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ABSTRACT

Standard methods of data assimilation assume prior knowledge of a model

that describes the system dynamics and an observation function that maps the

model state to a predicted output. An accurate mapping from model state to

observation space is crucial in filtering schemes when adjusting the estimate

of the system state during the filter’s analysis step. However, in many ap-

plications the true observation function may be unknown and the available

observation model may have significant errors, resulting in a suboptimal state

estimate. We propose a method for observation model error correction within

the filtering framework. The procedure involves an alternating minimization

algorithm used to iteratively update a given observation function to increase

consistency with the model and prior observations, using ideas from attractor

reconstruction. The method is demonstrated on the Lorenz 1963 and Lorenz

1996 models, and on a single-column radiative transfer model with multicloud

parameterization.
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1. Introduction24

Data assimilation as a means of fusing mathematical models with observed data is a critical25

component of geophysical data analysis in general and numerical weather prediction in particular,26

and is steadily finding broader applications throughout nonlinear science. Standard applications of27

data assimilation algorithms require possession of the system equations of motion and observation28

modalities. In particular, the use of the Extended Kalman Filter (EKF) and Ensemble Kalman29

Filter (EnKF) (Houtekamer and Mitchell (1998); Burgers et al. (1998); Anderson (2001); Kalnay30

(2003); Rabier (2005); Hunt et al. (2004); Cummings (2005); Evensen (2007)) assume precise31

knowledge of the dynamical equations and the relationship between the system state and observ-32

ables.33

Some intriguing recent work has focused on investigating the effects of incomplete knowledge34

on this process, such as model error, missing equations and multiple sources of error in observa-35

tions. In particular, the issue of observation errors, due to truncation, resolution differences, and36

instrument error, has received great attention (Dee (1995); Satterfield et al. (2017); Hodyss and37

Nichols (2015); Van Leeuwen (2015); Janjic et al. (2017); Berry and Sauer (2018)). In the case of38

unknown or incorrect observation models, there is interest in fixing these deficiencies. For exam-39

ple, a recent study Berry and Harlim (2017) discusses replacing an unknown observation function40

with a training set of observations and accompanying states.41

In this article, an iterative approach to fixing observation model error is proposed which does not42

require training data, and can be applied as part of a sequential data assimilation implementation.43

The idea is based on an alternating minimization algorithm applied to the observation function. In44

the first step, a filter (eg. Kalman-type or variational filter) is applied to find the optimal state es-45

timate based on the given observation model. In the second step, an observation model correction46

3



term is interpolated from the difference between the actual observations and the observation model47

applied to the state estimate produced by the filter; this interpolation is localized in the underlying48

phase space of the dynamical system. The model correction term is then applied to form a new49

observation model. The two steps are then repeated until convergence.50

Fig. 2 shows an example application of the technique, to the Lorenz attractor with dynamical51

noise. The underlying model equations (the Lorenz equations) are assumed known. An initial52

guess is made for the observation function used in the filter, which is far from the function gen-53

erating the observed data. Sequential filtering is applied iteratively, and the observation model54

correction is learned through the iteration. The RMSE of the filter decreased with iteration num-55

ber, and after about a dozen iterations the minimum RMSE is approximately attained.56

Several other examples illustrate the varying contexts in which the method can be applied. A57

critical hurdle for all filtering methods is the ability to scale up to large problems, which is typi-58

cally achieved with a spatial localization. As a test case for spatiotemporal data we consider the59

Lorenz-96 system, in networks with 10 and 40 nodes. In the latter case, a spatial localization60

technique is developed which allows interpolation within each local region. Finally, we consider61

a more physically realistic example where observation model error can be especially detrimental62

to filtering, namely the case of radiative transfer models (RTM). To simulate severe observation63

model error, we assign the cloud fractions of a typical RTM to zero in the observation model. We64

then generate data using the full RTM (including the cloud fractions) and apply our method using65

the crippled observation function (with cloud fractions set to zero). The results show significant66

improvement in RMSE after three iterations of our observation model error correction algorithm.67

The algorithm for correcting the observation model error is described in Section 2, along with its68

relation to alternating minimization methods in optimization theory, and details of its implemen-69

tation in an ensemble filter. Sections 3 and 4 describe applications of the algorithm to Lorenz-6370
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and Lorenz-96 models, the latter to show how the method scales for spatiotemporal problems. The71

application to the radiative transfer model in shown in Section 5.72

2. Filtering with an incorrect observation function73

In the general filtering problem, we assume a system with n-dimensional state vector x and74

m-dimensional observation vector y defined by75

xk = f (xk−1)+wk−1

yk = h(xk)+ vk (1)

where wk−1 and vk are white noise processes with covariance matrices Q and R, respectively. The76

function f represents the system dynamics and h is an observation function that maps the model77

state to a predicted output. The goal is to sequentially estimate the state of the system given some78

noisy observations. Below we will consider a specific filtering algorithm, however, at this point79

our approach can be formulated in terms of a generic filtering method.80

a. The observation error correction algorithm81

The effectiveness of standard filtering approaches is based on the assumption that the observa-82

tion function h is perfectly known. The goal of this section is to address what happens when h83

is not known, and in its place an incorrect observation function g is used. In fact, observation84

model errors can have many sources, from truncation error due to downsampling high resolution85

state variables (also called representation error) to simple mismatch between the actual and avail-86

able observation functions (often referred to as observation model error) Satterfield et al. (2017);87

Van Leeuwen (2015); Janjic et al. (2017). In this article we will take a very general outlook by88

considering h to be the true mapping from the fully resolved true state variables xk into observed89

variables yk, which is subject only to instrument error vk. Meanwhile, g will denote a possibly90
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incorrect mapping from state variables into observation variables which can be compared to the91

actual observations yk. In such a situation, we can rewrite of the second part of Eq. 1 as92

yk = h(xk)+ vk

= g(xk)+b(xk)+ vk (2)

where b is the error in our estimate resulting from use of the incorrect observation function. The93

term b(·) encapsulates all sources of error except for instrument noise which is the noise term94

vk. We can write this error term as b(xk) = h(xk)− g(xk), or the difference between the true and95

incorrect observation functions at step k. Note that this error is dependent on the fully resolved96

state xk.97

Repairing observation model error was addressed recently Berry and Harlim (2017) by building98

a nonparametric estimate of the function b using a training set consisting of observations along99

with the corresponding true state. In the current article, we assume that the true state is not avail-100

able. A novel approach will be proposed for empirically estimating the model error term b using101

only the observations yk. We begin by describing our method generically for any filtering scheme.102

The general idea is to iteratively update the incorrect observation function g by obtaining succes-103

sively improved estimates of the observation model error.104

We make an initial definition g(0) = g. The filter is given the known system dynamics f , the105

initial incorrect observation function g(0), and the observations y, and provides an estimate of106

the state at each observation time k, which we denote x(0)k . This initial state estimate will be107

subject to large errors, due to the unaccounted-for observation model error. Using this imperfect108

state estimate, we calculate a noisy estimate b̂(0)k of the observation model error, corresponding to109

observation yk where110

b̂(0)k = yk−g
(

x(0)k

)
. (3)
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Due to noise in the data as well as the imperfection of the state estimate, b̂(0)k will not accurately111

reflect the true observation model error, b(xk). To build a better estimate of b(xk), we use a112

standard method of nonparametric attractor reconstruction (Takens (1981); Packard et al. (1980);113

Sauer et al. (1991); Sauer (2004)) to interpolate the observation model error function, as follows.114

Given observation yk, introduce the delay-coordinate vector zk = [yk,yk−1, . . . ,yk−d], with d delays.115

The vector zk is a representation of the system state Takens (1981); Sauer et al. (1991). The116

reconstruction is built by locating the N nearest neighbors zk1, ...,zkN (with respect to Euclidean117

distance), where118

zk j = [yk j ,yk j−1, . . . ,yk j−d]

within the set of observations. The corresponding b̂(0)k1
, b̂(0)k2

, . . . , b̂(0)kN
values are used to estimate119

b(xk) by the weighted average120

b(0)(xk) = wk1 b̂(0)k1
+wk2 b̂(0)k2

+ . . .+wkN b̂(0)kN
. (4)

The weights may be chosen in many different ways (Hamilton et al. (2016, 2017)). To impose121

smoothness on the function b(0), we could use weights which decay exponentially in delay space122

distance. Namely, the weight for the jth neighbor can be defined as123

wk j =
e−||zk j−zk||/σ

∑N
j=1 e−||zk j−zk||/σ .

Here, ||zk j − zk|| is the distance of the j-th nearest neighbor, zk j , to the current delay-coordinate124

vector, zk, and σ is the bandwidth which controls the weighting of the neighbors in the local model.125

Methods are available to tune the σ variable. In this work, we set it to half of the mean distance of126

the N nearest neighbors to give a smooth roll off of the weights with distance. This choice adapts127

to the local density of the data.128
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Note that Eq. (4) is still just an approximation of b(xk), although a more accurate estimate129

compared to Eq. (3). Our observation function can now be updated, namely130

g(1) = g+b(0).

This improved observation function is given to the filter, and the data are re-processed. An im-131

proved state estimate, x(1)k , at time k is obtained, a more accurate reconstruction, b(1)(xk), of the132

observation model error is formed using Eqs. (3-4) and the observation function is again updated,133

g(2) = g+b(1).134

The method continues iteratively, each iteration an improved reconstruction of b(xk) is obtained135

resulting in a better estimate of the state on the next iteration. The method is summarized for steps136

`= 0,1,2, . . . as follows:137

1. Initialize g(0) = g, ∆g = Inf138

2. While ∆g is greater than threshold139

(a) For each observation yk, use filter to estimate state x(`)k given known f and observation140

function g(`)141

(b) Calculate the noisy observation model error estimates b̂(`)k = yk−g(x(`)k )142

(c) For each k, find the N-nearest neighbors of delay vector zk and set143

b(`)(xk) = wk1 b̂(`)k1
+wk2 b̂(`)k2

+ . . .+wkN b̂(`)kN
(5)

(d) Update the observation function, g(`+1) = g+b(`)144

(e) Update ∆g = 1
T ∑T

k=1 |b̂
(`)
k − b̂(`−1)

k |145

In the absence of results on convergence for most nonlinear Kalman-type filters it is difficult146

to analyze the convergence of our method. At each step of the algorithm we estimate the local147
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average of the observation model error from the previous estimates b̂(`)k and then add this estimate148

to the observation function. Notice that if the same state estimates x(`+1)
k = x(`)k were found in149

the next iteration of the Kalman filter, then the observation model error estimates would be un-150

changed. Informally, if the state estimates only change by a small amount and if g is continuous151

then the observation model error estimates should also only change by a relatively small amount.152

In the next section we will present an interpretation of the method as an alternating minimization153

approach for estimating the local observation model error parameters. Moreover, we will present154

numerical results demonstrating convergence for strongly nonlinear systems with extremely large155

error in the specification of the observation function.156

b. Interpretation as alternating minimization algorithm157

The method introduced above can be viewed as belonging to the family of projection algorithms158

in optimization theory called alternating minimization algorithms Wang et al. (2008); Niesen et al.159

(2009). Implicit to the above construction is the following nonparametric representation of the160

estimated global observation model error b(`)(x), which interpolates the errors at each xk as161

b(`)(xk) =
N

∑
i=1

b̂(`)ki

e−||zk j−zk||/σ

∑N
j=1 e−||zk j−zk||/σ =

N

∑
j=1

b̂(`)k j

e−d(x,xk j )/σ

∑N
j=1 e−d(x,xk j )/σ ,

where {xk j}N
j=1 are the N nearest neighbors of the input x. Takens’ theorem Takens (1981); Sauer162

et al. (1991) states that we can use the delay coordinate vectors zk j as a proxy for the unknown true163

states xk j . Using the Euclidean distance on the proxy vectors zk j implicitly changes the distance164

function in state space to a metric d, which is consistent since all metric are equivalent in Euclidean165

space, and this has really only affected the weights in the average. Notice that the finite set of166

parameters {b̂(`)k } determine the function b(`)(x). From (2) we assume that167

yk = g(xk)+b(xk)+νk
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where νk is mean zero Gaussian noise with covariance matrix R. Thus, the likelihood of the168

estimated observation model error b(`)(x) can be estimated on the data set as169

P
(

x(`)k |b(`)
)

∝
T

∏
k=1

exp
(
−1

2
||yk−g(x(`)k )−b(`)(x(`)k )||2R−

1
2
||x(`)k+1− f (x(`)k )||2Q

)
(6)

where ||ν ||2R = ν>R−1ν is the norm induced by the covariance matrix R. Our goal is to maximize170

the probability simultaneously with respect to both the state estimate x(`)k and the observation171

model error estimate b̂(`), or equivalently, to minimize − logP, the negative log likelihood.172

At the `-th step of our approach, we first fix the observation model error estimate b(`) and use the173

nonlinear Kalman filter to approximate the best estimate of the state x(`)k given the current estimate174

of the observation model error. The nonlinear Kalman filter is approximating the solution which175

maximizes (6) where b(`) is fixed. One could also apply a variational filtering method to achieve176

this maximization.177

Next, we fix the estimate x(`)k and estimate the parameters b̂(`+1)
k to maximize (6). Since the178

second term in the exponential is independent of b̂(`+1)
k , the solution which maximizes (6) is simply179

the solution to the linear system of equations180

yk−g(x(`)k ) = b(`)(x(`)k ) =
N

∑
j=1

b̂(`)k j

e−d(x,xk j )/σ

∑N
j=1 e−d(x,xk j )/σ . (7)

Instead of explicitly solving this system, in our implementation we simply used the approximate181

solution given by182

b̂(`)k = yk−g(x(`)k ) (8)

since each point is its own nearest neighbor and dk1 = 0 yields the largest weight in the summation.183

In Fig. 1 we show that the observation model error estimates (7) and (8) are very similar, but (8)184

is much faster to compute and is more numerically stable so we will use (8) in all the examples185

below.186
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c. Ensemble Kalman filtering with observation model error correction187

In this section we assume a nonlinear system with n-dimensional state vector x and m-188

dimensional observation vector y defined by (1). The ensemble Kalman filter (EnKF) is a data189

assimilation algorithm designed for nonlinear systems, that forms an ensemble of states to handle190

the nonlinearity., One simple implementation is known as the unscented transformation (see Si-191

mon (2006); Julier et al. (2000, 2004), for example). The state estimate at step k− 1 is denoted192

x+k−1 and the covariance matrix is denoted P+
k−1. The unscented version of the EnKF employs193

the singular value decomposition to calculate S+k−1, the symmetric positive definite square root of194

P+
k−1. The singular directions form an ensemble of E new state vectors at step k−1, where x+i,k−1195

identifies the ith ensemble member .196

On each step, the EnKF applies a forecast, predicting the state, followed by analysis, correcting197

the state prediction with benefit of the current observation. The model f advances the ensemble198

one time step, and then the observation function g(`) is applied:199

x−i,k = f
(

x+i,k−1

)

y−i,k = g(`)
(

x−i,k
)
. (9)

Notice that in the ideal filtering situation we would apply the true observation function h in (9).200

In this context of this article, we assume that we are only given an incorrect observation function201

g. In the initial iteration of the filter (`= 0) we simply use the best available observation function202

g(0) = g, and in future iterations (` > 0) we incorporate the `-th observation model error estimate203

to form g(`) = g + b̂(`) as described above. Notice that each ensemble member has the same204

correction b̂(`) applied since the correction is computed based on the neighbors in delay-embedded205

observation space, so the neighbors do not change based on the state estimate or iteration of the206

algorithm. We emphasize that the state estimate and observation model error estimates change at207
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each iteration, but the indices of the neighbors, k1, ...,kN that are used to estimate the observation208

model error at time step k do not change (they are independent of `).209

The prior state estimate x−k is defined to be the mean of the state ensemble, and the predicted210

observation y−k is defined to be the mean of the observed ensemble. Define P−k and Py
k to be the211

covariance matrices of the resulting state and observed ensembles, and let Pxy
k denote the cross-212

covariance matrix of the state and observed ensembles. More precisely, in the notation of Hamilton213

et al. (2017), we set214

P−k =
1
E

E

∑
i=1

(
x−i,k− x−k

)(
x−i,k− x−k

)T
+Q

Py
k =

1
E

E

∑
i=1

(
y−i,k− y−k

)(
y−i,k− y−k

)T
+R

Pxy
k =

1
E

E

∑
i=1

(
x−i,k− x−k

)(
y−i,k− y−k

)T
. (10)

Then the Kalman update equations215

Kk = Pxy
k (Py

k )
−1

P+
k = P−k −KkPyx

k

x+k = x−k +Kk
(
yk− y−k

)
. (11)

are used to update the state x+k and covariance estimates P+
k with the observation yk. The co-216

variance matrices Q and R are quantities that have to be known a priori or estimated from the217

data.218

The method of Berry and Sauer (2013) will be used for the adaptive estimation of the covariance219

matrices Q and R. This is a key component in our method since the R covariance will be inflated by220

the adaptive filter to represent the error between the true observation function h and the observation221

function g(`) that we actually use in the filter. In other words, the adaptive filter is combining the222

covariance of the observation model error and the instrument noise into the R covariance matrix.223
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As we iterate the algorithm (as ` increases) we find that g(`) more closely approximates the true224

observation function h and the adaptive filter will find smaller values for R.225

3. Assimilating Lorenz-63 with an incorrect observation model226

In the results presented below, we assume noisy observations are available from a system of227

interest and we implement an ensemble Kalman filter (EnKF) for state estimation. The EnKF228

approximates a nonlinear system by forming an ensemble, such as through the unscented trans-229

formation (see for example Simon (2006)). Additionally, we use the method of Berry and Sauer230

(2013) for the adaptive estimation of the filter noise covariance matrices Q and R. The correct231

observation function h that maps the state to observation space is unknown, and in its place an232

incorrect function g is chosen for use by the EnKF. Throughout, we will compare our corrected233

filter with the standard filter (essentially, the `= 0 iteration) which assumes no correction.234

As a feasibility test we consider the Lorenz-63 system Lorenz (1963)235

ẋ1 = σ(x2− x1)

ẋ2 = x1(ρ− x3)− x2 (12)

ẋ3 = x1x2−βx3

where σ = 10, ρ = 28, β = 8/3. We will assimilate 8000 noisy observations of the system,236

sampled at rate dt = 0.1, to which we add independent Gaussian observational noise, νk, with237

mean zero and covariance R = 2I3×3. Our goal is to filter the observations238

~y = h(~x)+νk
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(see Fig. 2, blue circles) and reconstruct the underlying state, ~x, (Fig. 2, solid black lines). How-239

ever, we assume that the true observation function h, given by240

h(~x) = h







x1

x2

x3







=




sin(x1)

x2−6

cos(x3)




is unknown to us. Instead, the EnKF will use an incorrect observation function g, given by241

g(~x) = g







x1

x2

x3







=




x1

x2

x3



.

Using the incorrect mapping g, and with no estimate of the observation model error, the filter’s242

reconstruction of the system state suffers substantially (Fig. 2(a)-(c), solid gray lines). We should243

note that even obtaining these poor estimates requires adaptive estimation of the system and ob-244

servation noise covariance matrices Q and R used by the EnKF. The RMSE for reconstructing the245

three Lorenz-63 variables x1,x2 and x3 using an EnKF with observation function g and no obser-246

vation model error correction is 8.10, 6.77 and 22.33 respectively. This is not surprising, since247

without the correct observation function the analysis step of the EnKF, where the state and covari-248

ance estimates are updated, suffers due to the errors in mapping the predicted state to observation249

space.250

Using our proposed method, the EnKF state estimate can be improved by iteratively building an251

approximation of the observation model error, essentially augmenting our observation function.252

In building our reconstruction of the observation model error, we use d = 2 delays and N = 100253

nearest neighbors. After M = 20 iterations of our method, we are able to obtain and accurate254

estimate of the Lorenz-63 state (Fig. 2(a)-(c), solid red lines). The resulting error in our estimates255
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is significantly smaller (RMSE of 2.11, 1.77 and 2.91 for x, y and z respectively) compared to256

filtering without an observation model error correction.257

Fig. 2(d) shows the error in our estimation of x (solid black line), y (dashed black line) and z258

(dotted black line) as a function of number of iterations of our algorithm. We note that ` = 0259

corresponds to running the EnKF without any observation model error. At each iteration, we260

obtain a better reconstruction of the observation model error which helps improve our estimate of261

the state in the next iteration. At a certain point, our reconstruction of the observation model error262

and system state converges, a period indicated by the plateau in our RMSE plot.263

4. Spatiotemporal observation model error correction264

To show the method can work in a spatially extended system, we consider the system introduced265

by Lorenz (1996), which represents a ring of K nodes coupled by the equations266

ẋi = (axi+1− xi−2)xi−1− xi +F (13)

with parameter settings a = 1 and F = 8. The Lorenz-96 system exhibits higher dimensional267

complex behavior, that can be adjusted by changing the number of nodes and the forcing parameter268

F . In this example, we generate 10000 observations, corrupted by mean-zero Gaussian noise with269

variance equal to 2, from each node in the ring. Denoting x = [x1,x2, . . . ,xK], the true observation270
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function h for this system is defined as h(x) =Cx, where271

C =




c1 c2 0 · · · · · · · · · · · · c3

c3 c1 c2 0
...

0 c3 c1 c2
. . . ...

... 0 . . . . . . . . . . . . ...

... . . . . . . . . . . . . 0
...

... . . . c3 c1 c2 0

... 0 c3 c1 c2

c2 · · · · · · · · · · · · 0 c3 c1




,

c1 = 1,c2 = 1.2,c3 = 1.1. In effect, our observations at each node in the ring is a linear combination272

of the current node and its two spatial neighbors. The true observation map h is assumed unknown273

to us, and in its place we use the incorrect function274

g(x) = IK×Kx

where IK×K is the K×K identity matrix.275

We first consider a K = 10 dimensional Lorenz-96 ring. Fig. 3 shows the results of reconstructing276

the 10 dimensional Lorenz-96 state. Fig. 3(a) shows a representative reconstruction of the x2 state277

(similar results are obtained for each node of the ring). Given the noisy observations (blue circles),278

the EnKF without observation model error correction (solid gray line) is unable to estimate the279

true trajectory (solid black line), resulting in an RMSE of 5.83. Accounting for the observation280

model error (M = 15 iterations, d = 2 delays and N = 100 neighbors), we are able to improve281

our reconstruction of the x2 trajectory (solid red line, RMSE = 2.37). Similarly as in the Lorenz-282

63 example, we see in Fig. 3(b) that as the number of iterations of our observation model error283

correction method increases we eventually converge to a stable RMSE.284
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We next consider a K = 40 dimensional ring. Fig. 4 shows the spatiotemporal plots of the285

system. The top plot shows the true system dynamics and the second plot our noisy observations286

of the system. Similarly to the 10 dimensional ring, the filtering without observation model error287

correction is unable to provide an accurate reconstruction of the system state (third plot). The288

high dimensionality of the system can make finding accurate nearest neighbors for observation289

model error reconstruction difficult. We implement a spatial localization technique when finding290

neighbors, whereby for each node we look for neighbors in a delay-coordinate space consisting291

of its delays and the delays of its two spatial neighbors. While our method can be successfully292

implemented in this high dimensional example without localization, results are improved through293

use of the localization technique. The bottom plot of Fig. 4 shows the resulting filter estimate with294

observation model error correction. Again, we see that there is a substantial improvement in the295

state reconstruction and we are able to obtain a more accurate representation of the true system296

dynamics.297

5. Correcting error in cloudy satellite-like observations without training data298

The presence of clouds is a significant issue in assimilation of satellite observations. Clouds can299

introduce significant observation model error into the results of radiative transfer models (RTM).300

As previously mentioned, a recently developed method Berry and Harlim (2017) is able to learn a301

probabilistic observation model error correction using training data consisting of pairs of the true302

state and the corresponding observations. Of course, requiring knowledge of the true state in the303

training data is a significant restriction, and while methods such as reanalysis or local large-scale304

data gathering are possible, it would be extremely advantageous to remove this requirement. The305

innovation of the method introduced here is that we do not require knowledge of the true state306

in the training data. Instead, we use an iterative approach to learn local observation model error307
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corrections based on delay reconstruction in observation space. In this section we will apply our308

method to an RTM and show that the observation model error can be iteratively learned without309

the training data.310

The model Khouider et al. (2010) presented here represents a single column of atmosphere with311

three temperature variables θ1,θ2,θeb and a vertically averaged water vapor variable q. The RTM312

also contains a stochastic multicloud parameterization with three variables fc, fd, and fs which313

represent fractions of congestus, deep, and stratiform clouds respectively. The three temperature314

variables are extrapolated to yield the temperature as a continuous function of the height, and then315

a simplified RTM can be used to integrate over this vertical profile to determine the radiation at316

various frequencies (see Berry and Harlim Berry and Harlim (2017) for details). We follow Liou317

Liou (2002) to incorporate information from the cloud fractions into the RTM in order to produce318

synthetic ‘true’ observations at 16 different frequencies. Each frequency has a different height319

profile which is integrated against the vertical temperature profile. The presence of the different320

types of clouds influences these height profiles to simulate the cloud ‘blocking’ radiation from321

below it. We first show that the EnKF is capable of recovering most of the state variables from322

the observations when the correct observation model is specified (meaning the RTM includes the323

cloud fraction information from the model). In Fig. 5 we show the true state (grey) along with the324

estimates produced using the correct observation model (black).325

Next, we assume that the cloud fractions are unknown or that their effect on the RTM is poorly326

understood, and we attempt to assimilate the true observations using an RTM where the cloud327

fractions are held constant at zero (note that the cloud fractions are still present and evolving in the328

model used by the filter, but they are not included in the RTM used for the observation function329

of the filter). We should note that this assimilation is impossible without artificially inflating the330

observation covariance matrix R by a factor of 100. The results of assimilating are shown in Fig. 5331
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(red, dotted). Finally we apply the iterative observation model error correction (3 iterations) and332

the results are shown in Fig. 5 (blue, dashed). Similar to the results of Berry and Harlim Berry and333

Harlim (2017) the water vapor variable, q is difficult to reconstruct in the presence of observation334

model error, however the cloud and temperature variables are significantly improved.335

In Table 1 we summarize the RMSE of each variable averaged over 4500 discrete filter steps336

(15.6 model time units with dt = .0035) for each filter, the observation noise variance was set at337

0.5% of the variance of each observed variable. The observation model error correction is able to338

improve the estimation of all of the cloud fraction variables fc, fd, and fs along with two of the339

temperature variables. The estimation of θ2 was only slightly degraded. The estimation of q was340

more significantly degraded by the observation model error correction, probably because q does341

not enter into the observation function as directly as the other variables. These results compare342

favorably with Berry and Harlim Berry and Harlim (2017) who also found that the q variable was343

difficult to reconstruct in the presence of this observation model error, even using training data that344

included the true state.345

Since our approach here does not depend on perfect training data, we also found that our results346

were more robust to observation noise than the results of Berry and Harlim Berry and Harlim347

(2017). In that approach, this was a significant issue since it was assumed that the observation348

noise was small in order to be able to recover the true model error from the training data. As a349

result, the results were only robust up to observation noise levels of about 1% of the variance of350

the observations.351

In Fig. 6 we show the robustness of the observation model error correction proposed here to in-352

creasing levels of observation noise. We find that the iterative observation model error correction is353

robust at noise levels over 10% of the variance of the observations. At extremely low noise levels,354

such as levels near 0.1%, the method of Berry and Harlim (2017) has performance comparable to355
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the true observation function, so when perfect full state training data is available and observation356

noise is small the methods have roughly equivalent behavior.357

6. Discussion358

Accurate linear and nonlinear filtering depends on thorough knowledge of model dynamics and359

the function connecting states to observations. The method proposed here uses an alternating360

minimization approach to iteratively correct observation model error, assuming knowledge of the361

correct dynamical model. This approach was shown to succeed in temporal and spatiotemporal362

examples as well as a cloud model.363

Although the iteration converges to eliminate observation model error in a wide variety of ex-364

amples, there is no proof of global convergence of the method. This is typical for alternating365

minimization methods. A better understanding of the basin of convergence would be helpful, and366

the object of further study.367

The increasing diversity of measurement devices used in meteorological data assimilation is368

subject to a wide variety of separate errors. It is possible that more refined versions of the method369

can be designed to target particular subsets of the total observation error. The proof of concept370

carried out in this article show the potential for a relatively simple iterative solution to the problem,371

that can result in significant improvement in total RMSE.372

We envision additional applications in other science and engineering areas, including hydrology,373

physical and biological experiments. A particular problem of interest in physiology is the com-374

mon usage of intracellular neural models to assimilate extracellular measurements from single375

electrodes and electrode arrays. The observation function that connects such measurements to the376

model is not well understood by first principles and may vary by preparation. An automated way377
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to solve this issue would potentially be a significant advance in data assimilation for neuroscience378

problems.379
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Table 1. Root mean squared error of cloud model variables averaged over 4500 filter446

steps. Estimation of the cloud fraction variables is significantly improved. . . . 26447
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Percent Error (RMSE) θ1 θ2 θeb q fc fd fs

True Observation Function 2.8 1.6 6.2 10.6 8.1 3.1 8.2

Wrong Observation Function 30.3 9.1 51.0 62.8 44.2 76.2 93.1

Model Error Correction 11.8 12.0 31.5 103.9 15.6 25.8 45.4

TABLE 1. Root mean squared error of cloud model variables averaged over 4500 filter steps. Estimation of

the cloud fraction variables is significantly improved by the observation model error correction.
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Figure 1. Comparison of the observation model error correction which solves (7) (red, dashed) to the correction given by (8)
(grey, solid) which is used in all the examples below. Observation errors are shown from the Lorenz-63 example described
below (see Fig. 2).

Notice that in the ideal filtering situation we would apply the true observation function h in (9), however, in this context we
assume that we are only given an incorrect observation function g. In the initial iteration of the filter (` = 0) we simply use the
best available observation function g(0) = g, and in future iterations (` > 0) we incorporate the `-th observation model error
estimate to form g(`) = g+ b̂(`) as described above. Notice that each ensemble member has the same correction b̂(`) applied
since the correction is computed based on the neighbors in delay-embedded observation space, so the neighbors do not change
based on the state estimate or iteration of the algorithm. We emphasize that the state estimate and observation model error
estimates change at each iteration, but the indices of the neighbors, k1, ...,kN that are used to estimate the observation model
error at time step k do not change (they are independent of `).

The mean of the resulting state ensemble gives the prior state estimate x�k and the mean of the observed ensemble is the
predicted observation y�k . Denoting the covariance matrices P�

k and Py
k of the resulting state and observed ensemble, and the

cross-covariance matrix Pxy
k between the state and observed ensembles, we define

P�
k =

1
E

E

Â
i=1

⇣
x�i,k � x�k

⌘⇣
x�i,k � x�k

⌘T
+Q
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k =

1
E

E

Â
i=1

⇣
y�i,k � y�k

⌘⇣
y�i,k � y�k

⌘T
+R
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1
E

E

Â
i=1

⇣
x�i,k � x�k

⌘⇣
y�i,k � y�k

⌘T
(10)

and use the equations

Kk = Pxy
k (Py

k )�1

P+
k = P�

k �KkPyx
k

x+
k = x�k +Kk

�
yk � y�k

�
. (11)

5/13

FIG. 1. Comparison of the observation model error correction which solves (7) (red, dashed) to the correction

given by (8) (grey, solid) which is used in all the examples below. Observation errors are shown from the

Lorenz-63 example described below (see Fig. 2).
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to update the state and covariance estimates with the observation yk. Q and R are generally unknown quantities that have to be
estimated, an area known as adaptive filtering.

In this article, we use the method of11 for the adaptive estimation of these noise covariance matrices. This is a key
component in our method since the R covariance will be inflated by the adaptive filter to represent the error between the true
observation function h and the observation function g(`) that we actually use in the filter. In other words, the adaptive filter is
combining the covariance of the observation model error and the instrument noise into the R covariance matrix. As we iterate
the algorithm (as ` increases) we find that g(`) more closely approximates the true observation function h and the adaptive filter
will find smaller values for R.

3 Assimilating Lorenz-63 with an incorrect observation model
In the results presented below, we assume noisy observations are available from a system of interest and we implement an
ensemble Kalman filter (EnKF) for state estimation. The EnKF approximates a nonlinear system by forming an ensemble, such
as through the unscented transformation (see for example25). Additionally, we use the method of11 for the adaptive estimation
of the filter noise covariance matrices Q and R. The correct observation function h that maps the state to observation space is
unknown, and in its place an incorrect function g is chosen for use by the EnKF. Throughout, we will compare our corrected
filter with the standard filter (essentially, the ` = 0 iteration) which assumes no correction.
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Figure 2. Results of filtering noisy Lorenz-63 (a) x1 (b) x2 and (c) x3 time series when true observation function, h, is
unknown and R = 2I3⇥3. Notice the large difference between the true observations h(~xk)+nk (blue circles) to the true state
variables (solid black curve). We compare the EnKF estimate using the wrong observation function, g, without observation
model error correction (solid gray lines) and the EnKF estimate with correction (solid red lines) shown. (d) Plot of RMSE vs.
iteration of the observation model error correction method, where ` = 0 corresponds to the standard EnKF without correction.
RMSE for x (solid black line), y (dashed black line) and z (dotted black line) shown. After a sufficient number of iterations, the
observation model error estimates converge as does the RMSE of the state estimate.
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FIG. 2. Results of filtering noisy Lorenz-63 (a) x1 (b) x2 and (c) x3 time series when true observation function,

h, is unknown and R = 2I3×3. Notice the large difference between the true observations h(~xk)+νk (blue circles)

to the true state variables (solid black curve). We compare the EnKF estimate using the wrong observation

function, g, without observation model error correction (solid gray lines) and the EnKF estimate with correction

(solid red lines) shown. (d) Plot of RMSE vs. iteration of the observation model error correction method, where

`= 0 corresponds to the standard EnKF without correction. RMSE for x (solid black line), y (dashed black line)

and z (dotted black line) shown. After a sufficient number of iterations, the observation model error estimates

converge as does the RMSE of the state estimate.
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Figure 3. Results of filtering a noisy 10 dimensional Lorenz- 96 ring when the true observation function is unknown. (a)
Representative results demonstrated by the x2 node. We filter the noisy observation (blue circles) in an attempt to reconstruct
the underling state (solid black line). Without observation model error correction, the EnKF estimate (solid gray line) is unable
to track the true state (RMSE = 5.83). With observation model error correction (solid red line), our estimate of the state
improves substantially (RMSE = 2.37). (b) Average RMSE of Lorenz-96 ring as a function of iteration shown. Similarly to the
previous example, after a sufficient number of iterations our method converges to an estimate of the observation model error
and system state, demonstrated by the convergence of the RMSE.

observation function h for this system is defined as h(x) = Cx, where

C =

2
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,

c1 = 1,c2 = 1.2,c3 = 1.1. In effect, our observations at each node in the ring is a linear combination of the current node and its
two spatial neighbors. The true observational mapping h is unknown to us, and in its place we assume the incorrect function

g(x) = IK⇥Kx

where IK⇥K is the K ⇥K identity matrix.
We first consider a K = 10 dimensional Lorenz-96 ring. Fig. 3 shows the results of reconstructing the 10 dimensional

Lorenz-96 state. Fig. 3(a) shows a representative reconstruction of the x2 state (similar results are obtained for each node of the
ring). Given the noisy observations (blue circles), the EnKF without observation model error correction (solid gray line) is
unable to estimate the true trajectory (solid black line), resulting in an RMSE of 5.83. Accounting for the observation model
error (M = 15 iterations, d = 2 delays and N = 100 neighbors), we are able to improve our reconstruction of the x2 trajectory
(solid red line, RMSE = 2.37). Similarly as in the Lorenz-63 example, we see in Fig. 3(b) that as the number of iterations of our
observation model error correction method increases we eventually converge to a stable RMSE.

Given the success on the smaller Lorenz-96 system, we now consider a K = 40 dimensional ring. Fig. 4 shows the
spatiotemporal plots of the system. The top plot shows the true system dynamics and the second plot our noisy observations of
the system. Similarly to the 10 dimensional ring, the filtering without observation model error correction is unable to provide
an accurate reconstruction of the system state (third plot). The high dimensionality of the system can make finding accurate
nearest neighbors for observation model error reconstruction difficult. We implement a spatial localization technique when
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FIG. 3. Results of filtering a noisy 10 dimensional Lorenz- 96 ring when the true observation function is

unknown. (a) Representative results demonstrated by the x2 node. We filter the noisy observation (blue circles)

in an attempt to reconstruct the underling state (solid black line). Without observation model error correction,

the EnKF estimate (solid gray line) is unable to track the true state (RMSE = 5.83). With observation model error

correction (solid red line), our estimate of the state improves substantially (RMSE = 2.37). (b) Average RMSE

of Lorenz-96 ring as a function of iteration shown. Similarly to the previous example, after a sufficient number

of iterations our method converges to an estimate of the observation model error and system state, demonstrated

by the convergence of the RMSE.
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Figure 4. Results of filtering a noisy 40 dimensional Lorenz-96 system. True spatiotemporal dynamics (top), noisy
observations of the system (second plot), estimate without observation model error correction (third plot) and estimate with
observation model error correction (bottom plot) shown. Without correction, we obtain a poor estimate of the system dynamics
(average RMSE = 5.12). With correction, our estimate is improved (average RMSE = 2.50).

finding neighbors, whereby for each node we look for neighbors in a delay-coordinate space consisting of its delays and the
delays of its two spatial neighbors. While our method can be successfully implemented in this high dimensional example
without localization, results are improved through use of the localization technique. The bottom plot of Fig. 4 shows the
resulting filter estimate with observation model error correction. Again, we see that there is a substantial improvement in the
state reconstruction and we are able to obtain a more accurate representation of the true system dynamics.

5 Correcting error in cloudy satellite-like observations without training data
The presence of clouds is a significant issue in assimilation of satellite observations. Clouds can introduce significant observation
model error into the results of radiative transfer models (RTM). As previously mentioned, a recently developed method18 is
able to learn a probabilistic observation model error correction using training data consisting of pairs of the true state and the
corresponding observations. Of course, requiring knowledge of the true state in the training data is a significant restriction,
and while methods such as reanalysis or local large-scale data gathering are possible, it would be extremely advantageous to
remove this requirement. The innovation of the method introduced here is that we do not require knowledge of the true state
in the training data. Instead, we use an iterative approach to learn local observation model error corrections based on delay
reconstruction in observation space. In this section we will apply our method to an RTM and show that the observation model
error can be iteratively learned without the training data.

The model28 presented here represents a single column of atmosphere with three temperature variables q1,q2,qeb and a
vertically averaged water vapor variable q. The RTM also contains a stochastic multicloud parameterization with three variables
fc, fd , and fs which represent fractions of congestus, deep, and stratiform clouds respectively. The three temperature variables
are extrapolated to yield the temperature as a continuous function of the height, and then a simplified RTM can be used to
integrate over this vertical profile to determine the radiation at various frequencies (see Berry and Harlim18 for details). We
follow Liou29 to incorporate information from the cloud fractions into the RTM in order to produce synthetic ‘true’ observations
at 16 different frequencies. Each frequency has a different height profile which is integrated against the vertical temperature
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FIG. 4. Results of filtering a noisy 40 dimensional Lorenz-96 system. True spatiotemporal dynamics (top),

noisy observations of the system (second plot), estimate without observation model error correction (third plot)

and estimate with observation model error correction (bottom plot) shown. Without correction, we obtain a poor

estimate of the system dynamics (average RMSE = 5.12). With correction, our estimate is improved (average

RMSE = 2.50).
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Figure 5. (a) True observations (red, dashed) incorporating cloud information are compared to the incorrect observation
function (black, solid) which sets all the cloud fractions to zero in the RTM. (b-h) True state (gray, thick curve) compared to the
result of filtering with the true observation function (black), the wrong observation function using only inflation of the
observation covariance matrix (red, dashed) and the wrong observation function with iterative observation model error
correction (blue, dashed).
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FIG. 5. (a) True observations (red, dashed) incorporating cloud information are compared to the incorrect

observation function (black, solid) which sets all the cloud fractions to zero in the RTM. (b-h) True state (gray,

thick curve) compared to the result of filtering with the true observation function (black), the wrong observation

function using only inflation of the observation covariance matrix (red, dashed) and the wrong observation

function with iterative observation model error correction (blue, dashed).
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Figure 6. Robustness of filter estimates. RMSE as a percentage of the standard deviation of each variable is shown as a
function of observation noise percentage (noise variance is the given percentage of the the observation variance for each
observed variable). The filter using the true observation function (black, solid curve) is compared to the result of filtering with
the wrong observation function using only inflation of the observation covariance matrix (red, dashed) and the wrong
observation function with iterative observation model error correction (blue, dashed).
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FIG. 6. Robustness of filter estimates. RMSE as a percentage of the standard deviation of each variable is

shown as a function of observation noise percentage (noise variance is the given percentage of the the obser-

vation variance for each observed variable). The filter using the true observation function (black, solid curve)

is compared to the result of filtering with the wrong observation function using only inflation of the observa-

tion covariance matrix (red, dashed) and the wrong observation function with iterative observation model error

correction (blue, dashed).
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