
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From Fréchet to Newton...

Fréchet derivative

F D C X — Zis called Fréchet differentiable on an open set U C D if there
exists G(x) € L(X, Z) such that, for every x € U,
. |F(x+h)— F(x) — G(x)h|z _

0.
A x—0 |h|x
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From Fréchet to Newton...

Fréchet derivative

F D C X — Zis called Fréchet differentiable on an open set U C D if there
exists G(x) € L(X, Z) such that, for every x € U,
. |F(x+h)— F(x) — G(x)h|z _

0.
A x—0 |h|x

Newton derivative

F . D C X — Zis called Newton differentiable on an open set U C D if there
exists a family of mappings G : U — L(X, Z) such that, for every x € U,
i \F(x+h)— F(z) — G(x+h)h|z

0.
A x—0 |h|x

The map G is called a Newton derivative of ' .
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Facts on the Newton derivative

Newton derivatives need not be unique...

Newton derivative - obstacle type case

Denote Fi.x : L4(Q)) — LP(Q2) the pointwise max operator Fi..(r) =
max (0, ) and define

0, x(s) < 0;
Gmax()(s) = < 0, x(s) =0;
1, x(s) > 0.
Then,
= G'nax IS not in general a N-derivative for max(0, -) : LP(£2) — LP(S2) for
1 <p< oo

= The map max(0, ) : L) — LP(Q)with 1 <p < ¢ < oois
N -differentiable on L%({2) and G is an N-derivative. (norm gap
phenomenon)
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Facts on the Newton derivative

Newton derivative - gradient case

Let W = WP(Q) and X = W (Q) where 1/s +1/s' = 1and 3 < 3s <
p < +oo Denote Fy : W — X' to

Fo(y), y)xx = / P(Vy) - Vwdx = / (IVy| — go)Jrvy - Vw

dx
O+ (y) Ot (y) VYl

where
P(Vy) = q(Vy)b(Vy),
with ¢(v) = v/|v| and b(z) = (|z| — ).




Facts on the Newton derivative

Newton derivative - gradient case

Let W = WP(Q) and X = W (Q) where 1/s +1/s' = 1and 3 < 3s <
p < +oo Denote Fy : W — X' to

Vvy - - Vw
(Fo(y), 1) x x — / P(Vy) -V do = / (Vy| — oYY
Q0 (y) Q*(y) Vyl

dx

where

P(Vy) = q(Vy)b(Vy),
with ¢(v) = v/|v| and b(z) = (|z| — ).

Then, Gy(y) : W — X' given by

(Goy)v, ) x — /Q . (@r(Vy V) Vuda,

forally,v € W and w € X is a Newton derivative of F¥y.
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Let P(Vy) = ¢(Vy)b(Vy) with g(v) = v/|v| and b(z) = (|z| — ). Then,
Gv(y) : W — X' given by

(G (y)v, w)xrx = /Q (G Vwds

for all y,v € W and w € X is a Newton derivative of Fy, where Gp(y) :
LP()" — L*(Q)" with 3 < 3s < p < oo given by

Gp(y) = q(y)Guly) + b(y)Q(y),
is a Newton derivative of P.

Here G, € L(LP(2)", L*(Q2)) for 1 < § < p < oo given by

Giy(y) = Gumax(lyl — )y’ /1]
is the Newton derivative of b : L?(Q2)" — L*(), and () is given by

Qy) L (id - ﬁ)

yl |2
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An augmented Lagrangian methods from Kanzow and Steck

Let A: V — V' and f € V' for some (real) Hilbert space V. Consider
Findy € K(y) : (A(y) — f,v—y) >0, Vv e K(y) (QV])
where for G(w, z) = ®(w) — V(Gz), we take
Kw):={2z€V:Gw,z) > 0}

The following Lagrangian can be considered if W is smooth

A A ,
£,V = () = 1)+ (Glw) 45 = Py (Gl 45 ) W(GHIGH)
and provided that you have a good solver for
£P<y7 )‘> — Ov

and augmented Lagrangian algorithm can be considered with function space
convergent properties and applicability to a wide variety of examples!
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Thanks for your attention!

Thanks Christian, Daniel, Silke,
and all people involved in the
organization!

The speakers felt at home In
Wurzburg!
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