Introduction to Quasi-variational Inequalities in Hilbert Spaces Exploiting order

- 1. The obstacle elliptic QVI problem
- 2. Some applications
- 3. Minimal and maximal solutions
- 4. Perturbations of minimal and maximal solutions
- 5. Directional differentiability

The obstacle elliptic QVI problem

Let $A : V \to V'$ and $f \in V'$ for some (real) Hilbert space V. Consider Find $y \in \mathbf{K}(y) : \langle Ay - f, v - y \rangle \ge 0, \quad \forall v \in \mathbf{K}(y)$ (QVI) where $\mathbf{K}(w) := \{z \in V : z \le \Phi(w)\}.$

Objectives/Goals:

In general there are multiple solutions. The solution set Q(f) might be of any cardinality. However, we want to understand stability and directional differentiability properties of

$$f \mapsto \mathbf{Q}(f).$$

Further understanding on the structure of $\mathbf{Q}(f)$ is needed.

Assumptions on V, A, and ${\bf K}$

► Gelfand triple of Hilbert spaces (V, H, V'), and $L^{\infty}(\Omega) \hookrightarrow H$. Order induced in H by a closed convex cone, with $|v^+|_V \leq C|v|_V$ for some C > 0 and all $v \in V$.

▶ The map $A: V \to V'$ is linear, uniformly monotone,

$$\langle Au, u \rangle \ge c |u|_V^2, \quad \forall u \in V, \qquad (c > 0)$$

and that for all $v \in V,$ we have

$$\langle Av^-, v^+ \rangle \le 0.$$

 \blacktriangleright The map K is defined as

$$\mathbf{K}(y) = \{ v \in V : v \le \Phi(y) \},$$

where the map $\Phi: V \to V$ is **increasing**:

$$v \le w \quad \Longrightarrow \quad \Phi(v) \le \Phi(w).$$

The typical setting is given by

 $\blacktriangleright (V, H, V') = (H_0^1(\Omega), L^2(\Omega), H^{-1}(\Omega)). \text{ Order induced in } L^2(\Omega) \text{ is via } L^2_+(\Omega).$

The map $A: H_0^1(\Omega) \to H^{-1}(\Omega)$ is given $\langle Av, w \rangle = \int_{\Omega} \left(\sum_{i,j} a_{ij}(x) \frac{\partial v}{\partial x_j} \frac{\partial w}{\partial x_i} + \sum_i a_i(x) \int_{\Omega} \frac{\partial v}{\partial x_j} w + a_0(x) v w \right) \, \mathrm{d}x,$

with usual assumptions over coefficients. Also fractional powers A^s for $s \in (0, 1)$ are suitable.

 $\blacktriangleright \Phi: H^1_0(\Omega) \to H^1_0(\Omega)$ is

A superposition operator, i.e., $\Phi(y)(x) = \varphi(y(x))$ for some φ .

▲ A solution operator coming from a PDE, e.g., $\Phi(y) = (-\Delta)^{-1}y + \phi_0$.

Assumptions on V, A, and ${f K}$ - Examples

Consider the following class of compliant obstacle problems where the obstacle is given implicitly by solving a PDE, thus coupling a VI and a PDE:

$$\begin{aligned} y &\leq \Phi, \quad \langle Ay - f, y - v \rangle \leq 0, & \forall v \in V : v \leq \Phi, \\ \langle B\Phi + G(\Phi, y) - g, w \rangle &= 0 & \forall w \in V, \end{aligned}$$

for some G, $B \in \mathcal{L}(V, V')$ and $\langle Bz^-, z^+ \rangle \leq 0$.

Assumptions on $V\!,A,$ and ${\bf K}$ - Examples

Consider the following class of compliant obstacle problems where the obstacle is given implicitly by solving a PDE, thus coupling a VI and a PDE:

$$y \le \Phi, \quad \langle Ay - f, y - v \rangle \le 0, \qquad \forall v \in V : v \le \Phi, \\ \langle B\Phi + G(\Phi, y) - g, w \rangle = 0 \qquad \forall w \in V,$$

for some G, $B \in \mathcal{L}(V, V')$ and $\langle Bz^-, z^+ \rangle \leq 0$.

Example

Consider $a_{ij}, b_{ij}, a_0, b_0 \in L^{\infty}(\Omega)$ and the elliptic operators

$$\langle Ay, z \rangle = \sum_{i,j} \int_{\Omega} a_{ij}(x) \frac{\partial y}{\partial x_j} \frac{\partial z}{\partial x_i} \, \mathrm{d}x + \int_{\Omega} a_0(x) y z \, \mathrm{d}x, \qquad \forall y, z \in V,$$

$$\langle Bv, w \rangle = \sum_{i,j} \int_{\Omega} b_{ij}(x) \frac{\partial v}{\partial x_j} \frac{\partial w}{\partial x_i} \, \mathrm{d}x + \int_{\Omega} b_0(x) v w \, \mathrm{d}x, \qquad \forall v, w \in V,$$

Additionally, for $y \ge 0$

$$G(\Phi, y) = (\Phi - y)^+.$$

Some applications

Applications: Competitive Chemotaxis

(1) Let y be the population density (bacteria) and S the nutritional substrate density. If the density is higher than a threshold value and S is sufficiently large, the bacteria bulk (some cases) adheres to that location:

$y \ge \Phi_1(y, S).$

Exploitation competition (credit M. E. Hibbing.)

 $(\mathbf{2})$ Some bacteria populations generate antimicrobial compounds against competing populations. A bound of the following form arises

$$y_2 \le \Phi_2(y_1, y_2).$$

Contest competition.

Manufacture of products by heating a plastic sheet $u: \Omega \to \mathbb{R}$ and forcing it onto mold $\Phi(u): \Omega \to \mathbb{R}$

- The contact problem is a VI under perfect sliding of the membrane u with the mould ([Andrä, Warby, Whiteman]).
- $\scriptstyle \bullet$ Temperature difference between the mold and the plastic sheet \rightarrow heat transfer
- \blacksquare Some mold materials change dynamically upon contact \rightarrow QVI.

Minimal and maximal solutions

Tartar's Approach

Denote by $S(f, \mathbf{w})$ to the unique solution to

 $\text{Find } y \in \mathbf{K}(\mathbf{w}) : \langle A(y) - f, v - y \rangle \ge 0, \quad \forall v \in \mathbf{K}(\mathbf{w}).$

The map $S(f, \cdot): H \to V \subset H$ is well-defined and

▶ S(f, ·) : H → H is an increasing map:
w₀ ≤ w₁ ⇒ S(f, w₀) ≤ S(f, w₁).
▶ Fixed points of S(f, ·) are solutions to the QVI of interest.

Tartar's Approach

Denote by $S(f, \mathbf{w})$ to the unique solution to

 ${\rm Find}\; y\in {\bf K}({\bf w}): \langle A(y)-f,v-y\rangle\geq 0, \quad \forall v\in {\bf K}({\bf w}).$

The map $S(f, \cdot): H \to V \subset H$ is well-defined and

▶ $S(f, \cdot) : H \to H$ is an increasing map:

 $w_0 \le w_1 \implies S(f, w_0) \le S(f, w_1).$

Fixed points of $S(f, \cdot)$ are solutions to the QVI of interest.

Theorem (Birkhoff-Tartar)- ([Tartar(1974)])

Let V be a Hilbert space and suppose $T : H \to H$ is an **increasing map**. Let \underline{y} be a **sub-solution** and \overline{y} be a **super-solution** of the map T, that is:

 $\underline{y} \leq T(\underline{y}) \quad \text{ and } \quad T(\overline{y}) \leq \overline{y}.$

If $\underline{y} \leq \overline{y}$, then the set of fixed points of the map T in the interval $[\underline{y}, \overline{y}]$ is non-empty and has a smallest $\mathbf{m}(T)$ and a largest element $\mathbf{M}(T)$.

Definition of ${\bf m}$ and ${\bf M}$

In general, for applications, sub- and super-solutions of $S(f, \cdot)$ are easy to be found. Let $F \in V'$, and consider that for all admissible forcing terms $f \in U_{ad}$ we have that

 $0 \le f \le F.$

Definition of ${\bf m}$ and ${\bf M}$

In general, for applications, sub- and super-solutions of $S(f, \cdot)$ are easy to be found. Let $F \in V'$, and consider that for all admissible forcing terms $f \in U_{ad}$ we have that

 $0 \le f \le F.$

For a given f, we denote by $\mathbf{m}(f) \quad \text{and} \quad \mathbf{M}(f)$ to the minimal and maximal solutions of the QVI of interest in the interval $[\underline{y},\overline{y}]:=[0,A^{-1}F].$

The elements $\mathbf{m}(f)$ and $\mathbf{M}(f)$ are extremal points of $\mathbf{Q}(f)$ on the interval $[y,\overline{y}]$:

$$\mathbf{Q}(f) \cap [\underline{y}, \overline{y}] \equiv \mathbf{Q}(f) \cap [\mathbf{m}(f), \mathbf{M}(f)].$$

Definition of ${\bf m}$ and ${\bf M}$

In general, for applications, sub- and super-solutions of $S(f, \cdot)$ are easy to be found. Let $F \in V'$, and consider that for all admissible forcing terms $f \in U_{ad}$ we have that

 $0 \le f \le F.$

For a given f, we denote by $\mathbf{m}(f) \quad \text{and} \quad \mathbf{M}(f)$ to the minimal and maximal solutions of the QVI of interest in the interval $[\underline{y},\overline{y}]:=[0,A^{-1}F].$

The elements $\mathbf{m}(f)$ and $\mathbf{M}(f)$ are extremal points of $\mathbf{Q}(f)$ on the interval $[y,\overline{y}]$:

$$\mathbf{Q}(f) \cap [\underline{y}, \overline{y}] \equiv \mathbf{Q}(f) \cap [\mathbf{m}(f), \mathbf{M}(f)].$$

Q: How to compute $\mathbf{m}(f)$ and $\mathbf{M}(f)$?

Computing $\mathbf{m}(f)$ and $\mathbf{M}(f)$

- Suppose that admissible forcing terms satisfy $0 \le f \le F$ for some $F \in L^{\infty}(\Omega)$ and $\underline{y} = A^{-1}(0) = 0$ and $\overline{y} = A^{-1}(F)$.
- Let $\Phi: V \to V$ be completely continuous (maps weak into strong)

Computing $\mathbf{m}(f)$ and $\mathbf{M}(f)$

- Suppose that admissible forcing terms satisfy $0 \le f \le F$ for some $F \in L^{\infty}(\Omega)$ and $\underline{y} = A^{-1}(0) = 0$ and $\overline{y} = A^{-1}(F)$.
- Let $\Phi: V \to V$ be completely continuous (maps weak into strong)
- ▶ Define the sequences $\{m_n\}$ and $\{M_n\}$ as

$$m_n = S(f, m_{n-1}), \quad n \in \mathbb{N} \qquad m_0 = \underline{y};$$

$$M_n = S(f, M_{n-1}), \quad n \in \mathbb{N} \qquad M_0 = \overline{y}.$$

▶ Then, $m_n \uparrow \mathbf{m}(f)$, $M_n \downarrow \mathbf{M}(f)$,

$$m_n \to \mathbf{m}(f), \text{ and } M_n \to \mathbf{M}(f) \quad \text{ in } V$$

 Convergence (in general) is as slow (sublinear) as you can imagine ; the idea of the proof goes back to Kolodner, Birkhoff, etc....

Open question: Are there simple ways to improve convergence speed?

Perturbations of minimal and maximal solutions

The reduced problem

The problem of interest is

Let $A: V \to V'$ and $f \in V'$ for some (real) Hilbert space V. Consider Find $y \in \mathbf{K}(y) : \langle Ay - f, v - y \rangle \ge 0, \quad \forall v \in \mathbf{K}(y)$ (QVI) where $\mathbf{K}(w) := \{z \in V : z \le \Phi(w)\}.$

We now require stability results for

 $f\mapsto \mathbf{m}(f) \quad \text{and} \quad f\mapsto \mathbf{M}(f).$

- What topology on the space of admissible controls?
- What conditions on Φ ?
- A. Alphonse, M. Hintermüller, C. N. R., Stability of the Solution Set of Quasi-variational Inequalities and Optimal Control, arXiv:1904.06231, 2019.

Let's recall the Birkhoff-Tartar theorem

Theorem (Birkhoff-Tartar)- ([Tartar(1974)])

Let V be a Hilbert space and suppose $T : H \to H$ is an **increasing map**. Let \underline{y} be a **sub-solution** and \overline{y} be a **super-solution** of the map T, that is:

 $\underline{y} \leq T(\underline{y}) \quad \text{ and } \quad T(\overline{y}) \leq \overline{y}.$

If $\underline{y} \leq \overline{y}$, then the set of fixed points of the map T in the interval $[\underline{y}, \overline{y}]$ is non-empty and has a smallest $\mathbf{m}(T)$ and a largest element $\mathbf{M}(T)$.

Initially, let's consider (reasonable) approximations of T and try to prove that \mathbf{m} and \mathbf{M} are stable.

Consider first an increasing map $T: H \to V \subset H$ and that is approximated by maps R_n and U_n from below, and above, respectively.

Proposition. Let $T, R_n, U_n : H \to V \subset H$ be increasing mappings for $n \in \mathbb{N}$ with $T: V \to V$ completely continuous. Suppose that for all $v \in [\underline{y}, \overline{y}]$, and $n \in \mathbb{N}$

 $\underline{y} \le R_n(v) \le R_{n+1}(v) \le T(v) \le U_{n+1}(v) \le U_n(v) \le \overline{y},$

Consider first an increasing map $T: H \to V \subset H$ and that is approximated by maps R_n and U_n from below, and above, respectively.

Proposition. Let $T, R_n, U_n : H \to V \subset H$ be increasing mappings for $n \in \mathbb{N}$ with $T: V \to V$ completely continuous. Suppose that for all $v \in [y, \overline{y}]$, and $n \in \mathbb{N}$

 $\underline{y} \le R_n(v) \le R_{n+1}(v) \le T(v) \le U_{n+1}(v) \le U_n(v) \le \overline{y},$

and that if $\{v_n\}$ and $\{w_n\}$ are bounded sequences in V such that $v_n \leq v_{n+1}$ and $w_n \geq w_{n+1}$, then

$$\begin{split} \lim_{n \to \infty} \|R_n(v_n) - T(v_n)\|_V &= 0 \quad \text{and} \quad \lim_{n \to \infty} \|U_n(w_n) - T(w_n)\|_V = 0. \\ \end{split}$$
Then $\mathbf{m}(R_n) \leq \mathbf{m}(T)$ and $\mathbf{M}(T) \leq \mathbf{M}(U_n)$, and as $n \to \infty$, $\mathbf{m}(R_n) \to \mathbf{m}(T)$ in $V \quad \text{and} \quad \mathbf{M}(U_n) \to \mathbf{M}(T)$ in V.

► How tight is the previous result?

How tight is the previous result?

Let $T:[0,1]\rightarrow [0,1]$ be defined as

$$T(v) = \begin{cases} a, \ 0 \le v < a; \\ v, \ a \le v < b; \\ b, \ b \le v \le 1. \end{cases}$$

with 0 < a < b < 1 and where $\mathbf{m}(T) = a$ and $\mathbf{M}(T) = b$ and

$$R_n(v) = \begin{cases} a, & 0 \le v < \frac{1}{n}; \\ T(v - \frac{1}{n}), & \frac{1}{n} \le v \le 1. \end{cases} \qquad U_n(v) = \begin{cases} T(v + \frac{1}{n}), & 0 \le v < 1 - \frac{1}{n}; \\ b, & 1 - \frac{1}{n} \le v \le 1. \end{cases}$$

Suppose that n > N for N sufficiently large, then all the assumptions of the previous theorem hold, but

$$a = \mathbf{M}(R_n) \not\rightarrow \mathbf{M}(T) = b$$
 and $b = \mathbf{m}(U_n) \not\rightarrow \mathbf{m}(T) = a$.

How tight is the previous result?

Let $T:[0,1]\rightarrow [0,1]$ be defined as

$$T(v) = \begin{cases} a, \ 0 \le v < a; \\ v, \ a \le v < b; \\ b, \ b \le v \le 1. \end{cases}$$

with 0 < a < b < 1 and where $\mathbf{m}(T) = a$ and $\mathbf{M}(T) = b$ and

$$R_n(v) = \begin{cases} a, & 0 \le v < \frac{1}{n}; \\ T(v - \frac{1}{n}), & \frac{1}{n} \le v \le 1. \end{cases} \qquad U_n(v) = \begin{cases} T(v + \frac{1}{n}), & 0 \le v < 1 - \frac{1}{n}; \\ b, & 1 - \frac{1}{n} \le v \le 1. \end{cases}$$

Suppose that n > N for N sufficiently large, then all the assumptions of the previous theorem hold, but

$$a = \mathbf{M}(R_n) \not\rightarrow \mathbf{M}(T) = b$$
 and $b = \mathbf{m}(U_n) \not\rightarrow \mathbf{m}(T) = a$.

Then the proof plan is to consider perturbations $f_n \downarrow f$ and $f_n \uparrow f$ separately.

Lemma 1. Suppose that

- i. The sequence $\{f_n\}$ in $L^{\infty}_{\nu}(\Omega)$ is non-increasing and converges to f^* in $L^{\infty}(\Omega)$.
- ii. The upper bound mapping Φ satisfies that

 $\lambda \Phi(y) \geq \Phi(\lambda y), \qquad \text{ for any } \quad \lambda \geq 1, \ y \in V \cap H^+,$

and if $v_n \to v$ in H, then $\Phi(v_n) \to \Phi(v)$ in H. Then $\mathbf{m}(f_n) \downarrow \mathbf{m}(f^*)$ in H and

 $\mathbf{m}(f_n) \to \mathbf{m}(f^*)$ in V.

$$L^{\infty}_{\nu}(\Omega) := \{ g \in L^{\infty}(\Omega) : g \ge \nu > 0 \}.$$

• Note that we are not assuming that if $v_n \rightharpoonup v$ then Mosco convergence $\mathbf{K}(v_n) \rightarrow \mathbf{K}(v)$ holds!

▶ Q: Why is $L^{\infty}(\Omega)$ required as the space of perturbations?

▶ Q: Why is $L^{\infty}(\Omega)$ required as the space of perturbations?

Then $\mathbf{m}(f)$ is the maximal element of the set $Z^{ullet}(f)$ with

$$\begin{split} X(f) &= \{ x \in V : x \in [\underline{y}, \overline{y}] \text{ and } x \leq S(f, x) \}, \\ Y^{\bullet}(f) &= \{ x \in V : x \in [\underline{y}, \infty) \text{ and } x \geq S(f, x) \}, \\ Z^{\bullet}(f) &= \{ x \in X(f) : x \leq y \text{ for all } y \in Y^{\bullet}(f) \}. \end{split}$$

Similarly, $\mathbf{M}(f)$ is the minimal element of the set $\tilde{Z}^{\bullet}(f)$ where

$$\begin{split} X^{\bullet}(f) &= \{ x \in V : x \in (-\infty, \overline{y}] \text{ and } x \leq S(f, x) \}, \\ Y(f) &= \{ x \in V : x \in [\underline{y}, \overline{y}] \text{ and } x \geq S(f, x) \}, \\ \tilde{Z}^{\bullet}(f) &= \{ y \in Y(f) : x \leq y \text{ for all } x \in X^{\bullet}(f) \}. \end{split}$$

 \blacktriangleright A: The set-valued maps $f\mapsto Z^{\bullet}(f), \tilde{Z}^{\bullet}(f)$ are delicate

Lemma 2. Suppose that

i. The sequence $\{f_n\}$ in V'_+ is non-decreasing and converges to f^* in V'.

ii. The upper bound mapping Φ satisfies one of the following:

a. If $v_n \rightharpoonup v$ in V, then $\Phi(v_n) \rightarrow \Phi(v)$ in $L^{\infty}(\Omega)$.

b. If $v_n \rightharpoonup v$ in V, then $\Phi(v_n) \rightarrow \Phi(v)$ in H and if $v \in V \cap H^+$, then $\Phi(v) \in V$ and $-\Delta \Phi(v) \ge 0$.

Then $\mathbf{m}(f_n) \uparrow \mathbf{m}(f^*)$ in H and

 $\mathbf{m}(f_n) \to \mathbf{m}(f^*)$ in V.

Lemma 3. Suppose that

i. The sequence $\{f_n\}$ in V'_+ is non-increasing and converges to f^* in V'.

ii. The upper bound mapping Φ satisfies: If $v_n \to v$ in H, then $\Phi(v_n) \to \Phi(v)$ in H. Then $\mathbf{M}(f_n) \downarrow \mathbf{M}(f^*)$ in H and

 $\mathbf{M}(f_n) \to \mathbf{M}(f^*)$ in V.

Lemma 4. Suppose that

- i. The sequence $\{f_n\}$ in $L^{\infty}_{\nu}(\Omega)$ is non-decreasing and converges to f^* in $L^{\infty}(\Omega)$.
- ii. The upper bound mapping Φ satisfies that

 $\lambda \Phi(y) \leq \Phi(\lambda y), \quad \text{for any} \quad 0 < \lambda < 1, \quad y \in V \cap H^+,$

and one of the following:

a. If $v_n \rightharpoonup v$ in V, then $\Phi(v_n) \rightarrow \Phi(v)$ in $L^{\infty}(\Omega)$.

b. If $v_n \rightharpoonup v$ in V, then $\Phi(v_n) \rightarrow \Phi(v)$ in H and if $v \in V \cap H^+$, then $\Phi(v) \in V$ and $-\Delta \Phi(v) \ge 0$.

Then $\mathbf{M}(f_n) \uparrow \mathbf{M}(f^*)$ in H and

$$\mathbf{M}(f_n) \to \mathbf{M}(f^*)$$
 in V.

Theorem. Suppose that

- i. The sequence $\{f_n\}$ in $L^{\infty}_{\nu}(\Omega)$ converges to f^* in $L^{\infty}(\Omega)$.
- ii. The upper bound mapping Φ satisfies the conditions of the previous lemmas. In particular, for any $y \in V \cap H^+$

$\lambda \Phi(y) \ge \Phi(\lambda y),$	for any	$\lambda \ge 1,$	or
$\lambda \Phi(y) \leq \Phi(\lambda y),$	for any	$0 < \lambda < 1$	•

Then

$$\mathbf{m}(f_n) \to \mathbf{m}(f^*)$$
 and $\mathbf{M}(f_n) \to \mathbf{M}(f^*)$ in H ,

together with

$$\mathbf{m}(f_n) \rightharpoonup \mathbf{m}(f^*)$$
 and $\mathbf{M}(f_n) \rightharpoonup \mathbf{M}(f^*)$ in V .

▶ No order in $\{f_n\}$ ⇒ no strong convergence in V.

25/39 QVIs

Example of application

We would like to control the solution set $f \mapsto \mathbf{Q}(f)$ of the QVI

Let $A: V \to V'$ and $f \in V'$ for some (real) Hilbert space V. Consider Find $y \in \mathbf{K}(y) : \langle Ay - f, v - y \rangle \ge 0$, $\forall v \in \mathbf{K}(y)$ (QVI) where $\mathbf{K}(w) := \{z \in V : z \le \Phi(w)\}.$

Suppose that we require that $\mathbf{Q}(f)$ is a singleton:

 \blacktriangle In our setting we would to select a forcing term f such that

$$|\mathbf{m}(f) - \mathbf{M}(f)|_{L^2(\Omega)},$$

is as small as possible in addition to requiring that $\mathbf{m}(f)$ is close to a desired state.

Consider the following problem

$$\min_{f \in U_{ad}} \int_{\Omega} |\mathbf{m}(f) - \mathbf{M}(f)|^2 + \int_{\Omega} |\mathbf{m}(f) - y_d|^2,$$

for some admissible control set $U_{ad} \subset U$ and where $\mathbf{m}(f)$, and $\mathbf{M}(f)$ correspond to the minimal and maximal solutions of the following QVI

$$\text{Find } y \in \mathbf{K}(y): \langle A(y) - f, v - y \rangle \geq 0, \quad \forall v \in \mathbf{K}(y)$$

Consider the following problem
$$\begin{split} & \min_{f \in U_{\text{ad}}} \int_{\Omega} |\mathbf{m}(f) - \mathbf{M}(f)|^2 + \int_{\Omega} |\mathbf{m}(f) - y_d|^2, \\ & \text{for some admissible control set } U_{\text{ad}} \subset U \text{ and where } \mathbf{m}(f), \text{ and } \mathbf{M}(f) \text{ correspond to the minimal and maximal solutions of the following QVI} \\ & \text{Find } y \in \mathbf{K}(y) : \langle A(y) - f, v - y \rangle \geq 0, \quad \forall v \in \mathbf{K}(y). \end{split}$$

- ▶ If U is compactly embedded in $L^{\infty}(\Omega)$, U is a reflexive Banach space and $U_{ad} \subset L^{\infty}_{\nu}(\Omega)$ is bounded, then the above problem has a solution (under the assumptions we have described).
 - A. Alphonse, M. Hintermüller, C. N. R., Stability of the Solution Set of Quasi-variational Inequalities and Optimal Control, arXiv:1904.06231, 2019.

Directional differentiability of $f \mapsto \mathbf{Q}(f)$.

Directional differentiability

Given $\mathbf{Q}(f)$ the solution set to QVI

We are interested in the directional differentiability of \mathbf{Q} : we want to show (formally)

$$\mathbf{Q}(f+td) \supset \mathbf{Q}(f) + t\mathbf{Q}'(f)(d) + o(t)$$

where $t^{-1}o(t) \rightarrow 0$ as $t \rightarrow 0^+$.

Directional differentiability results useful for

- Optimal control of QVI.
- Numerical methods.

Selected work:

- Sensitivity for VIs and related issues: Alphonse, Bergounioux, Christof, Hintermüller, Haraux, Herzog, Ito, Kunisch, Leugering, Meyer, Mignot, Puel, Surowiec, Sprekels, M. Ulbrich, S. Ulbrich, D. Wachsmuth, G. Wachsmuth, Zarantonello,...
- A. Alphonse, M. Hintermüller, C. N. R., Stability of the Solution Set of Quasi-variational Inequalities and Optimal Control, CoVs and PDEs 58 (1), 39 (2019).

We are interested in the directional differentiability of \mathbf{Q} : we want to show (formally) $\mathbf{Q}(f+td) \supset \mathbf{Q}(f) + t\mathbf{Q}'(f)(d) + o(t)$ where $t^{-1}o(t) \rightarrow 0$ as $t \rightarrow 0^+$.

We face the same questions as before

 \blacktriangleright What topology on the space of admissible controls f and perturbations d?

• What conditions on Φ ?

For the time being just assume that $\Phi: V \to V$ is Hadamard differentiable: That is, for all v and all h in V, the limit

$$\lim_{\substack{h' \to h \\ t \to 0^+}} \frac{\Phi(v + th') - \Phi(v)}{t}$$

exists in V, and we write the limit as $\Phi'(v)(h)$.

30/39 QVIs

Main result

Assume $f,d\in L^\infty_+(\Omega)$ and define $\bar{y},\bar{q}(t)$ by

$$A\bar{y} = f \qquad \& \qquad A\bar{q}(t) = f + td.$$

Main result

Assume $f,d\in L^\infty_+(\Omega)$ and define $\bar{y},\bar{q}(t)$ by

$$A\bar{y} = f$$
 & $A\bar{q}(t) = f + td.$

Existence: by the Tartar–Birkhoff theorem, the following sets are non-empty:

$$\mathbf{Q}(f) \cap [0, \bar{y}] \qquad \& \qquad \mathbf{Q}(f + td) \cap [y, \bar{q}(t)].$$

Assume $f,d\in L^\infty_+(\Omega)$ and define $\bar y,\bar q(t)$ by

$$A\bar{y} = f$$
 & $A\bar{q}(t) = f + td.$

Existence: by the Tartar–Birkhoff theorem, the following sets are non-empty:

$$\mathbf{Q}(f) \cap [0, \bar{y}] \qquad \& \qquad \mathbf{Q}(f + td) \cap [y, \bar{q}(t)].$$

Theorem. For every $y \in \mathbf{Q}(f) \cap [0, \overline{y}]$, then under certain conditions, there exists $q(t) \in \mathbf{Q}(f + td)$ and $\alpha \in V_+$ such that

$$q(t) = y + t\alpha + o(t).$$

Furthermore, $\alpha = \alpha(d)$ is positively homogeneous and satisfies the QVI

$$\begin{split} &\alpha \in \mathcal{K}^y(\alpha) : \langle A\alpha - d, \alpha - v \rangle \leq 0 \quad \forall v \in \mathcal{K}^y(\alpha) \\ &\mathcal{K}^y(w) := \{\varphi \in V : \varphi \leq \Phi'(y)(w) \text{ q.e. on } \mathcal{A}(y) \text{ \& } \langle Ay - f, \varphi - \Phi'(y)(w) \rangle = 0 \}. \end{split}$$

This is an extension of Mignot result for VIs into QVIs

Why didn't we use use Mignot's result (after variable change)?

As before, $S(g,\psi)=y\in V$ be the solution of the VI

$$y \in \mathbf{K}(\psi) : \langle Ay - g, y - v \rangle \le 0 \quad \forall v \in \mathbf{K}(\psi).$$

Mignot 's result implies that $S(\cdot,\psi)$ has a direc. derivative $DS(g,\psi)(d)=:\delta,$ i.e.,

$$S(g+td,\psi) = S(g,\psi) + tDS(g,\psi)(d) + o(t,d)$$

where $t^{-1}o(t,d) \to 0$ as $t \to 0^+$ uniformly in d on compact subsets of $V^*.$ It solves

$$\begin{split} &\delta \in \mathcal{K}^y: \quad \langle A\delta - d, \delta - v \rangle \leq 0 \quad \forall v \in \mathcal{K}^y \\ &\mathcal{K}^y:= \{ w \in V: w \leq 0 \text{ q.e. on } \{ y = \Phi(\psi) \} \text{ and } \langle Ay - g, w \rangle = 0 \}. \end{split}$$

Why didn't we use use Mignot's result (after variable change)?

As before, $S(g,\psi)=y\in V$ be the solution of the VI

$$y \in \mathbf{K}(\psi) : \langle Ay - g, y - v \rangle \le 0 \quad \forall v \in \mathbf{K}(\psi).$$

Mignot 's result implies that $S(\cdot,\psi)$ has a direc. derivative $DS(g,\psi)(d)=:\delta,$ i.e.,

$$S(g+td,\psi) = S(g,\psi) + tDS(g,\psi)(d) + o(t,d)$$

where $t^{-1}o(t,d) \to 0$ as $t \to 0^+$ uniformly in d on compact subsets of $V^*.$ It solves

$$\begin{split} &\delta \in \mathcal{K}^y: \quad \langle A\delta - d, \delta - v \rangle \leq 0 \quad \forall v \in \mathcal{K}^y \\ &\mathcal{K}^y:= \{ w \in V: w \leq 0 \text{ q.e. on } \{ y = \Phi(\psi) \} \text{ and } \langle Ay - g, w \rangle = 0 \}. \end{split}$$

Transforming $y = \Phi(y) - \hat{y}$ leads to

$$\hat{y} \in \mathbf{K}_0: \quad \langle \hat{A}\hat{y} - \hat{f}, \hat{y} - \varphi \rangle \le 0 \quad \forall \varphi \in \mathbf{K}_0$$

where $\hat{A} := A - A \Phi (\Phi - I)^{-1}$ and $\hat{f} = -f$.

In general, \hat{A} is not linear, nor coercive, nor T-monotone \rightarrow New math needed.

33/39

QVIs

In the formal equality

$$\mathbf{Q}(f+td) \supset \mathbf{Q}(f) + t\mathbf{Q}'(f)(d) + o(t), \tag{1}$$

1. Select an element $y \in \mathbf{Q}(f)$.

2. Approximate an associated element q(t) to y from $\mathbf{Q}(f+td)$ by a sequence $q_n(t)$ of solutions of VIs

In the formal equality

$$\mathbf{Q}(f+td) \supset \mathbf{Q}(f) + t\mathbf{Q}'(f)(d) + o(t), \tag{1}$$

- 1. Select an element $y \in \mathbf{Q}(f)$.
- 2. Approximate an associated element q(t) to y from $\mathbf{Q}(f+td)$ by a sequence $q_n(t)$ of solutions of VIs
- 3. Obtain differential formulae for the q_n and characterize the approximation α_n to the directional derivative.

(must relate q_n to y; recursion plays a highly nonlinear role)

In the formal equality

$$\mathbf{Q}(f+td) \supset \mathbf{Q}(f) + t\mathbf{Q}'(f)(d) + o(t), \tag{1}$$

- 1. Select an element $y \in \mathbf{Q}(f)$.
- 2. Approximate an associated element q(t) to y from $\mathbf{Q}(f+td)$ by a sequence $q_n(t)$ of solutions of VIs
- 3. Obtain differential formulae for the q_n and characterize the approximation α_n to the directional derivative.

(must relate q_n to y; recursion plays a highly nonlinear role)

4. Pass to the limit to hopefully retrieve (1) (handling a recurrence inequality to obtain uniform bounds + identifying the limit of higher order terms as a higher order term).

As usual, $S(g,\psi)=z\in V$ is the solution to the VI

$$z \in \mathbf{K}(\psi): \quad \langle Az - g, z - v \rangle \leq 0 \quad \forall v \in \mathbf{K}(\psi)$$

As usual, $S(g,\psi)=z\in V$ is the solution to the VI

$$z \in \mathbf{K}(\psi) : \langle Az - g, z - v \rangle \le 0 \quad \forall v \in \mathbf{K}(\psi)$$

Define $q_n := S(f + td, q_{n-1})$ and $q_0 := y$.

As usual, $S(g,\psi)=z\in V$ is the solution to the VI

$$z \in \mathbf{K}(\psi) : \langle Az - g, z - v \rangle \le 0 \quad \forall v \in \mathbf{K}(\psi)$$

Define $q_n := S(f + td, q_{n-1})$ and $q_0 := y$.

Lemma. For each n,

$$q_n(t) = y + t\alpha_n + o_n(t)$$

where

$$\alpha_n = \Phi'(y)[\alpha_{n-1}] + DS(f, y)[d - A\Phi'(y)(\alpha_{n-1})]$$

$$o_n(t) = r(t, \alpha_{n-1}, o_{n-1}(t))$$

As usual, $S(g,\psi)=z\in V$ is the solution to the VI

$$z \in \mathbf{K}(\psi) : \langle Az - g, z - v \rangle \le 0 \quad \forall v \in \mathbf{K}(\psi)$$

Define $q_n := S(f + td, q_{n-1})$ and $q_0 := y$.

Lemma. For each n,

$$q_n(t) = y + t\alpha_n + o_n(t)$$

where

$$\alpha_n = \Phi'(y)[\alpha_{n-1}] + DS(f, y)[d - A\Phi'(y)(\alpha_{n-1})]$$

$$o_n(t) = r(t, \alpha_{n-1}, o_{n-1}(t))$$

and $t^{-1}o_n(t) \to 0$ as $t \to 0^+$ and α_n is positively homogeneous in d and solves the VI

$$\begin{split} \alpha_n \in \mathcal{K}^y(\alpha_{n-1}) : \langle A\alpha_n - d, \alpha_n - \varphi \rangle &\leq 0 \qquad \forall \varphi \in \mathcal{K}^y(\alpha_{n-1}) \\ \mathcal{K}^y(\alpha_{n-1}) = \{ \varphi \in V : \varphi \leq \Phi'(y)(\alpha_{n-1}) \text{ q.e. on } \mathcal{A}(y) \\ & \& \langle Ay - f, \varphi - \Phi'(y)(\alpha_{n-1}) \rangle = 0. \} \end{split}$$

Let c and C be the coercivity and boundedness constants of A, respectively.

Lemma. If there exists $\epsilon > 0$ such that $\|\Phi'(y)b\|_V \leq (c-\epsilon)/C\|b\|_V$, then α_n is bounded in V.

Let c and C be the coercivity and boundedness constants of A, respectively. Lemma. If there exists $\epsilon > 0$ such that $\|\Phi'(y)b\|_V \le (c - \epsilon)/C\|b\|_V$, then α_n is

bounded in V.

Since $o_n(t) = q_n(t) - u - t\alpha_n$, $o_n(t) \rightharpoonup o^*(t) \text{ in } V.$

Let c and C be the coercivity and boundedness constants of A, respectively. Lemma. If there exists $\epsilon > 0$ such that $\|\Phi'(y)b\|_V \leq (c - \epsilon)/C\|b\|_V$, then α_n is bounded in V.

Since
$$o_n(t) = q_n(t) - u - t\alpha_n$$
,
 $o_n(t) \rightharpoonup o^*(t)$ in V .

Is o^* a higher order term?

35/39 QVIs

Let c and C be the coercivity and boundedness constants of A, respectively. Lemma. If there exists $\epsilon > 0$ such that $\|\Phi'(y)b\|_V \leq (c - \epsilon)/C\|b\|_V$, then α_n is bounded in V.

Since
$$o_n(t) = q_n(t) - u - t\alpha_n$$
,
 $o_n(t) \rightharpoonup o^*(t)$ in V .

Is o^* a higher order term?

Assume

(1) $V \ni z \to \Phi'(v)(z) \in V$ is completely continuous, (2) for $T_0 \in (0,T)$ small, if $z \colon (0,T_0) \to V$ satisfies $z(t) \to y$ as $t \to 0^+$, then $\|\Phi'(z(t))b\|_V \le C_{\Phi} \|b\|_V$ where $C_{\Phi} < (1+c^{-1}C)^{-1}$.

Lemma. The convergence $t^{-1}o_n(t) \to 0$ in V as $t \to 0^+$ is uniform in n.

Can we differentiate the minimal and maximal solutions maps with the previous result?

Can we differentiate the minimal and maximal solutions maps with the previous result? **Yes and No**:

For the map \mathbf{m} we have

$$\mathbf{m}(f+td) = \mathbf{m}(f) + t\mathbf{m}'(f)(d) + o(t)$$

where $t^{-1}o(t) \rightarrow 0$ as $t \rightarrow 0^+$.

 \blacktriangleright For the map M we have

$$q(t) = \mathbf{M}(f) + t\alpha(d) + o(t)$$

for some $q(t) \in \mathbf{Q}(f + td)$.

We need to "reverse" orders in the proof to obtain the result for ${f M}.$

A Thermoforming Model

Aim: manufacture products by heating membrane/sheet and forcing it onto mould Modelling assumptions (for a time step in the semi-discretisation of the problem):

- 1. Temperature for the membrane is constant. Position denoted by \boldsymbol{y}
- 2. Φ grows in an affine fashion w. r. t. its temperature. Position denoted by $\Phi(y)$
- 3. Temperature T of the mould is subject to diffusion + insulated BCs + vertical distance to membrane.

$$\begin{split} & \text{We consider } V = H_0^1(\Omega) \\ & y \in V: y \leq \Phi(y), \quad \langle Ay - f, y - v \rangle \leq 0 \quad \forall v \in V: v \leq \Phi(y) \\ & -\Delta T + T = g(\Phi(y) - y) \qquad \text{on } \Omega \\ & \Phi(u) = \Phi_0 + LT \qquad \text{on } \Omega, \end{split}$$

where L is a bounded linear increasing operator.

A Thermoforming Model

Aim: manufacture products by heating membrane/sheet and forcing it onto mould Modelling assumptions (for a time step in the semi-discretisation of the problem):

- 1. Temperature for the membrane is constant. Position denoted by y
- 2. Φ grows in an affine fashion w. r. t. its temperature. Position denoted by $\Phi(y)$
- 3. Temperature T of the mould is subject to diffusion + insulated BCs + vertical distance to membrane.

$$\begin{split} & \text{We consider } V = H_0^1(\Omega) \\ & y \in V: y \leq \Phi(y), \quad \langle Ay - f, y - v \rangle \leq 0 \quad \forall v \in V: v \leq \Phi(y) \\ & -\Delta T + T = g(\Phi(y) - y) \qquad \text{on } \Omega \\ & \Phi(u) = \Phi_0 + LT \qquad \text{on } \Omega, \end{split}$$

where L is a bounded linear increasing operator.

Provided that g is regular enough, the previous result can be applied and a directional derivative exists.

38/39 QVIs

M

Thanks for your attention!

