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Abstract. In locally compact, separable metric measure spaces, heat kernels can be classified as
either local (having exponential decay) or nonlocal (having polynomial decay). This dichotomy of
heat kernels gives rise to operators that include (but are not restricted to) the generators of the
classical Laplacian associated to Brownian processes as well as the fractional Laplacian associated
with β-stable Lévy processes. Given embedded data that lie on or close to a compact Riemannian
manifold, there is a practical difficulty in realizing this theory directly since these kernels are de-
fined as functions of geodesic distance which is not directly accessible unless if the manifold (i.e.,
the embedding function or the Riemannian metric) is completely specified. This paper develops
numerical methods to estimate the semigroups and generators corresponding to these heat kernels
using embedded data that lie on or close to a compact Riemannian manifold (the estimators of the
local kernels are restricted to Neumann functions for manifold with boundary). For local kernels,
the method is basically a version of the diffusion maps algorithm which estimates the Laplace-
Beltrami operator on compact Riemannian manifolds. In fact, it is shown that the diffusion maps
algorithm implemented with non-Gaussian local heat kernels approximates temporally rescaled
Laplace-Beltrami operators. For the non-local heat kernels, the diffusion maps algorithm must be
modified in order to estimate fractional Laplacian operators using polynomial decaying kernels. In
this case, the graph distance is used to approximate the geodesic distance with appropriate error
bounds. While this approximation becomes numerically expensive as the number of data points
increases, it produces an accurate operator estimation that is robust to the choice of the kernel
bandwidth parameter value. This is in contrast to the local kernels, which are numerically more
efficient but are more sensitive to the choice of kernel bandwidth parameter value. Numerical exper-
iments supporting these theoretical results are presented. For manifolds with boundary, numerical
results suggest that the proposed fractional diffusion maps framework implemented with non-local
kernels approximates the regional fractional Laplacian.

1. Introduction

Recent developments in the theory of heat kernels on metric measure spaces gives rise to a
dichotomy in the classes of heat kernels [21]. In particular, it was shown that in locally compact
separable spaces, the so-called stochastically complete, β-scale invariant heat kernels are either
local (having exponential decay) or non-local (having polynomial decay). For a detailed summary
of this dichotomy see Section 2.2 below. The class of local kernels includes the Gaussian kernel
which yields an estimate of the heat kernel on the manifold with error bounds that depend on
the curvature and its derivatives [27]. The Gaussian kernel was also used in the diffusion maps
algorithm to estimate the Laplace-Beltrami operator [17] which is the generator of Brownian motion
on a manifold. On the other hand, the class of nonlocal kernels includes the Poisson kernel which
gives rise to the generator (−∆)1/2 in Rn. In fact, the class of heat kernels with polynomial decay

2010 Mathematics Subject Classification. 26A33, 60G22, 35R11, 62-07, 62G99 .
Key words and phrases. dichotomy in heat kernel, local kernel, nonlocal kernel, fractional Laplacian, diffusion

maps, operator estimation.
The first author is partially supported by NSF grants DMS-1521590 and DMS-1818772. The second author is

partially supported by NSF grant DMS-1723175. The third author is partially supported by the ONR grant N00014-
16-1-2888 and NSF grant DMS-1619661.

1

ar
X

iv
:1

81
0.

03
95

2v
1 

 [
m

at
h.

C
A

] 
 9

 O
ct

 2
01

8



2 HARBIR ANTIL, TYRUS BERRY, AND JOHN HARLIM

in [21] is associated with the fractional Laplacian (−∆)β/2 for β ∈ (0, 2). In other words, these
nonlocal kernels generate the β-stable Lévy processes in Rn [22].

The goal of this paper is to estimate both classes of semigroup operators arising in the dichotomy
of [21] using only samples of data that lie on or near an embedded manifold where neither the mani-
fold nor the embedding function are explicitly known. This constraint (of not explicitly knowing the
embedding or, equivalently, the Riemannian metric) implies that we cannot evaluate the geodesic
distance on the compact manifold and, consequently, cannot directly evaluate either of the two
classes of heat kernels in [21], which are both defined as functions of the geodesic distance. Note
that throughout we assume that the manifold is compact. In addition, we clearly specify whenever
we need the manifold to be closed.

For local kernels, we will overcome this issue by generalizing the theory of [17], which showed
that kernels with exponential decay localize the interactions between points so that the ambient
Euclidean distance is sufficiently close to the geodesic distance. This result was used in the diffusion
maps algorithm to show that the Laplace-Beltrami operator on a manifold can be estimated by a
weighted graph Laplacians (where the graph is constructed by connecting data points sampled on
an embedding of the manifold in Euclidean space). If a data set is assumed to lie on or near an
embedded manifold, the diffusion maps result provides a rigorous foundation for so-called ‘kernel
methods’ used for unsupervised learning algorithms and dimensional reduction. In particular, it
approximates the semigroup associated with the Laplace-Beltrami operator with a discretization
of an integral operator, defined with any kernel functions that decay to zero exponentially as the
distance between data points increases. In fact, it was shown in [12] that this class of the so-called
“local kernel” allows one to estimate non-symmetric Kolmogorov operators defined with respect to
the Riemannian metric inherited by the manifold from the ambient space.

For non-local heat kernels, we cannot use the Euclidean distance of the embedded data to ap-
proximate the geodesic distance since such approximation is only valid locally. In this case, we
consider the graph distance as an estimator for the geodesic distance, which is the idea behind the
Isomap algorithm [33, 9]. Numerically, the graph distance will be computed using Dijkstra algo-
rithm which finds the shortest paths between the training data points. Using the error estimate for
the geodesic distance approximation that was formulated in [9], we derive error bounds for nonlocal
kernels and their associated semigroups and generators.

The remaining of this paper will be organized as follows: In Section 2, we will briefly review the
relevant results from [21] which serves as the foundation for this work. In Section 3, we derive the
theory for estimating the semigroup operators in [21] using data sampled from an embedded mani-
fold. In Section 4, we provide a detailed numerical algorithm including the necessary modifications
for application with non-local kernels. In Section 5, we provide numerical examples to support the
theoretical results deduced in Section 3. In Section 6, we close the paper with a summary and
discussion.

2. Notation and preliminaries

2.1. Notation. We will denote the Euclidean norm by |·| and reserve ‖·‖ for function space norms.
Throughout this paper we will consider a compact C3 Riemannian manifold M, isometrically
embedded into a Euclidean space by a C3 function ι :M→ Rn. Equivalently, given an arbitrary
embedding, we may say that we are interested in the Riemannian geometry, g, inherited from the
embedding.

We will denote by dg(x, y) the geodesic distance which is identical to the intrinsic distance on
compact manifold, M, given by the infimum over piecewise differentiable paths γ : [0, 1] → M
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between γ(0) = x and γ(1) = y

dg(x, y) = inf
γ

∫ 1

0

√
gγ(t)(∇γ(t),∇γ(t)) dt.

Since the embedding ι is continuous and M is compact, the ratio between the Euclidean distance
in the embedding space and the geodesic distance,

R(x, y) =
|ι(x)− ι(y)|
dg(x, y)

,

is bounded away from zero. Moreover, when y is sufficiently close to x we have the following
relationship between the geodesic distance and the Euclidean distance in the embedding space.

Lemma 2.1 (Distance comparison). Let x, y ∈ M with dg(x, y) less than the injectivity radius at
x and let ι :M→ Rn be an isometric embedding, then

|ι(y)− ι(x)|α = dg(x, y)α +O(dg(x, y)α+2), (2.1)

for any α > 0.

The proof of Lemma 2.1 is in Appendix A. Equation (2.1) will be the key to connecting certain
integral operators with kernels defined in the embedding space to intrinsic heat kernels. Finally,
since the injectivity radius onM is bounded away from zero, on all sufficiently small balls, we have
dg(x, y) < c|ι(x)− ι(y)| since R(x, y) is bounded away from zero, where c > 0 is a positive constant.
Thus from (2.1), we have

|ι(y)− ι(x)|α = dg(x, y)α +O(|ι(y)− ι(x)|α+2). (2.2)

for dg(x, y) sufficiently small.

2.2. Dichotomy in heat kernel. In this section we briefly summarize a powerful result of [21]
which will form the cornerstone of this paper. We should note that these results hold in general
locally compact separable metric spaces [21], however we will restrict our attention to Riemannian
manifolds (M, g) here. We first state the definition of a heat kernel following [21].

Definition 2.2 (Heat kernel). A function k : [0,∞)×M×M→ [0,∞) is called a heat kernel if
for almost every x, y ∈M and all s, t ≥ 0 we have

(a) Positivity: k(t, x, y) ≥ 0.
(b) Total mass inequality:

∫
y∈M k(t, x, y) dvol ≤ 1.

(c) Symmetry: k(t, x, y) = k(t, y, x).
(d) Semi-group: k(s+ t, x, y) =

∫
z∈M k(s, x, z)k(t, z, y) dvol.

(e) Approximation of identity: limt→0+

∣∣∣∣∣∣∫y∈M k(t, x, y)f(y) dvol− f(x)
∣∣∣∣∣∣
L2(M,g)

= 0 for f ∈

L2(M, g).

A heat kernel gives rise to an associated semigroup

Ktf(x) =

∫
y∈M

k(t, x, y)f(y) dvol (2.3)

and we say that k is stochastically complete if Kt1 = 1 for all t > 0. The semigroup gives rise to a
quadratic form

ξ(f) = lim
t→0+

〈
f −Ktf

t
, f

〉
L2(M,g)
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and a generator Lf = limt→0+
f−Ktf

t , provided that the limit holds in L2(M, g). We say that ξ is
regular if there exists a set C of continuous functions with compact support (Cc(M)) that are also
in the domain, D(ξ), of ξ (in other words C ⊂ Cc(M) ∩ D(ξ)) such that C is dense both in Cc(M)
and D(ξ) under appropriate norms (see [21]). The results developed in [21] connect a large class of
heat kernels to generators of important Markov processes. Namely, we only need to assume that
our heat kernel has the following type of scale invariance.

Definition 2.3 (β-scale invariant). We say that a heat kernel is β-scale invariant if for almost
every x, y ∈M and every t > 0 it satisfies

c1

td/β
Φ

(
C1
dg(x, y)

t1/β

)
≤ k(t, x, y) ≤ c2

td/β
Φ

(
C2
dg(x, y)

t1/β

)
(2.4)

where β, c1, c2, C1, C2 are positive constants and Φ : [0,∞)→ [0,∞) is monotone decreasing.

Here, M is a d-dimensional manifold (the result in [21] also applies to fractional dimensional
sets). Then we have the following result [Theorem 4.1 of [21]].

Theorem 2.4 (Heat kernel dichotomy [21]). Let all metric balls in M to be relatively compact
and k(t, x, y) be a stochastically complete heat kernel with β-scale invariant such that the associated
quadratic form is regular. Then β ≤ d+ 1 and either

(a) k is local, meaning β ≥ 2 and (2.4) holds with Φ(a) = exp
(
−a

β
β−1

)
or

(b) k is non-local, meaning (2.4) holds with Φ(a) = (1 + a)−(d+β).

We can now connect the β-scale invariant heat kernels to the intrinsic fractional Laplacian
operators on a compact manifold. Let ∆ denote the intrinsic (negative definite) Laplacian-Beltrami
operator. Since M is compact [24, Theorem 3.2.1], the eigenvalue problem −∆φi = λiφi has
countably many eigenvalues with orthonormal eigenfunctions in L2(M). The eigenvalues fulfill
0 = λ1 < λ2 ≤ λ3 ≤ . . . with limi→∞ λi = ∞. Moreover, the eigenfunction φ1 corresponding to
λ1 is a constant. Finally for any f ∈ L2(M) we have f(x) =

∑∞
i=1 〈f, φi〉L2(M) φi(x). For closed

manifold M, one can define the spectral fractional Laplacian as:

Definition 2.5 (fractional Laplacian on closed manifolds). Let M be a compact manifold without
boundary. The intrinsic fractional Laplacian operator (−∆)s is the generator of the semigroup

et(−∆)s with heat kernel

Gs(t, x, y) =

∞∑
i=1

e−tλ
s
iφi(x)φi(y) et(−∆)sf(x) =

∫
M
Gs(t, x, y)f(y) dvol

and the fractional Laplacian can be written as

(−∆)sf(x) =
∞∑
i=1

λsi 〈f, φi〉L2(M) φi(x)

for f in the domain of (−∆)s.

In Rn and on a flat torus, the spectral fractional Laplacian coincides with the integral definition
(see e.g. [25] or [1, Pg. 15]). For general compact manifolds without boundary, the fractional
Laplacian can be approximately represented in a Cauchy Principal Value integral form (see [2,
Theorem 1.2 and Theorem 1.4] for the exact error term of this representation). For equivalent
definitions of the fractional Laplacian, some of which generalize to non-compact manifolds see
[7, 26, 14, 31, 4, 3, 30, 15, 20].
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For compact manifolds, the standard (s = 1) heat kernel has the expansion (see for example
[27])

G1(t, x, y) = (4πt)−d/2 exp

(
−dg(x, y)2

4t

)
(1 +O(t))

which agrees with the β-scale invariant kernel with β = 2, c1 = c2, and C1 = C2 (again up to a
constant term and rescaling time) in the limit as t→ 0. Furthermore, [19, Theorem 4.2] shows that
for any compact manifold and any 0 < s < 1 we have

c1

td/(2s)

(
dg(x, y)

t1/(2s)
+ 1

)−(d+2s)

+O(t) ≤ Gs(t, x, y) ≤ c2

td/(2s)

(
dg(x, y)

t1/(2s)
+ 1

)−(d+2s)

+O(t). (2.5)

Setting β = 2s this results shows that for all 0 < β < 2 as t → 0 the β-scale invariant kernel in
Definition 2.3 with c1 = c2 and C1 = C2 recovers the heat kernel Gβ/2 associated to the fractional

Laplacian (−∆)β/2.
Finally, we should note that if C1 6= C2 then the operator obtained can be very different. For

example, in [12] they consider kernels of the form e−(x−y)>A(x)(x−y) where the symmetric matrix
A(x) varies as a function of x. Notice that as long as the eigenvalues of A(x) are bounded away
from zero and infinity for all x, inequalities (2.4) (with β = 2) hold with C1 and C2 given by
infimum and supremum of the eigenvalues respectively. However, in [12] these kernels are shown to
change the differential operator that is estimated, or (equivalently) they can be viewed as changing
the Riemannian metric on the manifold M. The theory of [12] is developed for manifolds without
boundary, but the estimates can be extended to manifolds with boundary by restricting to Neumann
functions as in [17].

We now turn to the theoretical and practical implications of Theorem 2.4 for manifold learning
applications.

3. Dichotomy in diffusion maps

The dichotomy in the heat kernel is also reflected in the method that can be used in order to
obtain an estimate of the heat kernel from embedded data. The key point is that given data sampled
from an embedding ι(M) ⊂ Rn we will only have direct access to the ambient Euclidean metric,
rather than the intrinsic metric required for the construction of the heat kernel in the previous
section. In order to obtain an intrinsic operator on the data, we will need to follow very different
strategies based on which type of operator we are approximating.

For local diffusions, we will be able to simply use a kernel based on the Euclidean distance in
the embedding space, and asymptotically (as t → 0) we will recover the intrinsic heat kernel. On
the other hand, for nonlocal processes we will have to explicitly estimate the intrinsic distance
using Dijkstra’s algorithm in order to obtain a consistent estimator of the intrinsic heat kernel.
These different approaches will have significant consequences for both computational efficiency and
quality of results as we will show in Section 5. We first consider local processes in section 3.1 and
then turn to nonlocal processes in section 3.2.

3.1. α-local kernels. In this section we consider the local processes and show that they are gener-
ated by a class of kernel functions which are defined on the ambient space Rn. The class of kernels
will be called α-local.

Definition 3.1 (α-local kernels). Let h : [0,∞)×M×M→ [0,∞) then we say that h is an α-local
kernel if α > 1 and if for some isometric embedding ι :M→ Rn we have

c1e
− |ι(x)−ι(y)|

α

tα−1 ≤ h(t, x, y) ≤ c2e
− |ι(x)−ι(y)|

α

tα−1
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for some c1, c2 > 0, and for all x, y ∈M.

Notice that the α-local kernels are defined on the intrinsic manifold M but instead of being
intrinsically bounded above and below, they are bounded in an embedding space Rn in terms of the
ambient metric |·|. The reason for this is that although we are interested in a intrinsic kernel defined
on the manifold, we assume that we only have access to data points which are in the Euclidean
space Rn which is the image of ι. For example a typical kernel would be of the form,

h(t, x, y) = e−|ι(x)−ι(y)|2/t.

The α-local kernels (denoted by h) should be clearly differentiated from the intrinsic heat kernels
(denoted by k) which have the form,

k(t, x, y) := ct−d/βe
−
(
dg(x,y)

t1−1/α

)α
= ct−d/βe

−
(
dg(x,y)

t1/β

) β
β−1

= ct−d/βΦ

(
dg(x, y)

t1/β

)
for 1 + 1

d < α ≤ 2 where β = α
α−1 and Φ(a) = exp

(
−a

β
β−1

)
as in Theorem. 2.4(a).

We call these kernels α-local because the exponential decay implies fast decay of the tails. Cru-
cially, this decay is so fast that if we integrate outside of ball of radius 1

tγ for any γ > 0, then as
t→ 0+ the integral outside this ball will decay to zero faster than any power of t.

Lemma 3.2 (Fast decay of exponential tails). Let c, γ > 0 and α ≥ 1 then

lim
t→0+

t`
∫
|z|>t−γ

e−c|z|
α
dz = 0

for every ` ∈ R.

The proof of Lemma 3.2 is elementary and is included in Appendix A for completeness. We can
now show that for α-local kernels we can localize the integral operators to act only in a neighborhood
of x where |y − x| < t1−1/α. We do this by showing that the integral outside that region decays
faster than any polynomial in t.

Lemma 3.3 (Localization of α-local kernels). Let h(t, x, y) be an α-local kernel for some α > 1.
For any x, y ∈M and any f ∈ Lp(M) where p ∈ (1,∞] we have

lim
t→0+

t`
∫
y∈M,|ι(y)−ι(x)|>t1−1/α−γ

h(t, x, y)f(y) dvol = 0

for each γ > 0 and for any ` ∈ R.

Lemma 3.3 follows directly from application of Hölder’s inequality, the proof is included in
Appendix A. Now that we have localized the kernel, we can connect the Euclidean distance in the
embedding space to the intrinsic/geodesic distance using the exponential coordinates y = expx(s)
introduced in Section 2.1.

Theorem 3.4 (α-local heat kernels). Let h be an α-local kernel of Definition 3.1 for some 1+1/d <
α ≤ 2, then

ct−d/β
∫
y∈M

h(t, x, y)f(y) dvol = Ktf(x)
(

1 +O(t2−2/α)
)
, (3.1)

for some c > 0 and all x ∈ M. Here, f ∈ L2(M) where β = α
α−1 so that 2 ≤ β < d + 1. The

operator Kt denotes the semigroup of a stochastically complete, β−scale invariant local kernel of
part (a) in Theorem 2.4 and M is a d-dimensional compact manifold.
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Proof. We first consider the kernel function e
−
∣∣∣ ι(y)−ι(x)
t1−1/α

∣∣∣α
which appears in the upper and lower

bounds of an α-local kernel. Applying Lemma 3.3 we localize the integral and then apply (2.2) to
rewrite the Euclidean distance in terms of the geodesic distance so that for any γ > 0 we have∫
y∈M

e
−
∣∣∣ ι(y)−ι(x)
t1−1/α

∣∣∣α
f(y) dvol =

∫
y∈M,|ι(x)−ι(y)|<t1−1/α−γ

e
−
∣∣∣ ι(y)−ι(x)
t1−1/α

∣∣∣α
f(y) dvol +O(t`)

=

∫
y∈M,

|ι(x)−ι(y)|α
tα−1 <t−γα

e−
dg(x,y)

α+O(|ι(x)−ι(y)|α+2)

tα−1 f(y) dvol +O(t`)

=

∫
y∈M,

|ι(x)−ι(y)|α
tα−1 <t−γα

e−
dg(x,y)

α

tα−1 f(y)

(
1 +O

(
|ι(x)− ι(y)|α+2

tα−1

))
dvol +O(t`)

= (1 +O(t2−2/α))

∫
y∈M

e
−
(
dg(x,y)

t1−1/α

)α
f(y) dvol

where we use |ι(x)− ι(y)| < t1−1/α to rewrite the error in terms of t, and we choose ` large enough

that the O(t2−2/α) term dominates. In the last step we return the integral to the whole manifold
which also incurs an error which is higher order than any polynomial in t.

For β = α
α−1 and 1 + 1

d < α ≤ 2 recall that,

k(t, x, y) = ct−d/βe
−
(
dg(x,y)

t1−1/α

)α
= ct−d/βe

−
(
dg(x,y)

t1/β

) β
β−1

is a stochastically complete β-invariant local kernel for some c > 0; this is the local kernel in part
(a) of Theorem 2.4. That is,

Kt1(x) =

∫
M
k(t, x, y) dvol = 1,

which implies that,

ct−d/β
∫
y∈M

e
−
∣∣∣ ι(y)−ι(x)
t1−1/α

∣∣∣α
f(y) dvol =

(∫
y∈M

k(t, x, y)f(y) dvol
)

(1 +O(t2−2/α))

= Ktf(x)(1 +O(t2−2/α)).

Since the α-local kernel h differs from its bound, e
−
∣∣∣ ι(y)−ι(x)
t1−1/α

∣∣∣α
, by constants, the proof is complete.

�

This theorem shows that we can use α-local kernels to estimate the semigroup of a stochastically
complete, β−scale invariant local kernel of part (a) in Theorem 2.4. In a general metric measure
space the associated generator of Kt will depend on the choice of β = α

α−1 as shown in [21].

It was shown in Theorem 2 of [17] that for f ∈ C3(M) and ε > 0,

Hεf(x) := ε−d/2
∫
y∈M

Ψ

(
|ι(x)− ι(y)|2

ε

)
f(y) dvol

= m0f(x) + ε
m2

2
(ω(x)f(x)−∆f(x)) +O(ε2), (3.2)

for any exponentially decaying function Ψ : [0,∞) → [0,∞) where m0 =
∫
Rd Ψ(z) dz and m2 =∫

Rd z
2
jΨ(z) dz are moments of Ψ. Since the upper and lower bounds on an α-local kernel can be

written as

e
−
∣∣∣ ι(y)−ι(x)
t1−1/α

∣∣∣α
= e
−
(
|ι(x)−ι(y)|2

t2−2/α

)α/2
= Ψ

(
|ι(x)− ι(y)|2

t2−2/α

)
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where Ψ(s) = e−|s|
α/2

, setting ε = t2−2/α, we have,∫
y∈M

h(t, x, y)f(y) dvol = εd/2Hεf(t, x, y).

Substituting the above equation into (3.1), we have,

Ktf(x)(1 +O(t2−2/α)) = ct−d/βεd/2Hεf(t, x, y),

= ct−d/β−d/2(2−2/α)Ht2−2/αf(x)

= ct−d(1+1/β−1/α)Ht2−2/αf(x)

= cHt2−2/αf(x). (3.3)

Since Kt1 = 1 for all t one can show that c = 1/m0. From the asymptotic expansion in (3.2), we
obtain,

Ktf(x)(1 +O(t2−2/α)) = f(x) + t2−2/α m2

2m0
(ω(x)f(x)−∆f(x)) +O(t2(2−2/α)).

This means,

f(x)−Ktf(x)

t
= O(t1−2/α) (3.4)

which diverges as t → 0 for α < 2. In other words, we cannot access the generator of Kt for
α < 2 using the kernel h. When α = 2, Ktf(x)(1 +O(t)) = et∆ (see e.g. [27]). In this case, (3.3)
implies that the integral operator Ht approximates the semigroup of Laplace-Beltrami operator.
The associated generator can be obtained using an appropriate algebraic manipulation. That is,
we recover the standard diffusion maps algorithm (following [17] we assume m2/m0 = 2 which is
equivalent to C1 = C2 = 1/4),

f(x)− (Ht1(x))−1Htf(x)

t
= ∆f(x) +O(t).

Note that dividing by Ht1(x) cancels the constant c and also removes the ω(x) term (see Section
4.2 for details). However we should note that the expansion in (3.2) holds only in the interior of a
manifold with boundary or for functions f satisfying Neumann boundary conditions [17].

If we follow the same algebraic manipulation for the case of 1+1/d < α < 2, we obtain a rescaled
Laplacian,

f(x)− (Ht2−2/α1(x))−1Ht2−2/αf(x)

t
= t1−2/α∆f(x) +O(t2(2−2/α)−1). (3.5)

where 1−d
1+d < 1 − 2/α < 0 and the higher order term is 1−3d

1+d < 2(2 − 2/α) − 1 < 1) so as t → 0
the term on the right goes to infinity when α 6= 2. This is due to the fact that the walk dimension
of any Riemannian manifold is β = 2 [22] (notice that β = 2 when α = 2) and when β 6= 2 we
do not obtain a semi-group on the manifold. We should note that for real-valued functions, f , the
time-rescaled Laplacian in (3.5) is associated with the Fokker-Planck-Kolmogorov type operator
[23] associated to stochastic differential equations driven by driftless constant coefficient fractional
Brownian motions (fBM) with Hurst parameter 1− 1

1+1/d < H ≤ 1/2; see e.g., Theorem 4.1 of Itô

formula for fBM [8] with arbitrary Hurst parameter 0 < H < 1.
Furthermore, for finite t we can still obtain an estimation of the intrinsic Laplacian (up to scalar

multiple depending on t) on the manifold using any value of α. In particular, if we divide by ε
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rather than t (as in the diffusion maps algorithm) we find

f(x)− (Ht2−2/α1(x))−1Ht2−2/αf(x)

ε
=
f(x)− (Ht2−2/α1(x))−1Ht2−2/αf(x)

t2−2/α

= ∆f(x) +O(t1−2/α) = ∆f(x) +O
(ε
t

)
.

We demonstrate this surprising result numerically in Section 5 where the spectrum estimated by
the diffusion maps algorithm will be independent of the choice of α for local kernels.

This result has important implications for potential generalizations to non-smooth metric-measure
spaces where the walk dimension will typically be unknown. It suggests that we can use an α-local
kernel with any value of 1 + 1/d < α ≤ 2 to approximate the intrinsic Laplacian operator up to
a scalar multiple. In particular, if this fact holds beyond the context of manifolds it would allow
estimation of the intrinsic Laplacian without needing to know the walk dimension of the space.

3.2. Nonlocal kernels. The goal of this section is to consider a class of nonlocal kernel functions
on the embedding space Rn that gives rise to a semi-group which is an infinitesimal generator of a
nonlocal process on the manifold. The class of kernels will be called nonlocal kernels.

Definition 3.5 (nonlocal kernels). The kernel k : [0,∞) ×M×M → [0,∞) in Definition 2.3 is
called nonlocal if Φ is given by

Φ(s) = (1 + s)−(d+β).

The kernel in Definition 3.5 is associated with stable-like processes [16]. In particular when
β ∈ (0, 2) the heat kernel of the β-stable processes in Rd is included here. Notice that the generator

of the β-stable process is given by the fractional Laplacian L = (−∆)β/2. Moreover, the kernel
when β = 1 is given by

k(t, x, y) =
cd
td

(
1 +
|x− y|
t2

)− d+1
2

with cd = Γ

(
d+ 1

2

)
/π(d+1)/2,

which immediately fulfills (2.4).
In case of local kernels, as discussed in the previous section, we are able to construct a localization

argument which leads to approximation of geodesic distance dg by the Euclidean distance | · |.
However, this is no longer the case for nonlocal kernels as we do not have exponential decay at the
tails. As a result we are confronted with a problem of estimation of the geodesic distance dg using
data sampled from the manifold, which is the same problem that motivated the Isomap algorithm
[33, 9]. As in the Isomap algorithm, we will approximate the geodesic distance with the graph
distance which is accessible using data sampled on the manifold. Specifically, given a finite set of
data points {xi} inM and a graph G with vertices {xi}, we can approximate the geodesic distance,
dg, by the so-called graph distance given by

dG(x, y) := min
P

(|ι(x0)− ι(x1)|+ · · ·+ |ι(xp−1)− ι(xp)|)

where the minimum over all paths P can be computed using Dijkstra’s algorithm without prior
knowledge of the manifold M. Here x, y ∈ {xi} and P = (x0, . . . , xp) varies over all paths along
the edges of G connecting x = x0 to y = xp.

In the remaining of this section, we will use the error estimates of this approximation, which was
derived in [9], to determine the error bounds in approximating the nonlocal kernels from Defini-
tion 3.5 and their associated semigroup operators and generators. To give a complete discussion,
we state the following relevant definition.
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Definition 3.6 (minimum branch separation). Let r0 = r0(M) denotes the minimum radius of
curvature of M. Then the minimum branch separation s0 = s0(M) is defined to be the largest
positive number such that if |ι(x)− ι(y)| < s0 then dg(x, y) ≤ πr0, for x, y ∈M

We note that since M is assumed to be compact and C3 the curvature is bounded above so
r0 > 0 is well-defined, and similarly the minimum branch separation is well defined since ι is C3.
After these preparations we are are now ready to state the main result of [9, Main Theorem A].

Theorem 3.7. Let M be a compact manifold embedded in the Euclidean space Rn with minimum
radius of curvature r0 and minimum branch separation s0. Let {xi} be a finite set of data points
in M and they generate a graph G. Let 0 < ε1, ε2 < 1. Under the following assumptions

(a) Graph condition I. G contains all edges xy so that |ι(x)− ι(y)| ≤ 4
ε2
C(dg, {xi}) where

C(dg, {xi}) := maxx∈Mmin{xi} dg(xi, x).

(b) Graph condition II. The edges xy in G fulfills |ι(x)− ι(y)| ≤ (2/π)r0
√

24ε1 < s0.
(c) The manifold M is geodesically convex, i.e., any two points x, y ∈ M are connected by a

geodesic of length dg(x, y).

Then for all x, y ∈ {xi} we have:

(1− ε1)dg(x, y) ≤ dG(x, y) ≤ (1 + ε2)dg(x, y). (3.6)

Remark 3.8 (geodesically convex). In Rn convex domains are geodesically convex, so are compact
Riemannian manifolds without boundary. In general a compact Riemannian manifold is geodesi-
cally convex if and only if its boundary is convex.

Notice that by controlling the tolerances ε1, ε2 one can control how well dG approximates dg.
For simplicity of exposition, we let ε := min{ε1, ε2} in Theorem 3.7 and we obtain the following
estimate

|dG(x, y)− dg(x, y)| ≤ εdg(x, y). (3.7)

We further emphasize that the constant C(dg, {xi}) measures how well the points {xi} covers M
and Graph condition I implies that such a covering should be fine enough. The Graph condition I
when compared to condition II implies that the covering scale should be small enough in comparison
to the scales implied by radius of curvature and branch separation.

Next we will exploit the result of Theorem 3.7 to approximate the nonlocal kernels in Defini-
tion 3.5.

Theorem 3.9 (approximation of nonlocal kernel). Let the assumptions of Theorem 3.7 hold and
set 0 < ε := min{ε1, ε2} < 1. Then for every x, y ∈ {xi} and t > 0, there exists a sufficiently small
ε > 0 such that,

|k(t, x, y)− kG(t, x, y)| ≤ Cd,β dg(x, y)2

(
t
− (d+2)

β ε

)
+O

(
t
− (d+4)

β ε2

)
, .

where kG(t, x, y) := Cd,βt
−d/βΦ

(
dG(x,y)

t1/β

)
.

Proof. Let x, y ∈ {xi} then for a positive constant Cd,β we have

k(t, x, y)− kG(t, x, y) =
Cd,β

td/β

((
1 +

dg(x, y)

t1/β

)−(d+β)

−
(

1 +
dG(x, y)

t1/β

)−(d+β)
)
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From (3.7) we have that −εdg(x, y) ≤ dG(x, y)−dg(x, y) ≤ εdg(x, y) thus dG(x, y) ≤ (1 + ε)dg(x, y)

whence
(

1 +
(1+ε)dg(x,y)

t1/β

)−(d+β)
≤
(

1 + dG(x,y)

t1/β

)−(d+β)
. By denoting ζ(t, β) := 1 +

dg(x,y)

t1/β
, we

obtain,

|k(t, x, y)− kG(t, x, y)| ≤
Cd,β

td/β

∣∣∣∣∣ζ(t, β)−(d+β) −
(
ζ(t, β) + ε

dg(x, y)

t1/β

)−(d+β)
∣∣∣∣∣

= Cd,β t
− d
β ζ(t, β)−(d+β)

∣∣∣∣∣1−
(

1 + ε ζ(t, β)
dg(x, y)

t1/β

)−(d+β)
∣∣∣∣∣ . (3.8)

For a sufficiently small ε, we can expand

1−
(

1 + εζ̃(t, β)
)−(d+β)

= εζ̃(t, β) +O
(
ε2ζ̃(t, β)2

)
, (3.9)

where we have denoted ζ̃(t, β) := ζ(t, β)(ζ(t, β)−1). Since ζ(t, β)−(d+β) ≤ 1, the proof is completed
by substituting (3.9) into the absolute value term in the right hand side of (3.8). �

Recall that the semigroup Kt generated by the nonlocal kernel k is defined as

Ktf(x) =

∫
M
k(t, x, y)f(y) dvol, ∀x ∈M and f ∈ L2(M, dg).

We shall approximate Kt by

Kt,Gf(x) = Q[kG(t, x, ·)f(·)], ∀x ∈ {xi}

where Q indicates a quadrature approximation of the integral in the definition of Kt. Next we shall
provide approximation error estimate between Kt and Kt,G.

Lemma 3.10 (semigroup estimate). Let the assumptions of Theorem 3.9 holds. Then for every
x ∈ {xi} and t > 0 we have

|Ktf(x)−Kt,Gf(x)| ≤ |Quaderr(t)|+ Cd,β t
− (d+2)

β εQ
[
dg(x, ·)2|f(·)|

]
+O

(
t
− (d+4)

β ε2

)
,

where

Quaderr(t) :=

∫
M
k(t, x, y)f(y) dvol−Q[k(t, x, ·)f(·)]. (3.10)

Proof. From the definition of K and KG we obtain that

Ktf(x)−Kt,Gf(x) =

∫
M
k(t, x, y)f(y) dvol−Q[kG(t, x, ·)f(·)]

= Quaderr(t) +Q[(k(t, x, ·)− kG(t, x, ·)) f(·)]

where Quaderr(t) denotes the quadrature error (3.10). Using the error estimate in Theorem 3.9 we
then arrive at

|Ktf(x)−Kt,Gf(x)| ≤ |Quaderr(t)|+ Cd,β

(
t
− (d+2)

β ε

)
Q
[
dg(x, ·)2|f(·)|

]
+O

(
t
− (d+4)

β ε2

)
and the proof is complete. �

We conclude this section with an error estimate for the generator.
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Theorem 3.11. Let the assumptions of Lemma 3.10 holds. Then for every x ∈ {xi}, we have

lim
t→0

f(x)−Kt,Gf(x)

t
= (−∆)β/2f(x)

where (−∆)β/2 is a generator of Kt, provided t−1 Quaderr(t) converges to 0 as t→ 0.

Proof. Consider the limit

lim
t→0

f(x)−Kt,Gf(x)

t
= lim

t→0

f(x)−Ktf(x)

t
+ lim
t→0

Ktf(x)−Kt,Gf(x)

t

= (−∆)β/2f(x) + lim
t→0

Ktf(x)−Kt,Gf(x)

t

where we have denoted the generator of Kt by (−∆)β/2. It then remains to show that,

lim
t→0

Ktf(x)−Kt,Gf(x)

t
= 0.

Using Lemma 3.10 we deduce that

|Ktf(x)−Kt,Gf(x)|
t

≤ t−1 |Quaderr(t)|+ Cd,βt
− (d+2)

β
−1
ε,

Choose ε > 0 such that limt→0 t
− (d+2)

β
−1
ε = 0. Then the result follows after using the assumption

limt→0 t
−1 |Quaderr(t)| = 0. �

The quadrature error depends on how the data points are generated, and will typically decay
as the number of data points increases and diverge as t → 0 for a fixed number of data points.
Thus, insuring the condition t−1 Quaderr(t) converges to 0 as t→ 0 will require assuming that the
number of data points N grows sufficiently fast as t → 0. We will discuss this issue more in the
next section.

4. Application to diffusion maps allowing for non-local kernels

In this section we revisit the diffusion maps algorithm and show how it must be modified to
allow for non-local kernels. In particular, the diffusion maps algorithm is designed to remove the
influence of the sampling density on the Monte-Carlo quadrature, and this step must be modified
for non-local kernels. Moreover, non-local kernels require application of the Dijkstra algorithm to
compute graph distances which approximate geodesic distances on the manifold.

4.1. Compensating for non-uniform sampling of data (right normalization). At this point
we should explain that for data applications one typically assumes only that each data point is
sampled from a distribution having a smooth density function q : M → (0,∞) where q is the
density relative to the natural volume form on the manifold dvol. Since the data points are the
only information we have about the manifold, the only quadrature rule that we have access to is
the Monte-Carlo quadrature which says that

lim
N→∞

1

N

N∑
j=1

f(xj) = E[f(X)] =

∫
y∈M

f(y)q(y) dvol.

So given a kernel function k we can estimate the kernel integral operator by

lim
N→∞

Q[k(t, x, ·)f(·)] = lim
N→∞

1

N

N∑
j=1

k(t, x, xj)f(xj) =

∫
y∈M

k(t, x, y)f(y)q(y) dvol = et(−∆)β/2(fq)(x),
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where the last equality holds for nonlocal kernels k for 0 < β < 2 as well as the local (Gaussian)
kernel with β = 2. The fact that the sampling density, q, changes the operator as shown above was
observed in the original diffusion maps paper [17] and they introduced a method to correct this
by pre-dividing by a kernel density estimate. Namely, let J(t, x, y) be any smooth kernel function
which decays exponentially in |x − y| (such as a standard Gaussian kernel), then we can use J to
estimate the density q(xi) since

lim
N→∞

1

N

N∑
j=1

J(τ, xi, xj) =

∫
y∈M

J(τ, xi, y)q(y) dvol ∝ q(xi) +O(τ)

where the proportionality constant is due to the integral of the kernel J . Thus, setting q̂(xi) =
1
N

∑N
j=1 J(t, xi, xj), we can pre-divide by the estimate to fix our quadrature rule

lim
N→∞

1

N

N∑
j=1

k(t, x, xj)

q̂(xj)
f(xj) ∝

∫
y∈M

k(t, x, y)f(y)
q(y)

q(y) +O(τ)
dvol

and as long as τ � miny q(y) then q(y)
q(y)+O(τ) ≈ 1 and we will have a good estimate of the desired

integral. A detailed analysis of the quadrature error can be found in [29, 10], which compute the
expected squared error between the quadrature formula and the integral, which is found to be
O(N−1ε−1−d/2) where d is the dimension of the manifold. Notice that since the quadrature error
diverges as ε→ 0, one finds that the optimal ε value is a function of the amount of data, N .

Often we only want to evaluate the kernel on the data points, so we compute the kernel matrix
Kij = k(t, xi, xj). In this case, pre-dividing by the density estimate corresponds to right multipli-

cation by the inverse of a diagonal matrix Dii =
∑N

j=1 J(t, xi, xj). In fact, in the original diffusion
maps algorithm, the kernel matrix k had exponential decay, so they actually set J = k and in this
case the normalized kernel matrix KD−1 is simply dividing each column by the column sum (K is
symmetric). However, since polynomial kernels do not give density estimators with the same error
as exponential kernels, we will always set J to be a standard Gaussian kernel. The matrix KD−1

is called the ‘right-normalized’ kernel and is an estimator of the heat kernel in the sense that if

f is a smooth function defined on the manifold, then we can discretize f as ~fi = f(xi) and the

matrix-vector product
(
KD−1 ~f

)
i

is a pointwise estimator of the operator et(−∆)β/2f(xi) (up to a

constant which may depend on t).

4.2. Removing proportionality constants and low order error terms (left normaliza-
tion). As we have seen above, the choice of kernel function and the normalizations to remove
sampling bias can introduce many constants of proportionality. In this section we motivate the
‘left normalization’ as a method of removing the influence of these unknown constants. It turns
out (as first shown in [17]), that this normalization removes certain types of error terms. Recall
that the heat semigroup was assumed to be stochastically complete, namely Kt1(x) = 1 for all t.
The discrete version of this property is that the matrix which approximates the operator should
be row stochastic (each row should sum to 1). Notice that even if the appropriate constants in the
expansion of Kt were used in constructing the discrete version, due to the higher order error terms
the resulting matrix would not be exactly row stochastic.

To motivate this normalization, assume that for a kernel function k we have∫
M
k(t, x, y)f(y) dvol = c(x)taKtf(x)(1 + tb1ω(x) +O(tb2))
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for some a ∈ R and b2 ≥ b1 > 0. Since Kt1 = 1, plugging f(x) = 1 into the above equation we have∫
M k(t, x, y) dvol = c(x)ta(1 + tb1ω(x) +O(tb2)) so∫

y∈M k(t, x, y)f(y) dvol∫
y∈M k(t, x, y) dvol

=
Ktf(x)(1 + tb1ω(x) +O(tb2))

(1 + tb1ω(x) +O(tb2))
= Ktf(x)(1 +O(tb2)).

Notice that order-tb2 terms do not necessarily cancel since they could depend on derivatives of f ,
the cancellation of the tb1 term is only valid since the function ω(x) is assumed to be fixed and
independent of f .

The final step in the standard diffusion maps algorithm is motivated by the above computation,
and estimates the normalized heat kernel (thus removing any proportionality constants appearing
in the kernel or constants arising from the right normalization). Since KD−1 is an estimator of
the heat kernel, we can estimate applying the kernel to the identity function by computing the row
sums D̂ii =

∑N
j=1

(
KD−1

)
ij

. The diagonal matrix D̂ii containing the row sums is then used to

divide each row by the row sum, forming the ‘left normalized’ kernel matrix D̂−1KD−1. This is
the matrix we would like to compute the eigenvalues and eigenvectors of, however it is clearly not
symmetric, so in the next section we discuss a numerical scheme which converts this to a symmetric
eigenproblem.

4.3. Numerical dichotomy in the diffusion maps algorithm. Given data {ι(xi)}Ni=1 ⊂ ι(M) ⊂
Rn (where xi ∈M are sampled on the manifold but only their embedded coordinates ι(xi) are avail-
able as a data set) the first step of the algorithm will always be to compute the matrix of pairwise
distances dij = |ι(xi) − ι(xj)|. We should note that in fact the algorithm will only require the
distances to the κ-nearest neighbors of each point, however determining an appropriate neigh-
bor parameter κ will depend on the bandwidth chosen (with bandwidth parameter ε), and so for
simplicity we will simply consider computing all of the pairwise distances.

Next we need to choose a bandwidth ε which will have ‘units’ of ‘distance-squared’, since we will
ultimately apply our kernel function Φ to the ratio d√

ε
. In this paper we will consider a large range

of bandwidth parameters to demonstrate how different kernel functions respond to the bandwidth.
For more information on tuning the bandwidth we refer the reader to [11]. We only mention that
a good heuristic is to take the average of squared distances from each point to its κ-th nearest
neighbor where κ is typically on the order of logN .

We now enter into the dichotomy, in the first case (local kernels) we can use the standard diffusion
maps algorithm [17] (described below). However, in the second case (nonlocal kernels) we will need
to first apply Dijkstra’s algorithm to estimate the geodesic distances, and we will also need to
modify the normalization procedure used in diffusion maps.

In the first case of the dichotomy we consider an α-local kernel such as Φ(s) = e−s
α
. In this case,

because the kernel has fast decay and localizes the distances, we can directly apply the kernel to

the matrix of pairwise distances to form the kernel matrix Kij = Φ
(
dij√
ε

)
. Here we are implicitly

choosing
√
ε = t1−1/α = t1/β so we can define t = εβ/2 (recall that β = α

α−1). Next, we apply

the ‘right normalization’, defining a diagonal matrix Dii =
∑N

j=1Kij and the normalized kernel

matrix K̃ = D−1KD−1. Notice that instead of only dividing the columns by the column sums (as
described in the previous section) we divide both the rows and columns by the column sums. This

is to maintain the symmetry of the matrix K̃, and one can easily see that the left multiplication
by D−1 will be cancelled out in the ‘left normalization’ step.

The next step is the ‘left normalization’, where we define a diagonal matrix D̃ii =
∑N

j=1 K̃ij and

the final kernel matrix D̃−1K̃, however this would not yield a symmetric eigenproblem. (Notice
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that D̃ is not the same as D̂, but one can show that D̃−1K̃ is the same as D̂−1KD−1 from the
previous section). Instead of solving the eigenproblem D̃−1K̃v = λv, we first multiply both sides by

D̃1/2 to write the problem as D̃−1/2K̃D̃−1/2D̃1/2v = λD̃1/2v. Then setting w = D̃1/2v, we see that
we can solve the symmetric eigenproblem for K̂ = D̃−1/2K̃D̃−1/2 to find the eigenvalues ηj and

eigenvectors ψj of the symmetric matrix K̂. Finally, to produce estimates of the eigenfunctions we

form the vectors ϕj = D̃−1/2ψj so that ϕj solves the original non-symmetric eigenvalue problem.
Alternatively one can use a generalized eigensolver, but we have found this approach to be more
numerically stable. Finally, the eigenvalues ηj estimate the eigenvalues of the semigroup e−t∆, so

to estimate the eigenvalues of ∆ we set λj =
− log(ηj)

t =
− log(ηj)

εβ/2
.

In the second case of the dichotomy, we consider a non-local kernel such as Φ(x) = (1 +s)−(d+β).
In this case, because the kernel does not have fast decay, we need to first estimate the geodesic
distances. Since we only have access to the data in the embedding space, we first compute the
Euclidean distances dij = |ι(xi) − ι(xj)|, however only the short Euclidean distances will be good
approximations of geodesic distances. However, based on the results in Section 3.2, we can ap-
proximate the geodesic distance by first building a weighted graph containing only edges between
points with Euclidean distance less than δ and then computing the graph (shortest path) distance
dG(ι(xi), ι(xj)) between all pairs of points using Dijkstra’s algorithm. Once we estimate the matrix
of graph distances Gij = dG(ι(xi), ι(xj)), then we can apply the kernel Φ to form the kernel matrix

Kij = Φ
(
Gij√
ε

)
. The algorithm then proceeds exactly as above, applying the two normalizations

and solving the symmetric eigenproblem. In this case, the eigenvalues ηj estimate the eigenvalues

of the semigroup et(−∆)β/2 , so to estimate the eigenvalues of (−∆)β/2 we define λj the same as

above namely, λj =
− log(ηj)

t =
− log(ηj)

εβ/2
.

5. Numerical examples

In this section we show some numerical results to verify the above theory and to compare the
different kernel functions. In particular we will be interested in the effect of the number of data
points, the bandwidth parameter t, and how the data points are distributed on the manifold. Tuning
the bandwidth t is a matter of balancing the bias error with the quadrature error. Specifically,

the bias error is the O(t2−2/α) term in Theorem 3.4, and the O(t
− d+2

β ε) term in Theorem 3.10,

notice that ε must depend on t so that limt→0 t
− d+2

β ε = 0 so the bias term is decreased by taking
t small. For randomly sampled data the variance/quadrature error is O(N−1t−1−d/2) as described
in Section 4.1 above, and the variance term is decreased by taking t large. As we will see below,
the quadrature error is significantly smaller when the data set is a uniform grid of points rather
than randomly sampled data points. Thus for a uniform grid of data points we will be able to
take t much smaller and obtain much lower error with very small data sets. Of course, uniform
grids are unlikely to occur in real data sets and so these results are intended only to demonstrate
and numerically validate the above theory. Results for the randomly sampled data are much more
indicative of what should be expected for most data sets.

Note that the diffusion map method produces eigenvectors ϕj such that the i-th entry is an
estimate of the true eigenfunction evaluated on the data set i-th data point, so (ϕj)i ≈ φj(xi).
Thus our standard measure of error will be the root mean squared error (RMSE) computed on the

data set as
(

1
N

∑N
i=1((ϕj)i − φ(xi))

2
)1/2

. To evaluate the eigenvalues we are most interested in

the power law associated to the growth of eigenvalues. Weyl’s law states that the eigenvalues of
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the Laplace-Beltrami operator have a power law growth λj ∝ jd/2 for j large. For the fractional

Laplacians the eigenvalues are simply raised to the power β/2 so we have λj ∝ jβd/4.
Below we consider three examples. First, we consider a unit circle where the spectral fractional

Laplacian is identical to the integral definition [1]. The second example is a unit sphere in R3

where the spectral fractional Laplacian can be closely represented in an integral form [2]. In these
two cases, we can use the spectral definition to verify the accuracy of the estimated eigenfunctions.
Finally, we consider the closed and bounded unit interval for which the spectral fractional Laplacian
is different from the integral definition. In this case, we will numerically verify that our fractional
diffusion maps implemented with the non-local kernels yields estimates that are close to the regional
fractional Laplacian.

5.1. Example 1: Circle. In this section we first verify the above theory numerically by applying
the two different approaches from the dichotomy to reconstruction various fractional Laplacians
on the unit circle. We then compare the exponential and polynomial kernels over a range of
different methods of sampling data points from the unit circle. For all β, the eigenfunctions of
(−∆)β/2 are the Fourier functions, φ1 = 1, and φ2j(θ) = sin jθ, φ2j+1(θ) = cos jθ defined in the
intrinsic coordinate θ ∈ [0, 2π) on the unit circle and the associated eigenvalues are λ1 = 0 and
λ2j = λ2j+1 = jβ. Notice that the repeated eigenvalue is due to the rotational symmetry, and
the fact that each eigenspace is two dimensional means that a numerical eigensolver will find two
linear combinations of sin jθ and cos jθ. Thus, in order to compute the error in the estimated
eigenfunctions, we first estimate the best linear transformation (a 2-by-2 matrix) which maps each
pair of estimated eigenfunctions to the true eigenfunctions.
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Figure 1. Laplacian eigenfunction reconstructions for a uniform grid of points
sampled from the unit circle in the plane using various values of β = 2s using
exponential (red) and polynomial (blue) kernels. Left: For ε = 2−12 eigenspectra
λi show good agreement with the appropriate power laws (black dashed curves are,

j2, j3/2, j1, j1/2). Right: Average RMSE of eigenfunctions compared to the true
Fourier functions as a function of the bandwidth ε.

In order to verify the above theory, we first consider a grid of points uniformly spaced on the unit
circle. For N = 500 we generated an equally spaced grid of θi = 2πi/N for i = 1, ..., N and then
mapped these points onto the unit circle with the standard embedding xi = (cos(θi), sin(θi))

>. As
mentioned above, the uniform grid yields a very low quadrature error and so the optimal choice of
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bandwidth ε was very small, on the order of 10−4 as shown in Fig. 1(right). A surprising result
for this data set was that the standard Gaussian kernel, β = 2s = 2, was the least robust with
respect to ε. Since the manifold is one-dimensional, Weyl’s law for the Laplace-Beltrami operator
gives eigenvalues λj ∝ j2. Notice that since β/2 = 1, 5/4, 3/2 are all local kernels, the generator

of each of these kernels is the Laplace-Beltrami operator (since we divide by εβ/2 as described in
Section 3.1). Thus, all of the spectra estimated from exponential kernels (red color in Fig. 1) have
the same power law growth, namely j2. We note that the error in the estimates of the eigenvalue
grows as the eigenvalues increase, which explains the deviations from the power law for the largest
eigenvalues; as the amount of data is increased and the bandwidth is decreased these eigenvalues
would become more accurate and approach the power law. On the other hand, the power-law kernel
(blue color in Fig. 1)) produces spectra power close to their corresponding β/2 = 1/4, 1/2, 3/4.
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Figure 2. Laplacian eigenfunction reconstructions for a non-uniform grid of
points (top row) and for a uniformly random sample (bottom row) of points
on the unit circle in the plane using various values of s using exponential (red) and
polynomial (blue) kernels. Left: Spectra (as in Fig. 1). Middle: Average RMSE of
eigenfunctions as a function of the bandwidth ε. Right: Number of eigenfunctions
with RMSE less than 0.2 (top) and 0.4 (bottom) as a function of the bandwidth ε.
Note that the polynomial kernel has a more consistent performance over a larger
range of bandwidths, but the exponential kernel has the best performance with an
optimally tuned bandwidth.

Next we consider a non-uniform grid of points by applying the nonlinear mapping θ̃i = θi −
sin(θi)/2 and then defining the data set xi = (cos θ̃i, sin θ̃i)

>. We say this is a ‘grid’ since the
points are not pseudo-random, but it is non-uniform in the sense that the grid spacing is non-
uniform. The results for this data set are shown in the top row of Fig. 2. For this dataset the
errors in many of the eigenfunctions increase significantly, however the eigenfunctions associated
to small eigenvalues are still reasonably well estimated (see Fig. 3). To give a better measure of
performance, we also plot the number of eigenfunctions that have RMSE less than 0.2 in Fig. 2(top,
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right). As in the previous example, the results of the polynomial kernels was more robust to the
choice of bandwidth than the exponential kernels. However, in this example the performance of the
exponential kernel (particularly with β = 2) was significantly better than the polynomial kernels
when the bandwidth is optimally tuned for each kernel. This is not surprising since the fractional
Laplacian in this setting (that takes L2 functions defined on flat and periodic domain) is exactly
the spectral fractional Laplacian as defined in Definition 2.5 where the Gaussian kernel is the heat
kernel of the semigroup of Laplacian.

Finally, in the bottom row of Fig. 2 we show the results for a pseudo-random data set θi = 2πri
where ri is a psuedo-random value sampled uniformly from [0, 1). Again, the polynomial kernels are
more robust to choice of bandwidth, but for the optimally tuned bandwidth the β = 2 kernel has
a pronounced advantage. In Fig. 3 we show that for the eigenfunctions associated to the smallest
eigenvalues the polynomial kernel actually has the smallest error (the error is often less than half
that of the exponential kernel). However, for non-uniform or pseudo-random data the exponential
kernel maintains a lower error for higher frequency eigenfunctions.
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Figure 3. Comparison of exponential (red) and polynomial (blue) kernels in terms
of eigenfunction RMSE with optimal bandwidth for each kernel. Left: For uniform
grid sampled form the unit circle performance of the two kernels is comparable when
well-tuned. Right: For a uniformly random sample of points on the unit circle, the
polynomial kernel has the best reconstruction for the low frequency eigenfunctions,
and the exponential kernel has the best reconstruction for the middle frequency
eigenfunctions.

5.2. Example 2: Sphere. The unit circle is a simple yet instructive test example to analyze since
it is one-dimensional and has no curvature, which means that reasonably accurate results can be
obtained with very small data sets. In this example we consider the sphere which is two-dimensional
and has non-zero curvature and thus will require much larger data sets. This is particularly prob-
lematic for the polynomial kernels because of our reliance on Dijkstra’s algorithm to compute graph
distances which approximate geodesic distances. Optimized methods for computing the graph dis-
tances between all pairs of points still have computational complexity which grows cubically with
the number of data points, which quickly becomes computationally infeasible. However, a nice
feature of the unit sphere in R3 is that the geodesic distance between points x, y on the manifold
can easily be computed as cos−1(ι(x) · ι(y)) (where ι(x), ι(y) ∈ R3 are the embedded data points).
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While this is obviously not a method which can be used for real data sets, it is helpful in this
context to verify the theoretical results above. Moreover, we expect that thorough error analysis
may reveal that, for a given t, only pairs of points with sufficiently small graph distances may need
to be computed, which could allow the computational complexity to be reduced below cubic growth
in the number of data points. In the examples below we will use Dijkstra’s algorithm to estimate
the geodesic distances except when using polynomial kernels with N = 10242 data points in the
bottom row of Fig. 5.

Another challenge of the sphere is generating a uniform or approximately uniform grid of data
points. To solve this problem we used a Matlab package called GridSphere written by the authors
of [32] which describes their method. We should note that this method produces an approximately
uniform grid, so for example, with N = 2562 data points, each point has 6 nearest neighbors whose
distances differ on the order of 10−4 (see Fig. 4 middle and right for the N = 2562 grid).
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Figure 4. The 10-th Laplacian eigenfunction, ϕ10(θ, φ), estimated for a nearly
uniform grid of points sampled from the unit sphere in R3 using s = 1 (exponential
kernel) with N = 40962 points (left) which is then subsampled to a nearly uniform
grid of N = 2562 points (middle, right). Sample points were generated using the
Matlab GridSphere package [32]. Eigenfunction is shown as a function of the polar
coordinates (θ, φ) ∈ [0, 2π)× [0, π) for the sphere (left,middle) and on the embedded
sphere (right).

Finally, finding the true Laplacian eigenfunctions on the sphere is non-trivial, so in order to
define a ‘truth’, we first generated an approximately uniform grid of N = 40962 data points, and
used the exponential kernel with β = 2 to estimate the eigenfunctions. Since the N = 2562 and
N = 10242 grids are subsets of the N = 40962 grid, we were able to decimate these eigenfunctions
to find their values on the subgrids. See Fig. 4 for the estimate of ϕ10 on the N = 40962 grid (left)
and the decimated estimate on the N = 2562 grid (middle). We used these estimates as our ‘truth’
for the eigenfunctions.

Next we apply the diffusion maps algorithm for the exponential (red) and polynomial (blue)
kernels with various values of β and various values of ε (see Fig. 5 first two rows N = 2562,
third row N = 10242). In Fig. 5 (top,left) we show the eigenvalues for N = 2562 have good
agreement with Weyl’s law; since the sphere is 2-dimensional the Laplacian eigenvalues grow like
λj ∝ jd/2 = j1. This power law was observed for β ≥ 2 since all the exponential kernels recover
the Laplace-Beltrami operator, and for β < 2 we observe reasonable agreement with the theoretical
growth of λj ∝ jβ.

An additional challenge was the repeated eigenvalues due to the symmetry of the sphere leading to
multidimensional eigenspaces. We used the eigenvalues from the N = 40962 grid to detect repeated
eigenvalues (with a threshold of 10−6) and applied the same method as for the circle. Namely, for
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Figure 5. Laplacian eigenvalue/eigenfunction estimates (corresponding to the
smallest 500 eigenvalues) for a nearly uniform grid of N = 2562 points on the unit
sphere in R3 using various values of s using exponential (red) and polynomial (blue)

kernels. Top, left: Spectra compared to the power laws j, j3/4, j1/2, j1/4. Top, right:
Average RMSE of eigenfunctions as a function of the bandwidth ε. Second row, left:
Number of eigenfunctions with RMSE less than 0.1 as a function of the bandwidth
ε. Second row, right: Comparison of the RMSE as a function of eigenvector number
for s = 1/2 (blue) and s = 1 (red) with optimally tuned bandwidth. Bottom row,
same as second row but with N = 10242 data points.
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each group of eigenfunctions having the same eigenvalue we estimated the linear transformation
(a ` × ` matrix where ` is the dimension of the eigenspace) that optimally mapped the estimated
eigenfunctions onto the true eigenfunctions before computing the RMSE.

As with the circle, the best results were obtained with β = 2, however the β = 5/2 and β = 3
results were much closer to β = 2 on the sphere than on the circle. We expect that this is due to the

curvature on the sphere; namely, since the unit circle has zero curvature the kernel e−dg(x,y)2/t is
exactly the heat kernel (up to constants and rescaling time), whereas on a curved manifold the heat
kernel will be equal to this exponential multiplied by a polynomial with coefficients that depend on
the curvature and its derivatives. In other words, on a flat manifold (such as the circle) the β = 2
exponential kernel has fewer error terms than other values of β, but this does not hold for general
manifolds (such as the sphere). Finally we note that as N increases the difference advantage of
the exponential kernel in terms of optimal RMSE appears to decrease. However, the exponential
kernels maintain a significant computational advantage since they do not require one to estimate
the geodesic distance.

5.3. Flat manifold with boundary. So far our focus has been compact manifolds M without
boundaries. Recall that when the manifoldM is a flat torus or Rn, the spectral fractional Laplacian
given in Definition 2.5 is equivalent (up to constants) to the so-called integral fractional Laplacian
(see [1, Pg. 15]) defined for u ∈ C∞c (M) (i.e., u is compactly supported on M⊂ Rn) as

(−∆)sIu(x) = cn,s P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy (5.1)

for every x ∈ M. In the above equation, “P.V.” stands for the “Cauchy Principle Value”, i.e., we
understand (5.1) as

(−∆)sIu(x) = cn,s lim
ε↓0

∫
Rn\B(x,ε)

u(x)− u(y)

|x− y|n+2s
dy.

Here cn,s =
s22sΓ(n+2s

2 )
π
n
2 Γ(1−s)

is a normalization constant depending only on n and s, see [34, 6, 5].

The purpose of this section is to consider flat manifolds M with boundaries. Our main goal is
to understand whether the approximate generator in the nonlocal case is the spectral or integral
fractional Laplacian. As it was thoroughly discussed in [28] these two operators are completely
different in general. Before we embark on our journey we also recall that our data lies on the
manifold and not outside the manifold. Indeed using (5.1) we have that

(−∆)sIu(x) = cn,s P.V.

∫
M

u(x)− u(y)

|x− y|n+2s
dy + cn,s u(x)

∫
Rn\M

1

|x− y|n+2s
dy, (5.2)

where in the last integral we have used the fact that u is supported only onM. In other words, we
can only expect to recover the integral over M in (5.2) unless we consider points in Rn \M. We
shall illustrate with the help of a numerical example that the proposed fractional diffusion maps
algorithm estimates the integral over M in (5.2), which is also known as the regional fractional
Laplacian:

(−∆)sRu(x) = cn,s P.V.

∫
M

u(x)− u(y)

|x− y|n+2s
dy. (5.3)

Notice that (−∆)sI and (−∆)sR differ only by a potential term, nevertheless this term is difficult to
manipulate.

Next we provide a numerical example to support this claim. We consider the following configu-
ration: M = [0, 1] with boundary at 0 and 1. Moreover, we set u(x) = x2 and s = 1

2 . Using the
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definition of P.V. according to (5.3) we arrive at

(−∆)sRu(x) = cn,s lim
ε↓0

∫
(0,1)\(x−ε,x+ε)

u(x)− u(y)

|x− y|n+2s
dy = cn,s lim

ε↓0

∫
(0,1)\(x−ε,x+ε)

x+ y

x− y
dy

where in the last step we have used the definition of u in conjunction with the facts that n = 1 and
s = 1

2 . Whence

(−∆)sRu(x) = cn,s lim
ε↓0

(−2x log(y − x)− y) |(0,1)\(x−ε,x+ε) = cn,s

(
−1 + 2x log

(
x

1− x

))
(5.4)

where the last equality follows after basic algebraic manipulations.
We note that local kernels can only approximate eigenfunctions φk of the Neumann-Laplacian

on M = [0, 1], which are φk(x) = cos(πkx) with eigenvalues λk = π2k2. In order to obtain
the ground truth for (−∆)sSu, we compute the spectral fractional Laplacian using these analytic
eigenfunctions instead of using the diffusion maps estimated eigenfunctions. That is, we compute
(−∆)sSu =

∑M
k=1 λ

s
kûkφk(x) with ûk = 〈u, φk〉 /||φk||2, where the inner product involves integral

of functions u(x) = x2 and the analytic φk(x) that can be done explicitly. Numerically, we found
nearly identical results using various M = 500, 1000, 2000.
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Figure 6. LetM = [0, 1] with boundary at 0 and 1. We let n = 1, u(x) = x2, and
s = 1

2 . In the above panel we compare the application of spectral fractional Laplacian
(cf. Definition 2.5) and regional fractional Laplacian (cf. (5.3)) onto u(x). We
observe that with our approach we are recovering the regional fractional Laplacian.
We emphasize that boundary behavior of our dichotomy approach is part of the
future work.

In Figure 6, the estimation of the spectral fractional Laplacian (−∆)sSu with analytic eigenfunc-
tions and the explicit solution of the regional fractional Laplacian, (−∆)sRu in (5.4) are compared
to the results of applying the fractional diffusion maps algorithm with a polynomial kernel. In
this figure, we have normalized the minimum of all the functions to −1 to cancel the effect of
multiplicative constants. Notice that the numerical estimate obtained from the non-local heat ker-
nel are much closer to the regional fractional Laplacian. This result leads us to hypothesize that
polynomial kernels are estimating the regional fractional Laplacian which is inaccessible using local
kernels. While this result is encouraging, it stimulates a more thorough investigation for improving
the approximation, especially near the boundaries, which is beyond the scope of the current paper.
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6. Conclusion and future work

The geometric understanding of certain kernel based algorithms advanced by diffusion maps has
given a valuable new perspective on what these algorithms are constructing and how to use it to
understand the underlying data. For example, by interpreting the kernel eigenfunctions as eigen-
functions of the intrinsic Laplacian operator on a manifold, we can use the associated eigenvalues
to enforce regularity restrictions or Sobolev norm regularity conditions on interpolation problems.
However, diffusion maps (and generalizations [12]) is restricted to kernels with exponential decay,
whereas kernel methods used in statistical learning theory allow more general kernels. The frac-
tional diffusion maps approach extends the geometric understanding of data to a much larger class
of kernels (including the well-known polynomial kernels). At the same time, the fractional diffusion
maps algorithm offers a new way to estimate certain fractional Laplacian operators on manifolds.

Many directions of future work remain open. For many data sets (such as data generated by a
chaotic dynamical system) the assumption of an underlying manifold may be unrealistic, whereas
a metric measure space would be a much less stringent assumption. The parallel between the di-
chotomies in the heat kernel and the associated fractional diffusion maps algorithm suggests that a
generalization to a larger class of metric measure spaces may be possible. Another important direc-
tion for future work would be the generalization to manifolds with boundary and other boundary
conditions, possibly using the distance to boundary estimator introduced in [13]. This general-
ization may make fractional diffusion maps a reasonable method for solving equations involving
fractional Laplacians on domains that are difficult to mesh, generalizing the local kernels to solve
elliptic PDE’s on smooth manifolds as proposed in [18]. Generalizing to allow anisotropic kernels
as in [12] may provide access to geometries that are not inherited from the embedding, and vari-
able bandwidth kernels [10] may allow for data sampled from non-compact manifolds with finite
volume. Finally, a more careful treatment of the error bounds for the non-local kernel may allow
more efficient algorithms which do not have to compute all of the pairwise graph distances (since
sufficiently long distances will still have a small contribution for fixed t).
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Appendix A. Proofs of technical lemmas

A.1. Proof of Lemma 2.1.

Proof. If we let s be the exponential coordinates for y centered at x so that y = expx(s) then we can
Taylor expand ι(expx(s)) around s = 0. We first note that since expx(0) = x and D expx(0) = Id×d
we have

Dsι(expx(s))|0 = Dι(expx(s))D expx(s)|0 = Dι(expx(0))D expx(0) = Dι(x).
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Next, since D2 expx(0) = 0 we have

D2
sι(expx(s))

∣∣
0

= D expx(s)>H(ι)(expx(s))D expx(s) +Dι(expx(s))D2 expx(s)
∣∣∣
0

= H(ι)(x).

Together these equalities give the Taylor expansion

ι(y) = ι(expx(s)) = ι(x) +Dι(x)s+H(ι)(x)(s, s) +O(|s|3).

A key feature of this expansion is that the Hessian H(ι) of the embedding is orthogonal to the
tangent [27] space, so when computing the norm we have

|ι(y)− ι(x)|2 = |Dι(x)s+H(ι)(x)(s, s) +O(s3
i )|2 = |Dι(x)s|2 +O(|s|4)

where the only third order term is the cross term 〈Dι(x)s,H(ι)(x)(s, s)〉 = 0 by the orthogonality
mentioned above. Note that the term O(|s|4) assumes that the Hessian and the third derivative
of the embedding are bounded, so we require the manifold and embedding to be C3. Since ι is
isometric, the columns of Dι(x) are orthonormal, so |Dι(x)s| = |s| = dg(x, y) meaning

|ι(y)− ι(x)|α = dg(x, y)α +O(dg(x, y)α+2).

�

A.2. Proof of Lemma 3.2.

Proof. Since γ > 0, the radius of the ball |y| = t−γ is expanding and thus we are integrating over
the tail of an exponential, which decays faster than any polynomial in t for any γ. To see this we

first make the change of variables wi = y
α/2
i so that

|y|α =

(∑
i

y2
i

)α/42

=

(∑
i

w
4/α
i

)α/42

= |w|24/α

and since dy = 2
α

∏
iw

2/α−1
i dw we have∫
|y|>t−γ

e−c|y|
α
dy =

2

α

∫
|w|2/α

4/α
>t−γ

e
−c|w|2

4/α

∏
i

w
2/α−1
i dw

≤ 2

α

∫
c2|w|>t−γα/2

e−c1|w|
2
∏
i

w
2/α−1
i dw

for some c1, c2 > 0 where the last inequality follows by equivalence of norms we have a|w| < |w|4/α <
b|w|. Next we further expand the domain of integration to allow us to split up the integrals. Notice

that the cube with sides |wi| ≤ t−γα/2

c221/d
fits inside the ball of radius t−γα/2

c2
so we can extend the

integral to the outside of the cube and it will only get larger. Over this domain we can split up the
integral and the integrals are the same over each variable wi, so continuing the previous inequality



26 HARBIR ANTIL, TYRUS BERRY, AND JOHN HARLIM

we have

≤ 2

α

∫
c2|wi|>t−γα/2/21/d

∏
i

w
2/α−1
i e−c1w

2
i dw1, ..., dwd

=
2

α

(∫
c2|wi|>t−γα/2/21/d

w
2/α−1
i e−c1w

2
i dwi

)d

≤ 2

α

(∫
c2|wi|>t−γα/2/21/d

wie
−c1w2

i dwi

)d

=
2

α

(
1

2c1
e
− c1

22/dc22

t−γα
)d

= c3e
− c4
tγα (A.1)

for constants c3, c4 > 0, where the last inequality follows from the fact that α ≥ 1 so that 2/α−1 ≤ 1

and w
2/α−1
i ≤ wi for t sufficiently small so that wi > 1 on the domain of integration. Since γα > 0,

as t→ 0+ the final term goes to zero faster than any polynomial. �

A.3. Proof of Lemma 3.3.

Proof. Substituting the upper bound for α-local kernels we have the upper bound∣∣∣∣∣
∫
z∈M,|ι(z)−x|>t1−1/α−γ

t` e
−c

∣∣∣∣∣∣ x−ι(z)
t1−1/α

∣∣∣∣∣∣α
f(z) dvol

∣∣∣∣
≤ ||f ||Lp(M)t

`

(∫
z∈M,|ι(z)−x|>t1−1/α−γ

e
− cp
p−1

∣∣∣∣∣∣x−ι(z)
t1/α

∣∣∣∣∣∣α
dvol

) p−1
p

≤ ||f ||Lp(M)t
`

(∫
|y−x|>t1−1/α−γ

e
− cp
p−1

∣∣∣∣∣∣ x−y
t1/α

∣∣∣∣∣∣α
dy

) p−1
p

= ||f ||Lp(M)t
`

(∫
|w|>t−γ

e
− cp
p−1
|w|α

td(1−1/α)dw

) p−1
p

≤ ||f ||Lp(M)t
`+

(p−1)d(1−1/α)
p

(∫
|w|>t−γ

e
− cp
p−1
|w|α

dw

) p−1
p

where we applied Hölder’s inequality and then extend the integral to all of y ∈ Rn outside the ball
of radius t−γ . We then set w = y−x

t1−1/α so that dw = td(1/α−1)dw. Since α > 1 the result follows
from Lemma 3.2. �
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