Introduction to Quasi-variational Inequalities in Hilbert Spaces

Exploiting order

C. N. Rautenberg

Department of Mathematical Sciences
George Mason University

Julius-Maximilians-
UN়IVERSITÄT WÜRZBURG

Contents

1. The obstacle elliptic QVI problem
2. Some applications
3. Minimal and maximal solutions
4. Perturbations of minimal and maximal solutions
5. Directional differentiability

The obstacle elliptic QVI problem

The class of elliptic QVIs

Let $A: V \rightarrow V^{\prime}$ and $f \in V^{\prime}$ for some (real) Hilbert space V. Consider

$$
\begin{equation*}
\text { Find } y \in \mathbf{K}(y):\langle A y-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(y) \tag{QVI}
\end{equation*}
$$

where

$$
\mathbf{K}(w):=\{z \in V: z \leq \Phi(w)\} .
$$

Objectives/Goals:

- In general there are multiple solutions. The solution set $\mathbf{Q}(f)$ might be of any cardinality. However, we want to understand stability and directional differentiability properties of

$$
f \mapsto \mathbf{Q}(f) .
$$

F Further understanding on the structure of $\mathbf{Q}(f)$ is needed.

Assumptions on V, A, and \mathbf{K}

- Gelfand triple of Hilbert spaces $\left(V, H, V^{\prime}\right)$, and $L^{\infty}(\Omega) \hookrightarrow H$. Order induced in H by a closed convex cone, with $\left|v^{+}\right|_{V} \leq C|v|_{V}$ for some $C>0$ and all $v \in V$.
- The map $A: V \rightarrow V^{\prime}$ is linear, uniformly monotone,

$$
\langle A u, u\rangle \geq c|u|_{V}^{2}, \quad \forall u \in V, \quad(c>0)
$$

and that for all $v \in V$, we have

$$
\left\langle A v^{-}, v^{+}\right\rangle \leq 0 .
$$

- The map K is defined as

$$
\mathbf{K}(y)=\{v \in V: v \leq \Phi(y)\},
$$

where the $\operatorname{map} \Phi: V \rightarrow V$ is increasing:

$$
v \leq w \quad \Longrightarrow \quad \Phi(v) \leq \Phi(w) .
$$

Assumptions on V, A, and \mathbf{K} - Examples

The typical setting is given by

- $\left(V, H, V^{\prime}\right)=\left(H_{0}^{1}(\Omega), L^{2}(\Omega), H^{-1}(\Omega)\right)$. Order induced in $L^{2}(\Omega)$ is via $L_{+}^{2}(\Omega)$.
- The map $A: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is given

$$
\langle A v, w\rangle=\int_{\Omega}\left(\sum_{i, j} a_{i j}(x) \frac{\partial v}{\partial x_{j}} \frac{\partial w}{\partial x_{i}}+\sum_{i} a_{i}(x) \int_{\Omega} \frac{\partial v}{\partial x_{j}} w+a_{0}(x) v w\right) \mathrm{d} x
$$

with usual assumptions over coefficients. Also fractional powers A^{s} for $s \in(0,1)$ are suitable.

- $\Phi: H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is
Δ A superposition operator, i.e., $\Phi(y)(x)=\varphi(y(x))$ for some φ.
\triangle A solution operator coming from a $P D E$, e.g., $\Phi(y)=(-\Delta)^{-1} y+\phi_{0}$.

Assumptions on V, A, and \mathbf{K} - Examples

- Consider the following class of compliant obstacle problems where the obstacle is given implicitly by solving a PDE, thus coupling a VI and a PDE:

$$
\begin{aligned}
y \leq \Phi, \quad\langle A y-f, y-v\rangle \leq 0, & \forall v \in V: v \leq \Phi, \\
\langle B \Phi+G(\Phi, y)-g, w\rangle=0 & \forall w \in V,
\end{aligned}
$$

for some $G, B \in \mathcal{L}\left(V, V^{\prime}\right)$ and $\left\langle B z^{-}, z^{+}\right\rangle \leq 0$.

Assumptions on V, A, and \mathbf{K} - Examples

- Consider the following class of compliant obstacle problems where the obstacle is given implicitly by solving a PDE, thus coupling a VI and a PDE:

$$
\begin{array}{rlrl}
y \leq \Phi, \quad\langle A y-f, y-v\rangle & \leq 0, & \forall v \in V: v \leq \Phi, \\
\langle B \Phi+G(\Phi, y)-g, w\rangle & =0 & \forall w & \in V,
\end{array}
$$

for some $G, B \in \mathcal{L}\left(V, V^{\prime}\right)$ and $\left\langle B z^{-}, z^{+}\right\rangle \leq 0$.

Example

Consider $a_{i j}, b_{i j}, a_{0}, b_{0} \in L^{\infty}(\Omega)$ and the elliptic operators

$$
\begin{aligned}
\langle A y, z\rangle & =\sum_{i, j} \int_{\Omega} a_{i j}(x) \frac{\partial y}{\partial x_{j}} \frac{\partial z}{\partial x_{i}} \mathrm{~d} x+\int_{\Omega} a_{0}(x) y z \mathrm{~d} x, \quad \forall y, z \in V \\
\langle B v, w\rangle & =\sum_{i, j} \int_{\Omega} b_{i j}(x) \frac{\partial v}{\partial x_{j}} \frac{\partial w}{\partial x_{i}} \mathrm{~d} x+\int_{\Omega} b_{0}(x) v w \mathrm{~d} x, \quad \forall v, w \in V
\end{aligned}
$$

Additionally, for $y \geq 0$

$$
G(\Phi, y)=(\Phi-y)^{+}
$$

Some applications

Applications: Competitive Chemotaxis

(1) Let y be the population density (bacteria) and S the nutritional substrate density. If the density is higher than a threshold value and S is sufficiently large, the bacteria bulk (some cases) adheres to that location:

$$
y \geq \Phi_{1}(y, S)
$$

Exploitation competition (credit M. E. Hibbing.)
(2) Some bacteria populations generate antimicrobial compounds against competing populations. A bound of the following form arises

$$
y_{2} \leq \Phi_{2}\left(y_{1}, y_{2}\right) .
$$

Contest competition.

Applications: Thermoforming

Manufacture of products by heating a plastic sheet $u: \Omega \rightarrow \mathbb{R}$ and forcing it onto mold $\Phi(u): \Omega \rightarrow \mathbb{R}$

- The contact problem is a VI under perfect sliding of the membrane u with the mould ([Andrä, Warby, Whiteman]).
- Temperature difference between the mold and the plastic sheet \rightarrow heat transfer
- Some mold materials change dynamically upon contact \rightarrow QVI.

$$
\begin{aligned}
& \text { Find } u \in H_{0}^{1}(\Omega), u \leq \Phi(u) \\
& \left\langle A_{1}(T) u-f, u-v\right\rangle \leq 0 \quad \forall v \leq \Phi(u)
\end{aligned}
$$

where Φ satisfies as

$$
\begin{aligned}
A_{2}(T) & =g(\Phi(u)-u) \\
\Phi(u) & =\Phi_{0}+L T
\end{aligned}
$$

and T is the membrane temperature,
$A_{2}: H^{1}(\Omega) \rightarrow H^{1}(\Omega)^{*}$, and
$L \in \mathcal{L}\left(H^{1}, H^{1}\right)$.

Minimal and maximal solutions

Tartar's Approach

Denote by $S(f, \mathrm{w})$ to the unique solution to

$$
\text { Find } y \in \mathbf{K}(\mathrm{w}):\langle A(y)-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(\mathrm{w})
$$

The map $S(f, \cdot): H \rightarrow V \subset H$ is well-defined and

- $S(f, \cdot): H \rightarrow H$ is an increasing map:

$$
w_{0} \leq w_{1} \quad \Longrightarrow \quad S\left(f, w_{0}\right) \leq S\left(f, w_{1}\right)
$$

- Fixed points of $S(f, \cdot)$ are solutions to the QVI of interest.

Tartar's Approach

Denote by $S(f, \mathrm{w})$ to the unique solution to

$$
\text { Find } y \in \mathbf{K}(\mathrm{w}):\langle A(y)-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(\mathrm{w})
$$

The map $S(f, \cdot): H \rightarrow V \subset H$ is well-defined and

- $S(f, \cdot): H \rightarrow H$ is an increasing map:

$$
w_{0} \leq w_{1} \quad \Longrightarrow \quad S\left(f, w_{0}\right) \leq S\left(f, w_{1}\right) .
$$

- Fixed points of $S(f, \cdot)$ are solutions to the QVI of interest.

Theorem (Birkhoff-Tartar)- ([Tartar(1974)])
Let V be a Hilbert space and suppose $T: H \rightarrow H$ is an increasing map. Let \underline{y} be a sub-solution and \bar{y} be a super-solution of the map T, that is:

$$
\underline{y} \leq T(\underline{y}) \quad \text { and } \quad T(\bar{y}) \leq \bar{y} .
$$

If $\underline{y} \leq \bar{y}$, then the set of fixed points of the map T in the interval $[\underline{y}, \bar{y}]$ is non-empty and has a smallest $\mathbf{m}(T)$ and a largest element $\mathbf{M}(T)$.

Definition of \mathbf{m} and \mathbf{M}

In general, for applications, sub- and super-solutions of $S(f, \cdot)$ are easy to be found. Let $F \in V^{\prime}$, and consider that for all admissible forcing terms $f \in U_{a d}$ we have that

$$
0 \leq f \leq F
$$

For a given f, we denote by

$$
\mathbf{m}(f) \quad \text { and } \quad \mathbf{M}(f)
$$

to the minimal and maximal solutions of the QVI of interest in the interval $[\underline{y}, \bar{y}]:=$ $\left[0, A^{-1} F\right]$.

Definition of \mathbf{m} and \mathbf{M}

In general, for applications, sub- and super-solutions of $S(f, \cdot)$ are easy to be found. Let $F \in V^{\prime}$, and consider that for all admissible forcing terms $f \in U_{a d}$ we have that

$$
0 \leq f \leq F
$$

For a given f, we denote by

$$
\mathbf{m}(f) \quad \text { and } \quad \mathbf{M}(f)
$$

to the minimal and maximal solutions of the QVI of interest in the interval $[\underline{y}, \bar{y}]:=$ $\left[0, A^{-1} F\right]$.

- The elements $\mathbf{m}(f)$ and $\mathbf{M}(f)$ are extremal points of $\mathbf{Q}(f)$ on the interval $[\underline{y}, \bar{y}]$:

$$
\mathbf{Q}(f) \cap[\underline{y}, \bar{y}] \equiv \mathbf{Q}(f) \cap[\mathbf{m}(f), \mathbf{M}(f)] .
$$

Definition of \mathbf{m} and \mathbf{M}

In general, for applications, sub- and super-solutions of $S(f, \cdot)$ are easy to be found. Let $F \in V^{\prime}$, and consider that for all admissible forcing terms $f \in U_{a d}$ we have that

$$
0 \leq f \leq F
$$

For a given f, we denote by

$$
\mathbf{m}(f) \quad \text { and } \quad \mathbf{M}(f)
$$

to the minimal and maximal solutions of the QVI of interest in the interval $[\underline{y}, \bar{y}]:=$ $\left[0, A^{-1} F\right]$.

- The elements $\mathbf{m}(f)$ and $\mathbf{M}(f)$ are extremal points of $\mathbf{Q}(f)$ on the interval $[\underline{y}, \bar{y}]$:

$$
\mathbf{Q}(f) \cap[\underline{y}, \bar{y}] \equiv \mathbf{Q}(f) \cap[\mathbf{m}(f), \mathbf{M}(f)] .
$$

Q: How to compute $\mathbf{m}(f)$ and $\mathbf{M}(f)$?

Computing $\mathbf{m}(f)$ and $\mathbf{M}(f)$

- Suppose that admissible forcing terms satisfy $0 \leq f \leq F$ for some $F \in L^{\infty}(\Omega)$ and $\underline{y}=A^{-1}(0)=0$ and $\bar{y}=A^{-1}(F)$.
- Let $\Phi: V \rightarrow V$ be completely continuous (maps weak into strong)

Computing $\mathbf{m}(f)$ and $\mathbf{M}(f)$

- Suppose that admissible forcing terms satisfy $0 \leq f \leq F$ for some $F \in L^{\infty}(\Omega)$ and $\underline{y}=A^{-1}(0)=0$ and $\bar{y}=A^{-1}(F)$.
- Let $\Phi: V \rightarrow V$ be completely continuous (maps weak into strong)
- Define the sequences $\left\{m_{n}\right\}$ and $\left\{M_{n}\right\}$ as

$$
\begin{array}{lll}
m_{n}=S\left(f, m_{n-1}\right), & n \in \mathbb{N} & m_{0}=\underline{y} ; \\
M_{n}=S\left(f, M_{n-1}\right), & n \in \mathbb{N} & M_{0}=\bar{y}
\end{array}
$$

- Then, $m_{n} \uparrow \mathbf{m}(f), M_{n} \downarrow \mathbf{M}(f)$,

$$
m_{n} \rightarrow \mathbf{m}(f), \text { and } M_{n} \rightarrow \mathbf{M}(f) \quad \text { in } V
$$

- Convergence (in general) is as slow (sublinear) as you can imagine ; the idea of the proof goes back to Kolodner, Birkhoff, etc....

Open question: Are there simple ways to improve convergence speed?

Perturbations of minimal and maximal solutions

The reduced problem

The problem of interest is
Let $A: V \rightarrow V^{\prime}$ and $f \in V^{\prime}$ for some (real) Hilbert space V. Consider

$$
\begin{equation*}
\text { Find } y \in \mathbf{K}(y):\langle A y-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(y) \tag{QVI}
\end{equation*}
$$

where

$$
\mathbf{K}(w):=\{z \in V: z \leq \Phi(w)\} .
$$

We now require stability results for

$$
f \mapsto \mathbf{m}(f) \quad \text { and } \quad f \mapsto \mathbf{M}(f) .
$$

- What topology on the space of admissible controls?
- What conditions on Φ ?
- A. Alphonse, M. Hintermüller, C. N. R.,Stability of the Solution Set of

Quasi-variational Inequalities and Optimal Control, arXiv:1904.06231, 2019.

Limitations of macro results

Let's recall the Birkhoff-Tartar theorem
Theorem (Birkhoff-Tartar)- ([Tartar(1974)])
Let V be a Hilbert space and suppose $T: H \rightarrow H$ is an increasing map. Let \underline{y} be a sub-solution and \bar{y} be a super-solution of the map T, that is:

$$
\underline{y} \leq T(\underline{y}) \quad \text { and } \quad T(\bar{y}) \leq \bar{y}
$$

If $\underline{y} \leq \bar{y}$, then the set of fixed points of the map T in the interval $[\underline{y}, \bar{y}]$ is non-empty and has a smallest $\mathbf{m}(T)$ and a largest element $\mathbf{M}(T)$.

- Initially, let's consider (reasonable) approximations of T and try to prove that \mathbf{m} and M are stable.

Limitations of macro results

- Consider first an increasing map $T: H \rightarrow V \subset H$ and that is approximated by maps R_{n} and U_{n} from below, and above, respectively.

Proposition. Let $T, R_{n}, U_{n}: H \rightarrow V \subset H$ be increasing mappings for $n \in \mathbb{N}$ with $T: V \rightarrow V$ completely continuous. Suppose that for all $v \in[\underline{y}, \bar{y}]$, and $n \in \mathbb{N}$

$$
\underline{y} \leq R_{n}(v) \leq R_{n+1}(v) \leq T(v) \leq U_{n+1}(v) \leq U_{n}(v) \leq \bar{y}
$$

Limitations of macro results

- Consider first an increasing map $T: H \rightarrow V \subset H$ and that is approximated by maps R_{n} and U_{n} from below, and above, respectively.

Proposition. Let $T, R_{n}, U_{n}: H \rightarrow V \subset H$ be increasing mappings for $n \in \mathbb{N}$ with $T: V \rightarrow V$ completely continuous. Suppose that for all $v \in[\underline{y}, \bar{y}]$, and $n \in \mathbb{N}$

$$
\underline{y} \leq R_{n}(v) \leq R_{n+1}(v) \leq T(v) \leq U_{n+1}(v) \leq U_{n}(v) \leq \bar{y},
$$

and that if $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ are bounded sequences in V such that $v_{n} \leq v_{n+1}$ and $w_{n} \geq w_{n+1}$, then

$$
\lim _{n \rightarrow \infty}\left\|R_{n}\left(v_{n}\right)-T\left(v_{n}\right)\right\|_{V}=0 \quad \text { and } \lim _{n \rightarrow \infty}\left\|U_{n}\left(w_{n}\right)-T\left(w_{n}\right)\right\|_{V}=0 .
$$

Then $\mathbf{m}\left(R_{n}\right) \leq \mathbf{m}(T)$ and $\mathbf{M}(T) \leq \mathbf{M}\left(U_{n}\right)$, and as $n \rightarrow \infty$,

$$
\mathbf{m}\left(R_{n}\right) \rightarrow \mathbf{m}(T) \text { in } V \quad \text { and } \quad \mathbf{M}\left(U_{n}\right) \rightarrow \mathbf{M}(T) \text { in } V .
$$

Limitations of macro results

- How tight is the previous result?

Limitations of macro results

- How tight is the previous result?

Let $T:[0,1] \rightarrow[0,1]$ be defined as

$$
T(v)= \begin{cases}a, & 0 \leq v<a \\ v, & a \leq v<b \\ b, & b \leq v \leq 1\end{cases}
$$

with $0<a<b<1$ and where $\mathbf{m}(T)=a$ and $\mathbf{M}(T)=b$ and

$$
R_{n}(v)=\left\{\begin{array}{ll}
a, & 0 \leq v<\frac{1}{n} ; \\
T\left(v-\frac{1}{n}\right), & \frac{1}{n} \leq v \leq 1 .
\end{array} \quad U_{n}(v)= \begin{cases}T\left(v+\frac{1}{n}\right), & 0 \leq v<1-\frac{1}{n} ; \\
b, & 1-\frac{1}{n} \leq v \leq 1 .\end{cases}\right.
$$

Suppose that $n>N$ for N sufficiently large, then all the assumptions of the previous theorem hold, but

$$
a=\mathbf{M}\left(R_{n}\right) \nrightarrow \mathbf{M}(T)=b \quad \text { and } \quad b=\mathbf{m}\left(U_{n}\right) \nrightarrow \mathbf{m}(T)=a .
$$

Limitations of macro results

- How tight is the previous result?

Let $T:[0,1] \rightarrow[0,1]$ be defined as

$$
T(v)= \begin{cases}a, & 0 \leq v<a \\ v, & a \leq v<b \\ b, & b \leq v \leq 1\end{cases}
$$

with $0<a<b<1$ and where $\mathbf{m}(T)=a$ and $\mathbf{M}(T)=b$ and

$$
R_{n}(v)=\left\{\begin{array}{ll}
a, & 0 \leq v<\frac{1}{n} ; \\
T\left(v-\frac{1}{n}\right), & \frac{1}{n} \leq v \leq 1 .
\end{array} \quad U_{n}(v)= \begin{cases}T\left(v+\frac{1}{n}\right), & 0 \leq v<1-\frac{1}{n} ; \\
b, & 1-\frac{1}{n} \leq v \leq 1 .\end{cases}\right.
$$

Suppose that $n>N$ for N sufficiently large, then all the assumptions of the previous theorem hold, but

$$
a=\mathbf{M}\left(R_{n}\right) \nrightarrow \mathbf{M}(T)=b \quad \text { and } \quad b=\mathbf{m}\left(U_{n}\right) \nrightarrow \mathbf{m}(T)=a .
$$

Then the proof plan is to consider perturbations $f_{n} \downarrow f$ and $f_{n} \uparrow f$ separately.

Non-increasing Sequences of $\left\{f_{n}\right\}$ for \mathbf{m}

Lemma 1. Suppose that

i. The sequence $\left\{f_{n}\right\}$ in $L_{\nu}^{\infty}(\Omega)$ is non-increasing and converges to f^{*} in $L^{\infty}(\Omega)$.
ii. The upper bound mapping Φ satisfies that

$$
\lambda \Phi(y) \geq \Phi(\lambda y), \quad \text { for any } \quad \lambda \geq 1, y \in V \cap H^{+},
$$

and if $v_{n} \rightarrow v$ in H, then $\Phi\left(v_{n}\right) \rightarrow \Phi(v)$ in H.
Then $\mathbf{m}\left(f_{n}\right) \downarrow \mathbf{m}\left(f^{*}\right)$ in H and

$$
\mathbf{m}\left(f_{n}\right) \rightarrow \mathbf{m}\left(f^{*}\right) \text { in } V
$$

- $L_{\nu}^{\infty}(\Omega):=\left\{g \in L^{\infty}(\Omega): g \geq \nu>0\right\}$.
- Note that we are not assuming that if $v_{n} \rightharpoonup v$ then Mosco convergence $\mathbf{K}\left(v_{n}\right) \rightarrow \mathbf{K}(v)$ holds!
- Q: Why is $L^{\infty}(\Omega)$ required as the space of perturbations?
- Q: Why is $L^{\infty}(\Omega)$ required as the space of perturbations?

Then $\mathbf{m}(f)$ is the maximal element of the set $Z^{\bullet}(f)$ with

$$
\begin{aligned}
& X(f)=\{x \in V: x \in[\underline{y}, \bar{y}] \text { and } x \leq S(f, x)\}, \\
& Y^{\bullet}(f)=\{x \in V: x \in[\underline{y}, \infty) \text { and } x \geq S(f, x)\}, \\
& Z^{\bullet}(f)=\left\{x \in X(f): x \leq y \text { for all } y \in Y^{\bullet}(f)\right\} .
\end{aligned}
$$

Similarly, $\mathbf{M}(f)$ is the minimal element of the set $\tilde{Z}^{\bullet}(f)$ where

$$
\begin{aligned}
& X^{\bullet}(f)=\{x \in V: x \in(-\infty, \bar{y}] \text { and } x \leq S(f, x)\}, \\
& Y(f)=\{x \in V: x \in[\underline{y}, \bar{y}] \text { and } x \geq S(f, x)\}, \\
& \tilde{Z}^{\bullet}(f)=\left\{y \in Y(f): x \leq y \text { for all } x \in X^{\bullet}(f)\right\} .
\end{aligned}
$$

- A: The set-valued maps $f \mapsto Z^{\bullet}(f), \tilde{Z}^{\bullet}(f)$ are delicate

Non-decreasing Sequences of $\left\{f_{n}\right\}$ and \mathbf{m}

Lemma 2. Suppose that
i. The sequence $\left\{f_{n}\right\}$ in V_{+}^{\prime} is non-decreasing and converges to f^{*} in V^{\prime}.
ii. The upper bound mapping Φ satisfies one of the following:
a. If $v_{n} \rightharpoonup v$ in V, then $\Phi\left(v_{n}\right) \rightarrow \Phi(v)$ in $L^{\infty}(\Omega)$.
b. If $v_{n} \rightharpoonup v$ in V, then $\Phi\left(v_{n}\right) \rightarrow \Phi(v)$ in H and if $v \in V \cap H^{+}$, then $\Phi(v) \in V$ and $-\Delta \Phi(v) \geq 0$.
Then $\mathbf{m}\left(f_{n}\right) \uparrow \mathbf{m}\left(f^{*}\right)$ in H and

$$
\mathbf{m}\left(f_{n}\right) \rightarrow \mathbf{m}\left(f^{*}\right) \text { in } V
$$

Non-increasing Sequences of $\left\{f_{n}\right\}$ and \mathbf{M}

Lemma 3. Suppose that

i. The sequence $\left\{f_{n}\right\}$ in V_{+}^{\prime} is non-increasing and converges to f^{*} in V^{\prime}.
ii. The upper bound mapping Φ satisfies: If $v_{n} \rightarrow v$ in H, then $\Phi\left(v_{n}\right) \rightarrow \Phi(v)$ in H. Then $\mathbf{M}\left(f_{n}\right) \downarrow \mathbf{M}\left(f^{*}\right)$ in H and

$$
\mathbf{M}\left(f_{n}\right) \rightarrow \mathbf{M}\left(f^{*}\right) \text { in } V .
$$

Non-decreasing Sequences of $\left\{f_{n}\right\}$ and \mathbf{M}

Lemma 4. Suppose that
i. The sequence $\left\{f_{n}\right\}$ in $L_{\nu}^{\infty}(\Omega)$ is non-decreasing and converges to f^{*} in $L^{\infty}(\Omega)$.
ii. The upper bound mapping Φ satisfies that

$$
\lambda \Phi(y) \leq \Phi(\lambda y), \quad \text { for any } \quad 0<\lambda<1, \quad y \in V \cap H^{+},
$$

and one of the following:
a. If $v_{n} \rightharpoonup v$ in V, then $\Phi\left(v_{n}\right) \rightarrow \Phi(v)$ in $L^{\infty}(\Omega)$.
b. If $v_{n} \rightharpoonup v$ in V, then $\Phi\left(v_{n}\right) \rightarrow \Phi(v)$ in H and if $v \in V \cap H^{+}$, then $\Phi(v) \in V$ and $-\Delta \Phi(v) \geq 0$.
Then $\mathbf{M}\left(f_{n}\right) \uparrow \mathbf{M}\left(f^{*}\right)$ in H and

$$
\mathbf{M}\left(f_{n}\right) \rightarrow \mathbf{M}\left(f^{*}\right) \text { in } V .
$$

Stability for \mathbf{M} and \mathbf{m}

Theorem. Suppose that
i. The sequence $\left\{f_{n}\right\}$ in $L_{\nu}^{\infty}(\Omega)$ converges to f^{*} in $L^{\infty}(\Omega)$.
ii. The upper bound mapping Φ satisfies the conditions of the previous lemmas. In particular, for any $y \in V \cap H^{+}$

$$
\begin{array}{lll}
\lambda \Phi(y) \geq \Phi(\lambda y), & \text { for any } & \lambda \geq 1, \quad \text { or } \\
\lambda \Phi(y) \leq \Phi(\lambda y), & \text { for any } & 0<\lambda<1 .
\end{array}
$$

Then

$$
\mathbf{m}\left(f_{n}\right) \rightarrow \mathbf{m}\left(f^{*}\right) \text { and } \mathbf{M}\left(f_{n}\right) \rightarrow \mathbf{M}\left(f^{*}\right) \text { in } H,
$$

together with

$$
\mathbf{m}\left(f_{n}\right) \rightharpoonup \mathbf{m}\left(f^{*}\right) \text { and } \mathbf{M}\left(f_{n}\right) \rightharpoonup \mathbf{M}\left(f^{*}\right) \text { in } V .
$$

- No order in $\left\{f_{n}\right\} \Rightarrow$ no strong convergence in V.

Example of application

We would like to control the solution set $f \mapsto \mathbf{Q}(f)$ of the $\mathbf{Q V I}$
Let $A: V \rightarrow V^{\prime}$ and $f \in V^{\prime}$ for some (real) Hilbert space V. Consider

$$
\begin{equation*}
\text { Find } y \in \mathbf{K}(y):\langle A y-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(y) \tag{QVI}
\end{equation*}
$$

where

$$
\mathbf{K}(w):=\{z \in V: z \leq \Phi(w)\} .
$$

- Suppose that we require that $\mathbf{Q}(f)$ is a singleton:
© In our setting we would to select a forcing term f such that

$$
|\mathbf{m}(f)-\mathbf{M}(f)|_{L^{2}(\Omega)},
$$

is as small as possible in addition to requiring that $\mathbf{m}(f)$ is close to a desired state.

Example of application

Consider the following problem

$$
\min _{f \in U_{\mathrm{ad}}} \int_{\Omega}|\mathbf{m}(f)-\mathbf{M}(f)|^{2}+\int_{\Omega}\left|\mathbf{m}(f)-y_{d}\right|^{2},
$$

for some admissible control set $U_{\mathrm{ad}} \subset U$ and where $\mathbf{m}(f)$, and $\mathbf{M}(f)$ correspond to the minimal and maximal solutions of the following QVI

$$
\text { Find } y \in \mathbf{K}(y):\langle A(y)-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(y)
$$

Example of application

Consider the following problem

$$
\min _{f \in U_{\mathrm{zd}}} \int_{\Omega}|\mathbf{m}(f)-\mathbf{M}(f)|^{2}+\int_{\Omega}\left|\mathbf{m}(f)-y_{d}\right|^{2},
$$

for some admissible control set $U_{\mathrm{ad}} \subset U$ and where $\mathbf{m}(f)$, and $\mathbf{M}(f)$ correspond to the minimal and maximal solutions of the following QVI

$$
\text { Find } y \in \mathbf{K}(y):\langle A(y)-f, v-y\rangle \geq 0, \quad \forall v \in \mathbf{K}(y)
$$

- If U is compactly embedded in $L^{\infty}(\Omega), U$ is a reflexive Banach space and $U_{\mathrm{ad}} \subset L_{\nu}^{\infty}(\Omega)$ is bounded, then the above problem has a solution (under the assumptions we have described).
- A. Alphonse, M. Hintermüller, C. N. R.,Stability of the Solution Set of

Quasi-variational Inequalities and Optimal Control, arXiv:1904.06231, 2019.

Directional differentiability of $f \mapsto \mathbf{Q}(f)$.

Directional differentiability

Given $\mathbf{Q}(f)$ the solution set to QVI
We are interested in the directional differentiability of \mathbf{Q} : we want to show (formally)

$$
\mathbf{Q}(f+t d) \supset \mathbf{Q}(f)+t \mathbf{Q}^{\prime}(f)(d)+o(t)
$$

where $t^{-1} o(t) \rightarrow 0$ as $t \rightarrow 0^{+}$.
Directional differentiability results useful for

- Optimal control of QVI.
- Numerical methods.

Selected work:

- Sensitivity for Vls and related issues: Alphonse, Bergounioux, Christof, Hintermüller, Haraux, Herzog, Ito, Kunisch, Leugering, Meyer, Mignot, Puel, Surowiec, Sprekels, M. Ulbrich, S. Ulbrich, D. Wachsmuth, G. Wachsmuth, Zarantonello,...
- A. Alphonse, M. Hintermüller, C. N. R.,Stability of the Solution Set of Quasi-variational Inequalities and Optimal Control, CoVs and PDEs 58 (1), 39 (2019).

Introduction

We are interested in the directional differentiability of Q : we want to show (formally)

$$
\mathbf{Q}(f+t d) \supset \mathbf{Q}(f)+t \mathbf{Q}^{\prime}(f)(d)+o(t)
$$

where $t^{-1} o(t) \rightarrow 0$ as $t \rightarrow 0^{+}$.

We face the same questions as before

- What topology on the space of admissible controls f and perturbations d ?
- What conditions on Φ ?
© For the time being just assume that $\Phi: V \rightarrow V$ is Hadamard differentiable: That is, for all v and all h in V, the limit

$$
\lim _{\substack{h^{\prime} \rightarrow h \\ t \rightarrow 0^{+}}} \frac{\Phi\left(v+t h^{\prime}\right)-\Phi(v)}{t}
$$

exists in V, and we write the limit as $\Phi^{\prime}(v)(h)$.

Main result

Assume $f, d \in L_{+}^{\infty}(\Omega)$ and define $\bar{y}, \bar{q}(t)$ by

$$
A \bar{y}=f \quad \& \quad A \bar{q}(t)=f+t d .
$$

Main result

Assume $f, d \in L_{+}^{\infty}(\Omega)$ and define $\bar{y}, \bar{q}(t)$ by

$$
A \bar{y}=f \quad \& \quad A \bar{q}(t)=f+t d .
$$

Existence: by the Tartar-Birkhoff theorem, the following sets are non-empty:

$$
\mathbf{Q}(f) \cap[0, \bar{y}] \quad \& \quad \mathbf{Q}(f+t d) \cap[y, \bar{q}(t)] .
$$

Main result

Assume $f, d \in L_{+}^{\infty}(\Omega)$ and define $\bar{y}, \bar{q}(t)$ by

$$
A \bar{y}=f \quad \& \quad A \bar{q}(t)=f+t d .
$$

Existence: by the Tartar-Birkhoff theorem, the following sets are non-empty:

$$
\mathbf{Q}(f) \cap[0, \bar{y}] \quad \& \quad \mathbf{Q}(f+t d) \cap[y, \bar{q}(t)] .
$$

Theorem. For every $y \in \mathbf{Q}(f) \cap[0, \bar{y}]$, then under certain conditions, there exists $q(t) \in \mathbf{Q}(f+t d)$ and $\alpha \in V_{+}$such that

$$
q(t)=y+t \alpha+o(t)
$$

Furthermore, $\alpha=\alpha(d)$ is positively homogeneous and satisfies the QVI

$$
\begin{aligned}
& \alpha \in \mathcal{K}^{y}(\alpha):\langle A \alpha-d, \alpha-v\rangle \leq 0 \quad \forall v \in \mathcal{K}^{y}(\alpha) \\
& \mathcal{K}^{y}(w):=\left\{\varphi \in V: \varphi \leq \Phi^{\prime}(y)(w) \text { q.e. on } \mathcal{A}(y) \&\left\langle A y-f, \varphi-\Phi^{\prime}(y)(w)\right\rangle=0\right\} .
\end{aligned}
$$

This is an extension of Mignot result for VIs into QVIs

Why didn't we use use Mignot's result (after variable change)?

As before, $S(g, \psi)=y \in V$ be the solution of the VI

$$
y \in \mathbf{K}(\psi): \quad\langle A y-g, y-v\rangle \leq 0 \quad \forall v \in \mathbf{K}(\psi) .
$$

Mignot 's result implies that $S(\cdot, \psi)$ has a direc. derivative $D S(g, \psi)(d)=: \delta$, i.e.,

$$
S(g+t d, \psi)=S(g, \psi)+t D S(g, \psi)(d)+o(t, d)
$$

where $t^{-1} o(t, d) \rightarrow 0$ as $t \rightarrow 0^{+}$uniformly in d on compact subsets of V^{*}. It solves

$$
\begin{aligned}
\delta \in \mathcal{K}^{y} & :\langle A \delta-d, \delta-v\rangle \leq 0 \quad \forall v \in \mathcal{K}^{y} \\
\mathcal{K}^{y} & :=\{w \in V: w \leq 0 \text { q.e. on }\{y=\Phi(\psi)\} \text { and }\langle A y-g, w\rangle=0\} .
\end{aligned}
$$

Why didn't we use use Mignot's result (after variable change)?

As before, $S(g, \psi)=y \in V$ be the solution of the VI

$$
y \in \mathbf{K}(\psi): \quad\langle A y-g, y-v\rangle \leq 0 \quad \forall v \in \mathbf{K}(\psi) .
$$

Mignot 's result implies that $S(\cdot, \psi)$ has a direc. derivative $D S(g, \psi)(d)=: \delta$, i.e.,

$$
S(g+t d, \psi)=S(g, \psi)+t D S(g, \psi)(d)+o(t, d)
$$

where $t^{-1} o(t, d) \rightarrow 0$ as $t \rightarrow 0^{+}$uniformly in d on compact subsets of V^{*}. It solves

$$
\begin{aligned}
\delta \in \mathcal{K}^{y} & :\langle A \delta-d, \delta-v\rangle \leq 0 \quad \forall v \in \mathcal{K}^{y} \\
& \mathcal{K}^{y}:=\{w \in V: w \leq 0 \text { q.e. on }\{y=\Phi(\psi)\} \text { and }\langle A y-g, w\rangle=0\} .
\end{aligned}
$$

Transforming $y=\Phi(y)-\hat{y}$ leads to

$$
\hat{y} \in \mathbf{K}_{0}: \quad\langle\hat{A} \hat{y}-\hat{f}, \hat{y}-\varphi\rangle \leq 0 \quad \forall \varphi \in \mathbf{K}_{0}
$$

where $\hat{A}:=A-A \Phi(\Phi-I)^{-1}$ and $\hat{f}=-f$.
In general, \hat{A} is not linear, nor coercive, nor T-monotone \rightarrow New math needed.

Proof plan

In the formal equality

$$
\begin{equation*}
\mathbf{Q}(f+t d) \supset \mathbf{Q}(f)+t \mathbf{Q}^{\prime}(f)(d)+o(t) \tag{1}
\end{equation*}
$$

1. Select an element $y \in \mathbf{Q}(f)$.
2. Approximate an associated element $q(t)$ to y from $\mathbf{Q}(f+t d)$ by a sequence $q_{n}(t)$ of solutions of VIs

Proof plan

In the formal equality

$$
\begin{equation*}
\mathbf{Q}(f+t d) \supset \mathbf{Q}(f)+t \mathbf{Q}^{\prime}(f)(d)+o(t) \tag{1}
\end{equation*}
$$

1. Select an element $y \in \mathbf{Q}(f)$.
2. Approximate an associated element $q(t)$ to y from $\mathbf{Q}(f+t d)$ by a sequence $q_{n}(t)$ of solutions of VIs
3. Obtain differential formulae for the q_{n} and characterize the approximation α_{n} to the directional derivative.
(must relate q_{n} to y; recursion plays a highly nonlinear role)

Proof plan

In the formal equality

$$
\begin{equation*}
\mathbf{Q}(f+t d) \supset \mathbf{Q}(f)+t \mathbf{Q}^{\prime}(f)(d)+o(t) \tag{1}
\end{equation*}
$$

1. Select an element $y \in \mathbf{Q}(f)$.
2. Approximate an associated element $q(t)$ to y from $\mathbf{Q}(f+t d)$ by a sequence $q_{n}(t)$ of solutions of VIs
3. Obtain differential formulae for the q_{n} and characterize the approximation α_{n} to the directional derivative.
(must relate q_{n} to y; recursion plays a highly nonlinear role)
4. Pass to the limit to hopefully retrieve (1)
(handling a recurrence inequality to obtain uniform bounds + identifying the limit of higher order terms as a higher order term).

Proof Plan (1/2) - "Sequential expressions"

As usual, $S(g, \psi)=z \in V$ is the solution to the VI

$$
z \in \mathbf{K}(\psi): \quad\langle A z-g, z-v\rangle \leq 0 \quad \forall v \in \mathbf{K}(\psi) .
$$

Proof Plan (1/2) - "Sequential expressions"

As usual, $S(g, \psi)=z \in V$ is the solution to the VI

$$
z \in \mathbf{K}(\psi): \quad\langle A z-g, z-v\rangle \leq 0 \quad \forall v \in \mathbf{K}(\psi) .
$$

Define $q_{n}:=S\left(f+t d, q_{n-1}\right)$ and $q_{0}:=y$.

Proof Plan (1/2) - "Sequential expressions"

As usual, $S(g, \psi)=z \in V$ is the solution to the VI

$$
z \in \mathbf{K}(\psi): \quad\langle A z-g, z-v\rangle \leq 0 \quad \forall v \in \mathbf{K}(\psi) .
$$

Define $q_{n}:=S\left(f+t d, q_{n-1}\right)$ and $q_{0}:=y$.
Lemma. For each n,

$$
q_{n}(t)=y+t \alpha_{n}+o_{n}(t)
$$

where

$$
\begin{aligned}
\alpha_{n} & =\Phi^{\prime}(y)\left[\alpha_{n-1}\right]+D S(f, y)\left[d-A \Phi^{\prime}(y)\left(\alpha_{n-1}\right)\right] \\
o_{n}(t) & =r\left(t, \alpha_{n-1}, o_{n-1}(t)\right)
\end{aligned}
$$

Proof Plan (1/2) - "Sequential expressions"

As usual, $S(g, \psi)=z \in V$ is the solution to the VI

$$
z \in \mathbf{K}(\psi): \quad\langle A z-g, z-v\rangle \leq 0 \quad \forall v \in \mathbf{K}(\psi) .
$$

Define $q_{n}:=S\left(f+t d, q_{n-1}\right)$ and $q_{0}:=y$.
Lemma. For each n,

$$
q_{n}(t)=y+t \alpha_{n}+o_{n}(t)
$$

where

$$
\begin{aligned}
\alpha_{n} & =\Phi^{\prime}(y)\left[\alpha_{n-1}\right]+D S(f, y)\left[d-A \Phi^{\prime}(y)\left(\alpha_{n-1}\right)\right] \\
o_{n}(t) & =r\left(t, \alpha_{n-1}, o_{n-1}(t)\right)
\end{aligned}
$$

and $t^{-1} o_{n}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$and α_{n} is positively homogeneous in d and solves the VI
$\alpha_{n} \in \mathcal{K}^{y}\left(\alpha_{n-1}\right):\left\langle A \alpha_{n}-d, \alpha_{n}-\varphi\right\rangle \leq 0 \quad \forall \varphi \in \mathcal{K}^{y}\left(\alpha_{n-1}\right)$
$\mathcal{K}^{y}\left(\alpha_{n-1}\right)=\left\{\varphi \in V: \varphi \leq \Phi^{\prime}(y)\left(\alpha_{n-1}\right)\right.$ q.e. on $\mathcal{A}(y)$

$$
\left.\&\left\langle A y-f, \varphi-\Phi^{\prime}(y)\left(\alpha_{n-1}\right)\right\rangle=0 .\right\}
$$

Proof Plan (2/2)- "Little o asymptotics"

Let c and C be the coercivity and boundedness constants of A, respectively.
Lemma. If there exists $\epsilon>0$ such that $\left\|\Phi^{\prime}(y) b\right\|_{V} \leq(c-\epsilon) / C\|b\|_{V}$, then α_{n} is bounded in V.

Proof Plan (2/2)- "Little o asymptotics"

Let c and C be the coercivity and boundedness constants of A, respectively.
Lemma. If there exists $\epsilon>0$ such that $\left\|\Phi^{\prime}(y) b\right\|_{V} \leq(c-\epsilon) / C\|b\|_{V}$, then α_{n} is bounded in V.

Since $o_{n}(t)=q_{n}(t)-u-t \alpha_{n}$,

$$
o_{n}(t) \rightharpoonup o^{*}(t) \text { in } V .
$$

Proof Plan (2/2)- "Little o asymptotics"

Let c and C be the coercivity and boundedness constants of A, respectively.
Lemma. If there exists $\epsilon>0$ such that $\left\|\Phi^{\prime}(y) b\right\|_{V} \leq(c-\epsilon) / C\|b\|_{V}$, then α_{n} is bounded in V.

Since $o_{n}(t)=q_{n}(t)-u-t \alpha_{n}$,

$$
o_{n}(t) \rightharpoonup o^{*}(t) \text { in } V .
$$

Is o^{*} a higher order term?

Proof Plan (2/2)- "Little o asymptotics"

Let c and C be the coercivity and boundedness constants of A, respectively.
Lemma. If there exists $\epsilon>0$ such that $\left\|\Phi^{\prime}(y) b\right\|_{V} \leq(c-\epsilon) / C\|b\|_{V}$, then α_{n} is bounded in V.

Since $o_{n}(t)=q_{n}(t)-u-t \alpha_{n}$,

$$
o_{n}(t) \rightharpoonup o^{*}(t) \text { in } V .
$$

Is o^{*} a higher order term?
Assume
(1) $V \ni z \rightarrow \Phi^{\prime}(v)(z) \in V$ is completely continuous,
(2) for $T_{0} \in(0, T)$ small, if $z:\left(0, T_{0}\right) \rightarrow V$ satisfies $z(t) \rightarrow y$ as $t \rightarrow 0^{+}$, then

$$
\left\|\Phi^{\prime}(z(t)) b\right\|_{V} \leq C_{\Phi}\|b\|_{V} \quad \text { where } C_{\Phi}<\left(1+c^{-1} C\right)^{-1}
$$

Lemma. The convergence $t^{-1} o_{n}(t) \rightarrow 0$ in V as $t \rightarrow 0^{+}$is uniform in n.

What about $f \mapsto \mathbf{m}(f), \mathbf{M}(f)$?

Can we differentiate the minimal and maximal solutions maps with the previous result?

What about $f \mapsto \mathbf{m}(f), \mathbf{M}(f)$?

Can we differentiate the minimal and maximal solutions maps with the previous result? Yes and No:

- For the map \mathbf{m} we have

$$
\mathbf{m}(f+t d)=\mathbf{m}(f)+t \mathbf{m}^{\prime}(f)(d)+o(t)
$$

where $t^{-1} o(t) \rightarrow 0$ as $t \rightarrow 0^{+}$.

- For the map M we have

$$
q(t)=\mathbf{M}(f)+t \alpha(d)+o(t)
$$

for some $q(t) \in \mathbf{Q}(f+t d)$.
We need to "reverse" orders in the proof to obtain the result for M.

A Thermoforming Model

Aim: manufacture products by heating membrane/sheet and forcing it onto mould Modelling assumptions (for a time step in the semi-discretisation of the problem):

1. Temperature for the membrane is constant. Position denoted by y
2. Φ grows in an affine fashion w. r. t. its temperature. Position denoted by $\Phi(y)$
3. Temperature T of the mould is subject to diffusion + insulated BCs + vertical distance to membrane.

We consider $V=H_{0}^{1}(\Omega)$

$$
\begin{array}{rlrlrl}
y \in V: y \leq \Phi(y), & \langle A y-f, y-v\rangle & \leq 0 \quad \forall v \in V: v \leq \Phi(y) & & \\
-\Delta T+T & =g(\Phi(y)-y) & & \text { on } \Omega \\
\Phi(u) & =\Phi_{0}+L T & & \text { on } \Omega,
\end{array}
$$

where L is a bounded linear increasing operator.

A Thermoforming Model

Aim: manufacture products by heating membrane/sheet and forcing it onto mould Modelling assumptions (for a time step in the semi-discretisation of the problem):

1. Temperature for the membrane is constant. Position denoted by y
2. Φ grows in an affine fashion w. r. t. its temperature. Position denoted by $\Phi(y)$
3. Temperature T of the mould is subject to diffusion + insulated BCs + vertical distance to membrane.

We consider $V=H_{0}^{1}(\Omega)$

$$
\begin{array}{rlrlrl}
y \in V: y \leq \Phi(y), & \langle A y-f, y-v\rangle & \leq 0 \quad \forall v \in V: v \leq \Phi(y) & & \\
-\Delta T+T & =g(\Phi(y)-y) & & \text { on } \Omega \\
\Phi(u) & =\Phi_{0}+L T & & \text { on } \Omega,
\end{array}
$$

where L is a bounded linear increasing operator.

Provided that g is regular enough, the previous result can be applied and a directional derivative exists.
Initial mould Φ_{0} Final mould $\Phi(u)$ Difference b / w moulds

Thanks for your attention!

