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The parabolic QVI problem
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From parabolic problems to parabolic (evolutionary) VIs

Let V be a Hilbert space, A : V → V ′, and f : (0, T ) → V ′. Consider

Find u ∈ L2(0, T ; V ) with u(0) = u0, and ∂tu ∈ L2(0, T ; V ′) such that

⟨∂tu + A(u) − f, v⟩ = 0,

for all v ∈ L2(0, T ; V ).

No need to explain the importance for parabolic problems.

▶ V ∈ {H1
0(Ω), H1(Ω), L2(Ω), . . .}, and part of a Gelfand triple (V, H, V ′).

▶ A is Lipschitz continuous and strongly monotone, i.e.,

⟨A(u) − A(v), u − v⟩ ≥ c∥u − v∥2
V .

▶ f ∈ L2(0, T ; V ′).
R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential
Equations, AMS, 1997.
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From parabolic problems to parabolic (evolutionary) VIs

Let V be a Hilbert space, A : V → V ′, and f : (0, T ) → V ′. Consider

Find u ∈ L2(0, T ; V ) with u(0) = u0, and ∂tu ∈ L2(0, T ; V ′) such that

⟨∂tu + A(u) − f, v⟩ = 0,

for all v ∈ L2(0, T ; V ).

No need to explain the importance for parabolic problems.

Not all dynamics in applications arise from parabolic equations:

In many cases the state u satisfies constraints, i.e.,

u(t) ∈ K(t),

f.a.a. t ∈ (0, T ), where, K(t) is a closed, convex, and non-empty subset of V .
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From parabolic (evolutionary) VIs to QVIs

Let V be a Hilbert space, A : V → V ′, and f : (0, T ) → V ′. Consider

Find u ∈ L2(0, T ; V ) with u(0) = u0, and ∂tu ∈ L2(0, T ; V ′) such that u(t) ∈
K(t) a.e. and

⟨∂tu + A(u) − f, v−u⟩≥0,

for all v ∈ L2(0, T ; V ) with v(t) ∈ K(t) a.e..

▶ The behaviour of t 7→ K(t) plays a significant role now! The cases

i. K(t) ⊂ K(t + ∆t) ii. K(t) ⊃ K(t + ∆t),

have completely different difficulties.

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential
Equations, AMS, 1997.

Not all dynamics in applications arise from parabolic (evolutionary) VIs :

In many cases the constraint K depends also on the state u i.e.,

u(t) ∈ K(u(t)) f.a.a. t ∈ (0, T ).
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Parabolic (evolutionary) QVIs

Let V be a Hilbert space, A : V → V ′ a monotone coercive operator, and consider

Find u ∈ L2(0, T ; V ) with u(0) = u0, and ∂tu ∈ L2(0, T ; V ′) such that
u(t) ∈ K(u(t)) a.e. and

⟨∂tu + A(u) − f, v−u⟩≥0,

for all v ∈ L2(0, T ; V ) with v(t) ∈ K(u(t)) a.e..

Many contributors Adly, Aubin, Aussel, Barrett, Bensoussan, Bergounioux, Biroli,
Caffarelli, Facchinei, Friedman, Frehse, Fukao, Fukushima, Gwinner, Hanouzet,
Hintermüller, Joly, Kano, Kenmochi, Lions, Mignot, Mordukhovich, Mosco, Murase,
Outrata, Pang, Prigozhin, Rockafellar, Rodrigues, Santos, Stefanelli, Tartar, Yousept,

Main source of difficulties: The constraint K(·) depends on the state itself.
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Applications
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Granular Materials: angle of repose

Figure: Gravel pouring from a “point” source (left). Angle of repose of several materials (right)

If u(t, x) denotes the surface of the growing pile of a granular material (at time t)
and θ is its angle of repose, then

|∇u(t, x)| ≤ tan(θ),

where ∇ is the spatial gradient.
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Non-flat Supporting Surface u0

Ω
u0

suppfaccumulation of material

u

Figure: Sand distribution on a pile

▶ u0(x) – solid supporting surface

▶ f (t, x) determines at which rate a granular incompressible material is poured
onto a solid surface

▶ θ – angle of repose of the granular material

▶ u(t, x) – surface (solid surface+distributed material)
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Growing of Sandpiles ([Prigozhin(1986)])

If the intensity of the source of material being poured onto the pile is given by
(t, x) 7→ f (t, x) ≥ 0, u satisfies u(0) = u0 and

u ∈ K(u) : ⟨∂tu − f, v − u⟩ ≥ 0, ∀v ∈ K(u),

where K(u) = {w ∈ H1
0(Ω) : |∇w| ≤ Φ(u) a.e.}, and

Φ(u)(t, x) =
{

tan(θ), u(t, x) > u0(x);
max(tan(θ), |∇u0(x)|), otherwise.
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Growing of Sandpiles ([Prigozhin(1986)])

If the intensity of the source of material being poured onto the pile is given by
(t, x) 7→ f (t, x) ≥ 0, u satisfies u(0) = u0 and

u ∈ K(u) : ⟨∂tu − f, v − u⟩ ≥ 0, ∀v ∈ K(u),

where K(u) = {w ∈ H1
0(Ω) : |∇w| ≤ Φ(u) a.e.}, and

Φ(u)(t, x) =
{

tan(θ), u(t, x) > u0(x);
max(tan(θ), |∇u0(x)|), otherwise.

The model describes well accumulation of material on steep structures
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Growing of Sandpiles - One addition (θ ↓ 0 case)
▶ Determination of river/lake networks via the accumulation of granular

materials. ([Barrett,Prigozhin]) Water is considered as a cohensionless material
with zero angle of repose.

Material accumulation as angle of repose decreases.

As θ ↓ 0,

(t, x) 7→ u(t, x)

resembles a fluid.

Nonlinear and nonlocal effects when θ = 0.

In the inequality level, we have a new nonlinear term Θ(u) accounting for effects of
permeability of soil, saturation, etc...

The modified Prigozhin model, when 0 < θ ≪ 1, is

Find u ∈ K(u) : ⟨∂tu − Θ(u) − f, v − u⟩ ≥ 0, ∀v ∈ K(u),

with u(0) = u0, where K(u) = {w ∈ H1
0(Ω) : |∇w| ≤ Φ(u) a.e.}.
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Growing of Sandpiles - Another addition

Large piles are more complex!

Recently, It has been discovered that the angle of repose θ is actually a gravity de-
pendent quantity (see [Kleinhans et. al (2011)]) and hence it should be taken as an
increasing function of the height of the pile:

u0 ≡ 0 =⇒ u 7→ Φ(u) is increasing.

M. G. Kleinhans, H. Markies, S. J. de Vet, A. C. in ’t Veld, and F. N. Postema, Static and
dynamic angles of repose in loose granular materials under reduced gravity, Journal of
Geophysical Research (2011)

For u0 ≡ 0, the modified Prigozhin model is

Find u ∈ K(u) : ⟨∂tu − f, v − u⟩ ≥ 0, ∀v ∈ K(u),

with u(0) = u0, where K(u) = {w ∈ H1
0(Ω) : |∇w| ≤ Φ(u) a.e.}, and

Φ(u) = α + βu.
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A dissipative application - Type-II superconductors

▶ Stationary Magnetization of a
superconductor([Prigozhin, Rodrigues, Yousept]) :
Determination of the magnetic field.

The evolution of the z-component of the magnetic field u in a type-II superconductor
under the influence of an external magnetic field b can be the described by the
following QVI (in adimensional form)

The QVI that describes u is given by

Find u ∈ K(u) : ⟨∂tu − ∆u − f, v − u⟩ ≥ 0, ∀v ∈ K(u),

with u(0) = u0, K(u) = {w ∈ H1
0(Ω) : |∇w| ≤ Φ(u)a.e.}, and f (t) = ∂tb(t).

The operator Φ is a Nemytskii operator induced by a function ϕ : R → R that is
increasing on some interval [x1, x2] (not globally though).
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A parabolic QVI with an extra non-linearity
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Evolutionary QVIs with gradient constraints

Problem (P) : Find u ∈ L2(0, T ; H1
0(Ω)), with u(0) = u0 ∈ H1

0(Ω) and
u(t) ∈ K(Φ(u)(t)) a.e. such that

⟨∂tu + Au − Θ(u) − f, v − u⟩ ≥ 0,

for every v ∈ L2(0, T ; H1
0(Ω)), with v(t) ∈ K(Φ(u)(t)) a.e.

For a non-negative ϕ, K(ϕ) ⊂ H1
0(Ω) is defined as

K(ϕ) := {v ∈ H1
0(Ω) : |∇v| ≤ ϕ a.e. in Ω}.

Notice:

▶ Θ is a nonlinear term - it may be responsible for finite-time blow up.

▶ We focus on the gradient constraint case, but all results follows identically for

K(ϕ) := {v ∈ H1
0(Ω) : v ≤ ϕ a.e. in Ω}.
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Evolutionary QVIs with gradient constraints

Problem (P) : Find u ∈ L2(0, T ; H1
0(Ω)), with u(0) = u0 ∈ H1

0(Ω) and
u(t) ∈ K(Φ(u)(t)) a.e. such that

⟨∂tu + Au − Θ(u) − f, v − u⟩ ≥ 0,

for every v ∈ L2(0, T ; H1
0(Ω)), with v(t) ∈ K(Φ(u)(t)) a.e.

For a non-negative ϕ, K(ϕ) ⊂ H1
0(Ω) is defined as

K(ϕ) := {v ∈ H1
0(Ω) : |∇v| ≤ ϕ a.e. in Ω}.

Features of the problem:

▶ The main actors are Θ and Φ.

▶ Difficult to develop solution algorithms.

▶ Hard to obtain qualitative properties (e.g. non-decreasing solutions).

M. Hintermüller, C. N. R., N. Strogies, Dissipative and Non-dissipative Evolutionary
Quasi-variational Inequalities with Gradient Constraints, Set-Valued Var. Anal, 2018.
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Evolutionary QVIs with gradient constraints

Problem (P) : Find u ∈ L2(0, T ; H1
0(Ω)), with u(0) = u0 ∈ H1

0(Ω) and
u(t) ∈ K(Φ(u)(t)) a.e. such that

⟨∂tu + Au − Θ(u) − f, v − u⟩ ≥ 0,

for every v ∈ L2(0, T ; H1
0(Ω)), with v(t) ∈ K(Φ(u)(t)) a.e.

For a non-negative ϕ, K(ϕ) ⊂ H1
0(Ω) is defined as

K(ϕ) := {v ∈ H1
0(Ω) : |∇v| ≤ ϕ a.e. in Ω}.

We differentiate between two problems:
Problem (P0):
Solve problem (P) with A ≡ 0 (a non-dissipative problem) .

Problem (P1):
Solve problem (P) when A ̸≡ 0 is a monotone operator (a dissipative problem).
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A VI semi-discretization approach

Let N ∈ N, k := T/N , tn := nk and In := [tN
n−1, tN

n ) with n = 0, 1, . . . , N .

Problem (PN) : Find {uN
n }N

n=0 with uN
0 = u0, uN

n ∈ K(Φ(uN
n−1)), such⟨

uN
n − uN

n−1
k

+ A(uN
n ) − Θ(uN

n−1) − fN
n , v − uN

n

⟩
≥ 0,

for all v ∈ K(Φ(uN
n−1)) with

fN =
N∑

n=1
fN

n χ[tN
n−1,t

N
n ) and fN

n = 1
k

∫ tN
n

tN
n−1

f (t) dt.

▶ We evaluate Θ and Φ on the previous time step.

▶ Each n-subproblem is amenable for computational implementation: equivalent to
an optimization problem (if A symmetric).

Again, we differentiate between two problems:
Problem (PN

0 ): A ≡ 0 (the non-dissipative problem).
Problem (PN

1 ): A ̸≡ 0 is a monotone operator (the dissipative problem).

20/33 QVIs



A VI semi-discretization approach

Let N ∈ N, k := T/N , tn := nk and In := [tN
n−1, tN

n ) with n = 0, 1, . . . , N .

Problem (PN) : Find {uN
n }N

n=0 with uN
0 = u0, uN

n ∈ K(Φ(uN
n−1)), such⟨

uN
n − uN

n−1
k

+ A(uN
n ) − Θ(uN

n−1) − fN
n , v − uN

n

⟩
≥ 0,

for all v ∈ K(Φ(uN
n−1)) with

fN =
N∑

n=1
fN

n χ[tN
n−1,t

N
n ) and fN

n = 1
k

∫ tN
n

tN
n−1

f (t) dt.

▶ We evaluate Θ and Φ on the previous time step.

▶ Each n-subproblem is amenable for computational implementation: equivalent to
an optimization problem (if A symmetric).

Again, we differentiate between two problems:
Problem (PN

0 ): A ≡ 0 (the non-dissipative problem).
Problem (PN

1 ): A ̸≡ 0 is a monotone operator (the dissipative problem).

20/33 QVIs



The Non-Dissipative (A ≡ 0) case
Problem (P0).
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Assumptions

i. f ∈ L∞(0, T ; L2(Ω)) is non-negative, i.e., f (t) ≥ 0 a.e. in Ω, for a.e. t ∈ (0, T ).

ii. The initial condition u0 ∈ H1
0(Ω) satisfies |∇u0| ≤ Φ(u0) a.e. in Ω.

iii. Θ : L2(Ω) → L2(Ω) is uniformly continuous and satisfies Θ(v) ≥ 0 a.e. if
v ≥ u0 a.e. in Ω, for a.e. t ∈ [0, T ]. It is further assumed that Θ has α-order of
growth:

∃ α > 0, LΘ > 0 : |Θ(v)|L2(Ω) ≤ LΘ|v|αL2(Ω), ∀v ∈ L2(Ω).

iv. The operator Φ : L2(Ω) → L∞(Ω) is uniformly continuous and Φ(v) ≥ ν > 0
a.e. in Ω and all v ∈ L2(Ω). We also assume that Φ is non-decreasing:

u0 ≤ v1 ≤ v2 a.e. =⇒ Φ(v1) ≤ Φ(v2) a.e..
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Theorem ([ Hintermüller-R.-Strogies(2018)]) Let α ∈ [0, 1]. Then there exists a solu-
tion u∗ to problem (P0) that is non-decreasing and satisfies:

u∗ ∈ L∞(0, T ; W 1,∞
0 (Ω)) ∩ C0,1([0, T ]; L2(Ω)), ∂tu

∗ ∈ L∞(0, T ; L2(Ω)).

The sequence {ũN} defined by

ũN(t) = u0 +
∫ t

0

N∑
n=1

uN
n − uN

n−1
k

χ[tn−1,tn)(s) ds,

where {uN
n }N

n=0 solves (PN
0 ), satisfies

ũN → u∗ in C([0, T ]; L2(Ω)) and ∂tũ
N ⇀ ∂tu

∗ in L2(0, T ; L2(Ω)),

along a subsequence.
Furthermore, if α > 1, then the same holds true provided that

|u0|L2(Ω) + LΘ|u0|αL2(Ω) + T 1/2|f |L2(0,T ;L2(Ω)) <
1

((α − 1)LΘT )
1

α−1
.
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The dissipative (A ̸≡ 0) case
Problem (P1).
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Assumptions
i. The operator A : H1

0(Ω) → H−1(Ω) is of the form

⟨Av, w⟩ =
N∑

n=1
an

∫
Ω

∂v

∂xn

∂w

∂xn
dx ∀v, w ∈ H1

0(Ω)

with an ≥ a > 0, an ∈ R for n = 1, 2, . . . , N .

ii. f ∈ L∞(0, T ;R) is non-decreasing.
iii. u0 ∈ H1

0(Ω) satisfies A(u0) ∈ L2(Ω), |∇u0| ≤ Φ(u0) and

A(u0) ≤ Θ(u0) + 1
ϵ

∫ ϵ

0
f (t) dt, ∀ϵ > 0 sufficiently small.

iv. Θ : L2(Ω) → R is uniformly continuous, non-decreasing:

u0 ≤ v1 ≤ v2 a.e. =⇒ Θ(v1) ≤ Θ(v2) a.e.,

and has α-order of growth:

∃ α > 0, LΘ > 0 : |Θ(v)| ≤ LΘ|v|αL2(Ω), ∀v ∈ L2(Ω).

v. Φ : L2(Ω) → R is uniformly continuous and Φ(v) ≥ ν > 0 for al v ∈ L2(Ω). We
also assume it is non-decreasing.
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Theorem ([Hintermüller-R.-Strogies(2018)]) Let α ∈ [0, 1], then there is a solution u∗

to problem (P1) such that

u∗ ∈ L∞(0, T ; W 1,∞
0 (Ω))∩C0,1([0, T ]; L2(Ω)), and ∂tu

∗ ∈ L∞(0, T ; L2(Ω)).

Moreover, u∗ is non-decreasing, and it satisfies

A(u∗) ∈ L∞(0, T ; L2(Ω)).

Furthermore, the sequence {ũN} defined as

ũN(t) = u0 +
∫ t

0

N∑
n=1

uN
n − uN

n−1
k

χ[tn−1,tn)(s) ds,

where {uN
n }N

n=0 solves problem (PN
1 ), satisfies

ũN → u∗ in C([0, T ]; L2(Ω)) and ∂tũ
N ⇀ ∂tu

∗ in L2(0, T ; L2(Ω)),

along a subsequence.
If α > 1, then the same holds true provided that

|u0|L2(Ω) + LΘ|u0|αL2(Ω) + T 1/2|f |L2(0,T ;L2(Ω)) <
1

((α − 1)LΘT )
1

α−1
.
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ũN → u∗ in C([0, T ]; L2(Ω)) and ∂tũ
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3. An algorithm and further
numerical results
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A simple variable splitting approach

Suppose that uN
n−1 is given, how do we approximate uN

n ?

Recall that uN
n ∈ K(Φ(uN

n−1)), and⟨
uN

n − uN
n−1

k
+ A(uN

n ) − Θ(uN
n−1) − fN

n , v − uN
n

⟩
≥ 0,

for all v ∈ K(Φ(uN
n−1)) .

Let γ be “sufficiently large” and consider

Problem (Pn
γ) :

min J N
n,γ(u, p) := 1

2k |u − uN
n−1|2L2(Ω) + 1

2⟨Au, u⟩ − (Θ(uN
n−1) + f (tn−1), u)

+γ
2 |∇u − p|2L2(Ω)ℓ

over (u, p) ∈ H1
0(Ω) × L2(Ω)ℓ

s.t. |p| ≤ Φ(uN
n−1).
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2⟨Au, u⟩ − (Θ(uN
n−1) + f (tn−1), u)

+γ
2 |∇u − p|2L2(Ω)ℓ

over (u, p) ∈ H1
0(Ω) × L2(Ω)ℓ

s.t. |p| ≤ Φ(uN
n−1).

Algorithm
Data: n ∈ N, k, γ ∈ R+, uN

n−1 ∈ L2(Ω).
1. Choose u(0) ∈ L2(Ω) and set l = 0.
2. repeat
3. Compute p(l+1) = argminp∈L2(Ω)ℓ|p − ∇u(l)|2L2(Ω)ℓ + I|q|≤Φ(uN

n−1)(p).
4. Compute u(l+1) = argminu∈H1

0 (Ω)J N
n,γ(u, p(l)).

5. Set l = l + 1.
6. until some stopping rule is satisfied.
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Ex1: Dissipative example - A = −∆, f = 1, Θ = 0, Φ(t, u) = α
α+|u+t|

Magnetic field for a type-II superconductor (different penalty γ parameters)

Figure: The final state and active set for γ = 10 (above), and for γ = 100 (below)
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Ex2: Growth of large sandpiles - A = 0, f = 1, Θ = 0, Φ(u) = β1u + β2

(a) (b) (c)

(d) (e)

Figure: The state u(t) at time t = 5 × 10−5 is depicted in figures (a), (b) and at t = 10−3 in
(d) and (e). The active set A(t) at t = 5 × 10−5 is given in (c)
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Ex 3: Finite time blow up - A = 0, Θ(u) = αu∥u∥L2(Ω), Φ(u) = β1u + β2

Figure: The state u(t) at times t = 10−7, 5 · 10−7, 10−6 is depicted in first row. The
corresponding active sets A(t) at those same times are given in the second row.
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Thanks for your attention!
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