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The obstacle elliptic QVI problem
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The class of elliptic QVIs

Let A : V → V ′ and f ∈ V ′ for some (real) Hilbert space V . Consider

Find y ∈ K(y) : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ∈ K(y) (QVI)

where
K(w) := {z ∈ V : z ≤ Φ(w)}.

Objectives/Goals:

▶ In general there are multiple solutions. The solution set Q(f ) might be of any
cardinality. However, we want to understand stability and directional
differentiability properties of

f 7→ Q(f ).
▶ Further understanding on the structure of Q(f ) is needed.
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Assumptions on V,A, and K
▶ Gelfand triple of Hilbert spaces (V,H, V ′), and L∞(Ω) ↪→ H . Order induced in
H by a closed convex cone, with |v+|V ≤ C|v|V for some C > 0 and all v ∈ V .

▶ The map A : V → V ′ is linear, uniformly monotone,

⟨Au, u⟩ ≥ c|u|2V , ∀u ∈ V, (c > 0)

and that for all v ∈ V , we have

⟨Av−, v+⟩ ≤ 0.

▶ The map K is defined as

K(y) = {v ∈ V : v ≤ Φ(y)},

where the map Φ : V → V is increasing:

v ≤ w =⇒ Φ(v) ≤ Φ(w).
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Assumptions on V,A, and K - Examples

The typical setting is given by

▶ (V,H, V ′) = (H1
0(Ω), L2(Ω), H−1(Ω)). Order induced in L2(Ω) is via L2

+(Ω).

▶ The map A : H1
0(Ω) → H−1(Ω) is given

⟨Av,w⟩ =
∫

Ω

∑
i,j

aij(x) ∂v
∂xj

∂w

∂xi
+
∑
i

ai(x)
∫

Ω

∂v

∂xj
w + a0(x)vw

 dx,

with usual assumptions over coefficients. Also fractional powers As for s ∈ (0, 1)
are suitable.

▶ Φ : H1
0(Ω) → H1

0(Ω) is

▲ A superposition operator, i.e., Φ(y)(x) = φ(y(x)) for some φ.

▲ A solution operator coming from a PDE, e.g., Φ(y) = (−∆)−1y + ϕ0.
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Assumptions on V,A, and K - Examples

▶ Consider the following class of compliant obstacle problems where the obstacle is
given implicitly by solving a PDE, thus coupling a VI and a PDE:

y ≤ Φ, ⟨Ay − f, y − v⟩ ≤ 0, ∀v ∈ V : v ≤ Φ,
⟨BΦ +G(Φ, y) − g, w⟩ = 0 ∀w ∈ V,

for some G, B ∈ L(V, V ′) and ⟨Bz−, z+⟩ ≤ 0.

Example

Consider aij, bij, a0, b0 ∈ L∞(Ω) and the elliptic operators

⟨Ay, z⟩ =
∑
i,j

∫
Ω
aij(x) ∂y

∂xj

∂z

∂xi
dx +

∫
Ω
a0(x)yz dx, ∀y, z ∈ V,

⟨Bv,w⟩ =
∑
i,j

∫
Ω
bij(x) ∂v

∂xj

∂w

∂xi
dx +

∫
Ω
b0(x)vw dx, ∀v, w ∈ V,

Additionally, for y ≥ 0
G(Φ, y) = (Φ − y)+.
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Some applications
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Applications: Competitive Chemotaxis
(1) Let y be the population density (bacteria) and S the nutritional substrate density.
If the density is higher than a threshold value and S is sufficiently large, the bacteria
bulk (some cases) adheres to that location:

y ≥ Φ1(y, S).

Exploitation competition (credit M. E. Hibbing.)

(2) Some bacteria populations generate antimicrobial
compounds against competing populations. A bound of the
following form arises

y2 ≤ Φ2(y1, y2). Contest competition.



Applications: Thermoforming

Manufacture of products by heating a plastic sheet u : Ω → R and forcing it onto
mold Φ(u) : Ω → R

The contact problem is a VI under perfect sliding of the membrane u with the
mould ([Andrä, Warby, Whiteman]).

Temperature difference between the mold and the plastic sheet → heat transfer

Some mold materials change dynamically upon contact → QVI.

Find u ∈ H1
0(Ω), u ≤ Φ(u),

⟨A1(T )u− f, u− v⟩ ≤ 0 ∀v ≤ Φ(u)

where Φ satisfies as

A2(T ) = g(Φ(u) − u),
Φ(u) = Φ0 + LT,

and T is the membrane temperature,
A2 : H1(Ω) → H1(Ω)∗, and
L ∈ L(H1, H1).

Φ(u) Φ(u) − Φ0

u {u = Φ(u)}
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Minimal and maximal solutions
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Tartar’s Approach

Denote by S(f,w) to the unique solution to

Find y ∈ K(w) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(w).

The map S(f, ·) : H → V ⊂ H is well-defined and

▶ S(f, ·) : H → H is an increasing map:

w0 ≤ w1 =⇒ S(f, w0) ≤ S(f, w1).

▶ Fixed points of S(f, ·) are solutions to the QVI of interest.

Theorem (Birkhoff-Tartar)- ([Tartar(1974)])
Let V be a Hilbert space and suppose T : H → H is an increasing map. Let y be
a sub-solution and y be a super-solution of the map T , that is:

y ≤ T (y) and T (y) ≤ y.

If y ≤ y, then the set of fixed points of the map T in the interval [y, y] is non-empty
and has a smallest m(T ) and a largest element M(T ).
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Definition of m and M
In general, for applications, sub- and super-solutions of S(f, ·) are easy to be found.
Let F ∈ V ′, and consider that for all admissible forcing terms f ∈ Uad we have that

0 ≤ f ≤ F.

For a given f , we denote by

m(f ) and M(f )

to the minimal and maximal solutions of the QVI of interest in the interval [y, y] :=
[0, A−1F ].

▶ The elements m(f ) and M(f ) are extremal points of Q(f ) on the interval [y, y]:

Q(f ) ∩ [y, y] ≡ Q(f ) ∩ [m(f ),M(f )].

Q: How to compute m(f ) and M(f )?
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Computing m(f ) and M(f )

▶ Suppose that admissible forcing terms satisfy 0 ≤ f ≤ F for some F ∈ L∞(Ω)
and y = A−1(0) = 0 and y = A−1(F ).

▶ Let Φ : V → V be completely continuous (maps weak into strong)

▶ Define the sequences {mn} and {Mn} as

mn = S(f,mn−1), n ∈ N m0 = y;
Mn = S(f,Mn−1), n ∈ N M0 = y.

▶ Then, mn ↑ m(f ), Mn ↓ M(f ),

mn → m(f ), and Mn → M(f ) in V

Convergence (in general) is as slow (sublinear) as you can imagine ; the idea of
the proof goes back to Kolodner, Birkhoff, etc....

Open question: Are there simple ways to improve convergence speed?
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Perturbations of minimal and maximal
solutions
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The reduced problem

The problem of interest is

Let A : V → V ′ and f ∈ V ′ for some (real) Hilbert space V . Consider

Find y ∈ K(y) : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ∈ K(y) (QVI)

where
K(w) := {z ∈ V : z ≤ Φ(w)}.

We now require stability results for

f 7→ m(f ) and f 7→ M(f ).

▶ What topology on the space of admissible controls?

▶ What conditions on Φ?

A. Alphonse, M. Hintermüller, C. N. R.,Stability of the Solution Set of
Quasi-variational Inequalities and Optimal Control, arXiv:1904.06231, 2019.
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Limitations of macro results

Let’s recall the Birkhoff-Tartar theorem

Theorem (Birkhoff-Tartar)- ([Tartar(1974)])
Let V be a Hilbert space and suppose T : H → H is an increasing map. Let y be
a sub-solution and y be a super-solution of the map T , that is:

y ≤ T (y) and T (y) ≤ y.

If y ≤ y, then the set of fixed points of the map T in the interval [y, y] is non-empty
and has a smallest m(T ) and a largest element M(T ).

▶ Initially, let’s consider (reasonable) approximations of T and try to prove that m
and M are stable.
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Limitations of macro results

▶ Consider first an increasing map T : H → V ⊂ H and that is approximated by
maps Rn and Un from below, and above, respectively.

Proposition. Let T,Rn, Un : H → V ⊂ H be increasing mappings for n ∈ N with
T : V → V completely continuous. Suppose that for all v ∈ [y, y], and n ∈ N

y ≤ Rn(v) ≤ Rn+1(v) ≤ T (v) ≤ Un+1(v) ≤ Un(v) ≤ y,

and that if {vn} and {wn} are bounded sequences in V such that vn ≤ vn+1 and
wn ≥ wn+1, then

lim
n→∞

∥Rn(vn) − T (vn)∥V = 0 and lim
n→∞

∥Un(wn) − T (wn)∥V = 0.

Then m(Rn) ≤ m(T ) and M(T ) ≤ M(Un), and as n → ∞,

m(Rn) → m(T ) in V and M(Un) → M(T ) in V.
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Limitations of macro results

▶ How tight is the previous result?

Let T : [0, 1] → [0, 1] be defined as

T (v) =

 a, 0 ≤ v < a;
v, a ≤ v < b;
b, b ≤ v ≤ 1 .

with 0 < a < b < 1 and where m(T ) = a and M(T ) = b and

Rn(v) =
{
a, 0 ≤ v < 1

n;
T (v − 1

n), 1
n ≤ v ≤ 1 .

Un(v) =
{
T (v + 1

n), 0 ≤ v < 1 − 1
n;

b, 1 − 1
n ≤ v ≤ 1 .

Suppose that n > N for N sufficiently large, then all the assumptions of the
previous theorem hold, but

a = M(Rn) ̸→ M(T ) = b and b = m(Un) ̸→ m(T ) = a.

Then the proof plan is to consider perturbations fn ↓ f and fn ↑ f separately.
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Non-increasing Sequences of {fn} for m

Lemma 1. Suppose that

i. The sequence {fn} in L∞
ν (Ω) is non-increasing and converges to f ∗ in L∞(Ω).

ii. The upper bound mapping Φ satisfies that

λΦ(y) ≥ Φ(λy), for any λ ≥ 1, y ∈ V ∩H+,

and if vn → v in H , then Φ(vn) → Φ(v) in H .

Then m(fn) ↓ m(f ∗) in H and

m(fn) → m(f ∗) in V.

L∞
ν (Ω) := {g ∈ L∞(Ω) : g ≥ ν > 0}.

Note that we are not assuming that if vn ⇀ v then Mosco convergence
K(vn) → K(v) holds!
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▶ Q: Why is L∞(Ω) required as the space of perturbations?

Then m(f ) is the maximal element of the set Z•(f ) with

X(f ) = {x ∈ V : x ∈ [y, y] and x ≤ S(f, x)},
Y •(f ) = {x ∈ V : x ∈ [y,∞) and x ≥ S(f, x)},
Z•(f ) = {x ∈ X(f ) : x ≤ y for all y ∈ Y •(f )}.

Similarly, M(f ) is the minimal element of the set Z̃•(f ) where

X•(f ) = {x ∈ V : x ∈ (−∞, y] and x ≤ S(f, x)},
Y (f ) = {x ∈ V : x ∈ [y, y] and x ≥ S(f, x)},
Z̃•(f ) = {y ∈ Y (f ) : x ≤ y for all x ∈ X•(f )}.

▶ A: The set-valued maps f 7→ Z•(f ), Z̃•(f ) are delicate
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Non-decreasing Sequences of {fn} and m

Lemma 2. Suppose that

i. The sequence {fn} in V ′
+ is non-decreasing and converges to f ∗ in V ′.

ii. The upper bound mapping Φ satisfies one of the following:

a. If vn ⇀ v in V , then Φ(vn) → Φ(v) in L∞(Ω).
b. If vn ⇀ v in V , then Φ(vn) → Φ(v) in H and if v ∈ V ∩H+, then Φ(v) ∈ V
and −∆Φ(v) ≥ 0.

Then m(fn) ↑ m(f ∗) in H and

m(fn) → m(f ∗) in V.
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Non-increasing Sequences of {fn} and M

Lemma 3. Suppose that

i. The sequence {fn} in V
′

+ is non-increasing and converges to f ∗ in V ′.

ii. The upper bound mapping Φ satisfies: If vn → v in H , then Φ(vn) → Φ(v) in H .

Then M(fn) ↓ M(f ∗) in H and

M(fn) → M(f ∗) in V.
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Non-decreasing Sequences of {fn} and M

Lemma 4. Suppose that

i. The sequence {fn} in L∞
ν (Ω) is non-decreasing and converges to f ∗ in L∞(Ω).

ii. The upper bound mapping Φ satisfies that

λΦ(y) ≤ Φ(λy), for any 0 < λ < 1, y ∈ V ∩H+,

and one of the following:

a. If vn ⇀ v in V , then Φ(vn) → Φ(v) in L∞(Ω).
b. If vn ⇀ v in V , then Φ(vn) → Φ(v) in H and if v ∈ V ∩H+, then Φ(v) ∈ V
and −∆Φ(v) ≥ 0.

Then M(fn) ↑ M(f ∗) in H and

M(fn) → M(f ∗) in V.
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Stability for M and m

Theorem. Suppose that

i. The sequence {fn} in L∞
ν (Ω) converges to f ∗ in L∞(Ω).

ii. The upper bound mapping Φ satisfies the conditions of the previous lemmas. In
particular, for any y ∈ V ∩H+

λΦ(y) ≥ Φ(λy), for any λ ≥ 1, or

λΦ(y) ≤ Φ(λy), for any 0 < λ < 1.

Then
m(fn) → m(f ∗) and M(fn) → M(f ∗) in H,

together with

m(fn) ⇀ m(f ∗) and M(fn) ⇀ M(f ∗) in V.

▶ No order in {fn} ⇒ no strong convergence in V .
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Example of application

We would like to control the solution set f 7→ Q(f ) of the QVI

Let A : V → V ′ and f ∈ V ′ for some (real) Hilbert space V . Consider

Find y ∈ K(y) : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ∈ K(y) (QVI)

where
K(w) := {z ∈ V : z ≤ Φ(w)}.

▶ Suppose that we require that Q(f ) is a singleton:

▲ In our setting we would to select a forcing term f such that

|m(f ) − M(f )|L2(Ω),

is as small as possible in addition to requiring that m(f ) is close to a desired
state.
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Example of application

Consider the following problem

min
f∈Uad

∫
Ω

|m(f ) − M(f )|2 +
∫

Ω
|m(f ) − yd|2,

for some admissible control set Uad ⊂ U and where m(f ), and M(f ) corre-
spond to the minimal and maximal solutions of the following QVI

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y).

▶ If U is compactly embedded in L∞(Ω), U is a reflexive Banach space and
Uad ⊂ L∞

ν (Ω) is bounded, then the above problem has a solution (under the
assumptions we have described).

A. Alphonse, M. Hintermüller, C. N. R.,Stability of the Solution Set of
Quasi-variational Inequalities and Optimal Control, arXiv:1904.06231, 2019.
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Directional differentiability of
f 7→ Q(f ).
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Directional differentiability

Given Q(f ) the solution set to QVI
We are interested in the directional differentiability of Q: we want to show (for-
mally)

Q(f + td) ⊃ Q(f ) + tQ′(f )(d) + o(t)
where t−1o(t) → 0 as t → 0+.

Directional differentiability results useful for

Optimal control of QVI.

Numerical methods.

Selected work:

Sensitivity for VIs and related issues: Alphonse, Bergounioux, Christof,
Hintermüller, Haraux, Herzog, Ito, Kunisch, Leugering, Meyer, Mignot, Puel,
Surowiec, Sprekels, M. Ulbrich, S. Ulbrich, D. Wachsmuth, G. Wachsmuth,
Zarantonello,...

A. Alphonse, M. Hintermüller, C. N. R.,Stability of the Solution Set of Quasi-variational
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Introduction

We are interested in the directional differentiability of Q: we want to show (for-
mally)

Q(f + td) ⊃ Q(f ) + tQ′(f )(d) + o(t)
where t−1o(t) → 0 as t → 0+.

We face the same questions as before

▶ What topology on the space of admissible controls f and perturbations d?

▶ What conditions on Φ?
▲ For the time being just assume that Φ: V → V is Hadamard differentiable: That is, for all
v and all h in V , the limit

lim
h′→h
t→0+

Φ(v + th′) − Φ(v)
t

exists in V , and we write the limit as Φ′(v)(h).
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Main result

Assume f, d ∈ L∞
+ (Ω) and define ȳ, q̄(t) by

Aȳ = f & Aq̄(t) = f + td.

Existence: by the Tartar–Birkhoff theorem, the following sets are non-empty:

Q(f ) ∩ [0, ȳ] & Q(f + td) ∩ [y, q̄(t)].

Theorem. For every y ∈ Q(f ) ∩ [0, ȳ], then under certain conditions, there exists
q(t) ∈ Q(f + td) and α ∈ V+ such that

q(t) = y + tα + o(t).

Furthermore, α = α(d) is positively homogeneous and satisfies the QVI

α ∈ Ky(α) : ⟨Aα− d, α− v⟩ ≤ 0 ∀v ∈ Ky(α)
Ky(w) := {φ ∈ V : φ ≤ Φ′(y)(w) q.e. on A(y) & ⟨Ay − f, φ− Φ′(y)(w)⟩ = 0}.

This is an extension of Mignot result for VIs into QVIs
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Why didn’t we use use Mignot’s result (after variable change)?

As before, S(g, ψ) = y ∈ V be the solution of the VI

y ∈ K(ψ) : ⟨Ay − g, y − v⟩ ≤ 0 ∀v ∈ K(ψ).

Mignot ’s result implies that S(·, ψ) has a direc. derivative DS(g, ψ)(d) =: δ,
i.e.,

S(g + td, ψ) = S(g, ψ) + tDS(g, ψ)(d) + o(t, d)
where t−1o(t, d) → 0 as t → 0+ uniformly in d on compact subsets of V ∗. It
solves

δ ∈ Ky : ⟨Aδ − d, δ − v⟩ ≤ 0 ∀v ∈ Ky

Ky := {w ∈ V : w ≤ 0 q.e. on {y = Φ(ψ)} and ⟨Ay − g, w⟩ = 0}.

Transforming y = Φ(y) − ŷ leads to

ŷ ∈ K0 : ⟨Âŷ − f̂ , ŷ − φ⟩ ≤ 0 ∀φ ∈ K0

where Â := A− AΦ(Φ − I)−1 and f̂ = −f .

In general, Â is not linear, nor coercive, nor T-monotone → New math needed.
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Proof plan

In the formal equality

Q(f + td) ⊃ Q(f ) + tQ′(f )(d) + o(t), (1)

1. Select an element y ∈ Q(f ).

2. Approximate an associated element q(t) to y from Q(f + td) by a sequence
qn(t) of solutions of VIs

3. Obtain differential formulae for the qn and characterize the approximation αn to
the directional derivative.
(must relate qn to y; recursion plays a highly nonlinear role)

4. Pass to the limit to hopefully retrieve (1)
(handling a recurrence inequality to obtain uniform bounds + identifying the limit
of higher order terms as a higher order term).
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Proof Plan (1/2) - “Sequential expressions”

As usual, S(g, ψ) = z ∈ V is the solution to the VI

z ∈ K(ψ) : ⟨Az − g, z − v⟩ ≤ 0 ∀v ∈ K(ψ).

Define qn := S(f + td, qn−1) and q0 := y.

Lemma. For each n,
qn(t) = y + tαn + on(t)

where

αn = Φ′(y)[αn−1] +DS(f, y)[d− AΦ′(y)(αn−1)]
on(t) = r(t, αn−1, on−1(t))

and t−1on(t) → 0 as t → 0+ and αn is positively homogeneous in d and solves the
VI

αn ∈ Ky(αn−1) : ⟨Aαn − d, αn − φ⟩ ≤ 0 ∀φ ∈ Ky(αn−1)
Ky(αn−1) = {φ ∈ V : φ ≤ Φ′(y)(αn−1) q.e. on A(y)

& ⟨Ay − f, φ− Φ′(y)(αn−1)⟩ = 0.}
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Proof Plan (2/2)- “Little o asymptotics”

Let c and C be the coercivity and boundedness constants of A, respectively.

Lemma. If there exists ϵ > 0 such that ∥Φ′(y)b∥V ≤ (c − ϵ)/C∥b∥V , then αn is
bounded in V .

Since on(t) = qn(t) − u− tαn,

on(t) ⇀ o∗(t) in V .

Is o∗ a higher order term?

Assume
(1) V ∋ z → Φ′(v)(z) ∈ V is completely continuous,
(2) for T0 ∈ (0, T ) small, if z : (0, T0) → V satisfies z(t) → y as t → 0+, then

∥Φ′(z(t))b∥V ≤ CΦ∥b∥V where CΦ < (1 + c−1C)−1.

Lemma. The convergence t−1on(t) → 0 in V as t → 0+ is uniform in n.
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What about f 7→ m(f ),M(f )?

Can we differentiate the minimal and maximal solutions maps with the previous
result?

Yes and No:

▶ For the map m we have

m(f + td) = m(f ) + tm′(f )(d) + o(t)

where t−1o(t) → 0 as t → 0+.

▶ For the map M we have

q(t) = M(f ) + tα(d) + o(t)

for some q(t) ∈ Q(f + td).

We need to “reverse” orders in the proof to obtain the result for M.
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A Thermoforming Model

Aim: manufacture products by heating membrane/sheet and forcing it onto mould
Modelling assumptions (for a time step in the semi-discretisation of the problem):

1. Temperature for the membrane is constant. Position denoted by y

2. Φ grows in an affine fashion w. r. t. its temperature. Position denoted by Φ(y)
3. Temperature T of the mould is subject to diffusion + insulated BCs + vertical

distance to membrane.

We consider V = H1
0(Ω)

y ∈ V : y ≤ Φ(y), ⟨Ay − f, y − v⟩ ≤ 0 ∀v ∈ V : v ≤ Φ(y)
−∆T + T = g(Φ(y) − y) on Ω

Φ(u) = Φ0 + LT on Ω,

where L is a bounded linear increasing operator.

Provided that g is regular enough, the previous result can be applied and a directional
derivative exists.
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Initial mould Φ0 Final mould Φ(u) Difference b/w moulds

Membrane u for f constant Active set {u = Φ(u)} Dir. deriv. for d = χ{x1>0.5}
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Thanks for your attention!
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