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The Cox  method  can  be used  to estimate  connectivity  in  networks  of neurons.
We evaluate  sensitivity  and  specificity  of  the  method  for  general  computational  neural  models.
A  variation  of  the  method  is developed  to  track  significant  changes  in  network  connectivity.
The method  is  demonstrated  on  a network  of  cultured  mammalian  spinal  cord  cells  with  MEA  measurements.
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a  b  s  t  r  a  c  t

We  develop  a method  from  semiparametric  statistics  (Cox,  1972)  for  the  purpose  of  tracking  links  and
connection  strengths  over  time  in  a neuronal  network  from  spike  train  data.  We  consider  application
of  the  method  as implemented  in  Masud  and  Borisyuk  (2011),  and  evaluate  its  use  on data  generated
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independently  of  the Cox  model  hypothesis,  in  particular  from  a spiking  model  of  Izhikevich  in four
different  dynamical  regimes.  Then,  we  show  how  the  Cox  method  can  be used  to  determine  statistically
significant  changes  in  network  connectivity  over  time.  Our  methodology  is  demonstrated  using  spike
trains  from  multi-electrode  array  measurements  of  networks  of  cultured  mammalian  spinal  cord  cells.

© 2012 Elsevier B.V. All rights reserved.
icroelectrode arrays

. Introduction

Studying the dynamics of a neuronal network in the laboratory
equires a reliable method for determining network topology and
onnection strengths. Ideally, such a method would use readily
vailable data types, such as spike train recordings. The method
hould be robust across various neuron models and heterogeneity
f neurons and connection modalities. Because we wish to mea-
ure changes on the finest possible time scale, the method should
e very sensitive with low data requirements. Finally, the method
hould have high specificity, meaning it should not return many
alse positives.

Methods for detecting network links from complex time series
ave been the focus of several recent studies. The analysis of inter-
ctions between nonlinear processes was pursued in Dahlhaus
t al. (1997) and Rosenblum and Pikovsky (2001),  and ideas from
ompressed sensing were introduced in Napoletani and Sauer

2008). The concept of Granger causality (Granger, 1969) has been
xploited by calculating partial directed coherence in Sommerlade
t al. (2012).

∗ Corresponding author. Tel.: +1 7039531670.
E-mail address: npeixoto@gmu.edu (N. Peixoto).

165-0270/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jneumeth.2012.06.021
However, in many experimental situations, accurate record-
ing of time series may  be infeasible. When using spike sorting
from multi-electrode array (MEA) measurements, for example, the
series of spike times may represent the effective totality of avail-
able information. Methods for detecting dynamical influences from
spike trains begin with cross-correlation, which is limited to lin-
ear aspects of connectivity. Methods that involve higher moments,
including coherence, joint densities and cumulant spectra were
pursued in Brillinger (1975),  Aertsen and Gerstein (1985) and
Aertsen et al. (1989).  An information theory approach was pro-
posed in Garofalo et al. (2009).  Maximum likelihood methods for
neuronal interactions from spike trains (Chornoboy et al., 1988;
Okatan et al., 2005; Brillinger, 1992; Stevenson et al., 2008, 2009)
can more naturally take nonlinear effects into account.

Other researchers have developed methods for assessing simi-
larity and correlations in spike trains (Sacerdote et al., 2012; Lyttle
and Fellous, 2011). Interesting recent approaches for the inference
of functional connectivity between neurons in a network using non-
parametric statistics include Ostojic et al. (2009) and Eldawlatly
et al. (2008).
Masud and Borisyuk (2011) develop a hazard model for neu-
ronal interactions and apply the Cox method to find connections.
Hazard models comprise a class of survival models, in which the
quantity of interest, in this case the connection strength in a

dx.doi.org/10.1016/j.jneumeth.2012.06.021
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:npeixoto@gmu.edu
dx.doi.org/10.1016/j.jneumeth.2012.06.021
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etwork, is associated with the length of time before an event,
uch as a spike. In a proportional hazard model, the associ-
tion is assumed proportional. The Cox method (Cox, 1972;
orisyuk et al., 1985) is a semiparametric technique that
oes not require specification of a neuron model, but only

 model for interaction between neurons, and allows a sin-
le technique to handle mixed or unknown neuron models.
oreover, because the interaction between neurons is mod-

led as directional, the Cox method detects causality. Since the
ox method estimates the parameters for all possible sources
imultaneously for each target neuron, causality errors such
s common cause and transitive connections are dramatically
educed.

A key strength of the Cox method is that it provides an estimate
or the covariance matrix of the estimated parameters, which leads
o a statistical test for connectivity. This is of great importance, as

any tests for connectivity only give relative indicators of connec-
ivity, and an ad hoc cut-off level must be chosen. One important
ontribution that we make in this article is to carry out a verifica-
ion of the Cox method statistics and evaluation of sensitivity and
ata requirements of the test. We  make these analyses both within
he context of the proportional hazard model assumptions and for
ome more general neural models, which do not satisfy the hazard
odel assumptions.
A second goal of this article is to address the problem of network

onstationarity. Previous applications of the Cox method were
ocused on finding static network structure. For many purposes, it

ay  be even more important to study changes in the network con-
ectivity, for example when evaluating the effects of perturbing
he system electrically or pharmacologically. Static applications of
he Cox method cannot be compared statistically across time seg-

ents, due to lack of control on false negatives, a weakness that
s not well appreciated. To overcome this challenge, we introduce

 new statistical test within the Cox method framework that can
etect nonstationarity of network connections from multivariate
pike trains. Design of experiments on structure and function of
eural networks in general will be contingent on statistical tests of
tationarity, such as the one developed here.

In Section 2, we carry out testing in a general setting to ver-
fy that the specificity of the test is at least equal to the desired
onfidence level. In addition, we add implementation details that
ncrease the computational robustness of the method. We also
oint out that specificity only controls errors at the individual con-
ection level, whereas it is natural to apply the Cox method to find
ll the connections in a network. We  show that such repeated test-
ng requires adjusting the testing procedure carefully to control the
amilywise Error Rate (FWER).

The success of the Cox method will be determined by its robust-
ess to the assumptions of the hazard model. These assumptions
ay  not be satisfied in actual neuron interactions. In Section 3,
e investigate the performance of the method on model data
ith varying faithfulness to the underlying hazard model assump-

ions, to test its applicability to real data. In particular we  use the
zhikevich model, which exhibits a diverse collection of observed
euronal network behaviors, including bursting and chattering
odes, to produce a wide variety of spike trains, that are not

xplicitly connected to the hazard model assumption. Surprisingly,
e find that the method is very effective on data generated by

zhikevich neurons, which gives us confidence that it can work in
aboratory applications.

Finally, the real-world significance of the Cox method hinges
n its ability to detect changes in a network using spike trains.

etwork changes may  be structural, involving the creation or elim-

nation of connections, or changes may  occur in the strength of
onnections. In Section 4, we show how the Cox method can be
sed to detect these types of changes using data sets recorded from
 Methods 209 (2012) 388– 397 389

spontaneously active in vitro cultures taken from embryonic mice
and plated on micro-electrode arrays. Section 5 is a discussion of
results and future outlook.

2. Semiparametric statistics: the Cox method

The Cox method, as illustrated by Masud and Borisyuk (2011),
is a statistical test for determining connectivity in a neuronal net-
work. As a semiparametric test, it does not require models for
the individual neurons but does require a model for neuron inter-
actions, which is given by the proportional hazard model. When
spikes are generated in a manner consistent with this assumption,
the Cox method is a powerful test for direct connectivity. As we
will show in Section 3.2,  the Cox method can also be successfully
applied to complex models such as the Izhikevich model which are
designed to replicate observed neuronal network behaviors, and
whose consistency with the proportional hazard model assumption
is questionable.

For each target neuron the Cox method simultaneously esti-
mates a set of connection parameters ˇi that quantify the strength
of influence of the ith potential source neuron. In this section we
describe the model assumptions on the ˇi, and explain the pro-
cedure for maximum likelihood estimation of these parameters.
Essentially, the spike times of each neuron are assumed to follow
a renewal process, with the influence of the source neurons given
by the aforementioned proportional hazard model.

2.1. Proportional hazard model

To describe the model, let ϕA(t) be the intrinsic hazard function
for neuron A, denoting the expected spike rate at time t among all
interspike intervals X of the spike train of A of length t or more:

ϕA(t) = lim
�t→0

Pr(t ≤ X < t + �t|t ≤ X)
�t

,

where Pr denotes probability. This renewal process is modulated
with possible influence from the n neurons in the network by defin-
ing the modified hazard function

ϕ(t) = ϕA(UA(t)) exp

{
n∑

i=1

ˇiZBi
(t)

}
(1)

where UA(t) is the time since the previous spike of A, ˇi is the con-
nection strength parameter of neuron Bi to A, and ZBi

is an influence
function describing how Bi affects A.

The choice of ZB(t) corresponds to a model of neuron interac-
tions, and Masud and Borisyuk (2011) propose several possibilities,
the most general of which can be written

ZB(t) =
k∑

j=1

gm

�s − �r
(e−Uj

B
(t−�)/�s − e−Uj

B
(t−�)/�r ) (2)

where gm is a normalization constant, � corresponds to the prop-
agation delay time, �s and �r are the characteristic times of decay
and rise of postsynaptic potential, and Uj

B(t − �)  is the time of the
jth spike preceding time t − �.  These extra parameters can be esti-
mated before the analysis. Only the general shape of the influence
function is relevant to achieve good results. This is crucial because

the true influence function will not be known in laboratory appli-
cations.

The Cox method parameters  ̌ = {ˇi} are estimated simultane-
ously by maximizing the log likelihood L(ˇ) of the modified hazard
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unction (1).  Assuming n possible input neurons to the target and
 spike times, the log likelihood is

(ˇ) =
n∑

i=1

m∑
k=1

ˇiZBi
(tkk) −

m∑
k=1

log

(
m∑

l=k

exp
n∑

i=1

ˇiZBi
(tlk)

)
(3)

here tlk are a discrete set of times given by tlk = tl + ık where tl is
he left hand endpoint of the lth smallest interspike interval of the
arget neuron and ık is the length of the kth smallest interspike
nterval. Note that l is always greater than or equal to k so that
lk always lies inside the lth smallest interspike interval, and tkk
s simply the right hand end-point of the kth smallest interspike
nterval.

The maximum likelihood estimate ˆ̌ of  ̌ is found by maximizing
3). Multivariate Newton’s method is applied to solve for the zero
f the gradient ∇L(ˇ). We  found numerical stability to be greatly
nhanced in our application by applying a regularized Newton’s
teration. Let H(ˇk) be the Jacobian of the gradient, or Hessian, at
he kth iteration step. The formula for the Newton iteration is

k+1 = ˇk + H(ˇk)−1∇L(ˇk).

o regularize the iteration, we replace this with the iteration of
evenberg–Marquardt,

k+1 = ˇk + ((Hk)T Hk + � diag((Hk)T Hk))−1(Hk)T∇L(ˇk)

here Hk ≡ H(ˇk). The regularization parameter � is initialized to 1
nd is successively halved if there is improvement in convergence,
.e. || ∇ L(ˇk+1)|| < || ∇ L(ˇk)||, and doubled otherwise. The limit of
his iteration is the estimated connection vector ˆ̌ .

.2. Confidence intervals and multiple hypothesis testing

One important use of the estimates of the connection strength
ector  ̌ is to determine whether a link exists from the ith neuron to
he target neuron, i.e. whether ˇi /= 0 for a given i. The advantage of
he Cox method is that it is a statistical test. Namely, the inverse of
he Hessian, H( ˆ̌ )−1, provides an estimate of the covariance matrix
f the best estimate ˆ̌ .  Let hii be the ith diagonal entry of H( ˆ̌ )−1.
he standard confidence interval for ˆ̌

i with confidence level �0 is

ˆ̌
i − �(1−�0)/2

√
hii, ˆ̌

i + �(1−�0)/2

√
hii]

here �(1−�0)/2 is the (1 − �0)/2 quantile of the normal distribution.
hus if zero does not lie in the standard confidence interval for a
iven ˆ̌

i then we conclude that the ith spike train does influence
he target spike train.

This technique is equivalent to a 1-dimensional Wald test (see,
or example, Fox, 1997) of the null hypothesis H0,i : ˇi = 0. At this
oint we want to repeat this test for each potential source to deter-
ine which sources are affecting the target. However, the ˇi were

etermined collectively, not individually, so there may  be correla-
ions between these repeated tests. This is a subtle point, but due
o the power and convenience of the Cox method, we feel that it
s worth explaining carefully. One may  be tempted to use a higher
rder Wald test, however we will show that this is invalid for deter-
ining individual connections. Instead, the correct method is to

pply the 1-dimensional Wald test repeatedly but with a carefully
odified confidence level. This approach will control the Family-
ise Error Rate (FWER), which is the probability of one or more

alse positives.
First, consider the null hypothesis H0 :  ̌ = 0. It says that all of the
onnection strengths are zero, meaning that none of the source neu-
ons affects the target. It is valid to test this hypothesis by applying a
ulti-dimensional Wald test, computing ˆ̌ T H( ˆ̌ )−1 ˆ̌

 and compar-
ng to the Chi-squared statistic with confidence level � and with
 Methods 209 (2012) 388– 397

n degrees of freedom. However, rejecting H0 merely tells us that
not all connections are zero; it gives us no information about the
individual connections. In other words, this test would at most tell
us that some ˇi is nonzero, when in fact we are interested in which
specific one(s) are nonzero. While this may  be useful in some other
contexts, the power of the Cox method is in determining individual
connections.

The equation of the multidimensional Wald test, ˆ̌ T H( ˆ̌ )−1 ˆ̌
 <

	2
1−�,n, defines an ellipsoidal region in R

n and it is tempting, but
ultimately invalid, to attempt to use this ellipsoid region to draw
conclusions about individual sources. For example, Masud and
Borisyuk (2011) suggest projecting this region onto the coordinate
axes to test individual connections; however, there is no proper
statistical interpretation for such a procedure. Actually, we  will
show next that such a projection is equivalent to a modified confi-

dence interval where �(1−�0)/2 is replaced by
√

	2
(1−�,n). Without a

probabilistic justification for such a modification of the confidence
interval, such a procedure is unwarranted.

Let  ̇ be the covariance matrix of a mean zero n-dimensional
Gaussian. Then the n-dimensional confidence region is given by
the ellipsoid defined by xT ˙−1x < 	2

1−�,n where 	2
1−�,n is the Chi-

squared statistic for confidence level � with n degrees of freedom.
The following Lemma  shows that projecting this confidence region
onto the ith coordinate axis gives the interval

[−
√

	2
1−�,n

√
˙ii,

√
	2

1−�,n

√
˙ii]

where ˙ii is the ith diagonal element of the covariance matrix, the
variance of the ith variable.

Lemma. Consider the ellipsoid E = {x : xTAx = c2} where B = A−1 is

a symmetric positive definite matrix. Then max
x∈E

{xi} = c
√

bii and

min
x∈E

{xi} = −c
√

bii.

Proof. By relabeling the axes, we may  assume i = n. Let A = RTR
be the Cholesky factorization, where R is nonsingular and upper
triangular. Define y = Rx and x = Sy,  where S = R−1 is also upper tri-
angular so that so xn = snnyn. Thus xn is maximized when yn is
maximized. Moreover, since yTy = xTAx = c2, yn is maximized when
y = (0, 0, . . .,  0, c). Finally, note that B = A−1 = SST, which is the product
of an upper triangular matrix with a lower triangular matrix. This
implies bnn = s2

nn therefore max
x∈E

{xn} = snnc =
√

bnnc and similarly

min
x∈E

{xn} = −
√

bnnc. �

Lemma  shows that projecting the high-dimensional confidence
region onto a coordinate axis results in an arbitrary modification
of the confidence interval. Note that the higher order tests are
perfectly valid for testing joint hypotheses. However, we  are usu-
ally interested in testing the individual hypotheses separately. This
creates a problem when many individual hypotheses are tested:
corrections must be made for multiple hypothesis testing.

Assume for example that our network contains 10 neu-
rons so that, omitting self-connections, there are 90 potential
neuron–neuron connections. If there are 20 true connections and
we apply our test with 95% confidence per connection and correctly
identify all 20 connections, we  would expect on average one false
positive (5% of the 20 connections). Since our eventual goal is to
detect changes in a network, we will run the Cox method repeat-
edly on different time segments. If we have 100 time segments with

95% confidence per connection, then we can expect 100 false posi-
tives, which will significantly distort our results. Instead, we  would
like to implement the Cox test with a 95% confidence per network,
i.e. a 95% probability that no false positives exist in the network.
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hus it is important to use a modified confidence level to control
he Familywise Error Rate (Shaffer, 1995).

The Familywise Error Rate (FWER) is the probability of at least
ne false positive occurring in a set of tests. An easy method to
ontrol the FWER, which does not even require the tests to be inde-
endent, is the Bonferroni correction (Benjamini and Hochberg,
995), which corrects the error rate by dividing by the number of
ests. Note that the Bonferroni correction (unlike other methods of
ontrolling FWER) does not require the individual tests to be inde-
endent. If the desired FWER for a set of n tests is � , the individual
ests should be conducted at confidence level

0 = 1 − (1 − �)
n

.

or example, if we want a 95% confidence level per network, where
here are 90 candidate connections, then we  should test with a
9.94% confidence level per connection.  Fortunately, as we  see in
he next section, the Cox method is efficient enough to be able to

eet this goal with a reasonable amount of spike train data.

. Computational network models and results

In this section we will introduce two network models and eval-
ate the Cox method on each. The first model is a proportional
azard model, on which the Cox method is based. The second model

s a network of Izhikevich neurons, which is capable of replicat-
ng multiple realistic network behaviors. Note that there is no a
riori reason to expect the Izhikevich model to behave as a pro-
ortional hazard model, and it was chosen only because it gives
he best tradeoff of computational efficiency and realistic network
ehavior as found in experiments. Before introducing these models,
e first explain some considerations which apply to both.

Both of the computational models incorporate a matrix S rep-
esenting the graph of true direct connection strengths ˇij from
euron i to neuron j. In each simulation, to match the experimental
ata in the section to follow, we used randomly generated net-
orks of 10 neurons with 10 direct connections out of 90 possible

neurons could not connect to themselves). Connections can be
xcitatory or inhibitory with strengths that vary randomly around

 prescribed average strength.
Each simulation was assigned an average connection strength

nd minimum number of spikes. Given these assignments, we  ran-
omly chose 10 of the potential 90 connections and generated

 specific network that was assigned the prescribed connection
trength. The simulated network was run until each neuron spiked
he specified number of times. The spike trains were collected and
nalyzed by the Cox method, using only the prescribed number of
pikes per target. For each average connection strength and pre-
cribed number of spikes, the simulation was repeated 10 times
ith different randomly chosen connections.

We calculated the sensitivity and specificity of the two compu-
ational models, averaged over the 10 repeated realizations. The
ensitivity is the number of correctly identified direct connections
true positives) divided by the total number of direct connections
10 in our case). The specificity counts true negatives as a percent-
ge of all non-connections. The specificity should be the chosen
onfidence level: however, because the error distribution is only
symptotically normal, the Cox method is an asymptotic test. In the
imit as the number of spikes per target becomes large we expect
he specificity to approach the desired confidence level.

.1. Proportional hazard model
The proportional hazard model is the archetype of a semipara-
etric model, and is exactly the assumption of our application of

he Cox method. The spiking of each neuron is assumed to occur
 Methods 209 (2012) 388– 397 391

according to a renewal process, a generalization of the Poisson
process where the waiting time is uncertain. For a network of
n + 1 neurons, the model is made up of n + 1 renewal processes,
one for each target neuron, which are arbitrary but interact in a
prescribed manner. There are n2 + n parameters describing a direc-
tional strength of influence in the network.

Each renewal process has a hazard function, defined in terms of
the probability density function as

ϕ(t) = lim
�t→0

Pr(t ≤ X < t + �t|t ≤ X)
�t

(4)

where X is the inter-spike interval. The hazard function can be
written as in (1) and in the case of a neuronal network with n + 1
neurons, the hazard function takes the form,

ϕj(t) = ϕAj
(UAj

(t)) exp

⎧⎨
⎩

n+1∑
i=1,i /=  j

ˇijZBi
(t)

⎫⎬
⎭

where (ˇ1j, . . .,  ˇn+1,j) is the jth row of the connectivity matrix S. The
influence function ZBi

(t) was  of form (2) with parameters �S = 10,
�R = 0.1, and ı = 0.

This process was  simulated by taking a fine discretization of time
by �t  = 10−4 s, evaluating each hazard function at each time step
and assigning neuron spiking times according to the probability
given by formula (4).  Using the data from this simple simulation
we were able to accurately recover the weights ˇij using the Cox
method. This replicates the results of Masud and Borisyuk (2011),
however, we were additionally interested in confirming that the
correct statistics were achieved.

For each number of spikes per target, we repeated the simulation
10 times with randomly selected networks, each time produc-
ing 90 candidate connections. The results of the simulations are
shown in Fig. 1. Fig. 1(a) shows that correct identification of the
network connections increases with the number of spikes used,
and asymptotically converges to 100% sensitivity. Secondly, of the
90 candidate connections, the number of correctly identified non-
connections was  divided by the total number of non-connections.
This ratio is the specificity of the test, and should be at least the
confidence level. The specificity was  averaged across the 10 sim-
ulations at the 95% and 99% confidence levels and the results are
shown in Fig. 1(b) with error bars indicating standard error. The
results confirm that the test achieves the correct asymptotic statis-
tics at both levels with as few as 256 spikes; compare results to the
dotted lines indicating the specified confidence levels.

These results are as expected by construction of the Cox method
on the proportional hazard model. Next we  turn to a more repre-
sentative and realistic neuron model.

3.2. Izhikevich model

The Izhikevich model (Izhikevich, 2003, 2006) is a mathematical
model capable of generating a network of spiking neurons. It is able
to reproduce the general behavior of more biophysically accurate
Hodgkin–Huxley-type models, but it is simpler and thus more com-
putationally efficient. The Izhikevich model is defined by a system
of two  differential equations of the following form:

v̇ = 0.04v2 + 5v + 140 − u + I (5)
u̇ = a(bv − u)

where v represents the membrane potential of the neuron and u
represents a membrane recovery variable. Once a neuron spike
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Fig. 1. Sensitivity and specificity for proportional hazard model. (a) Sensitivity (number of correctly identified connections divided by number of connections) as a function
of  number of spikes per target neuron, plotted for 95% confidence (upper curve) and 99% confidence (lower curve). (b) Specificity (number of correctly identified non-
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onnections divided by number of non-connections) plotted for 95% confidence (l
onnection strengths E[ˇij] were similar, we averaged the results over the three c
resentation in the graph. Error bars denote standard error.

eaches a peak of +30 mV,  v and u are reset according to the fol-
owing protocol:

f v ≥ 30 mV then

{
c → v
u + d → u

. (6)

The Izhikevich model dynamics varies with the settings of the
our parameters, a setting the time scale of the recovery variable
, b describing the sensitivity of u to the subthreshold fluctuations
f v, and c, d respectively determining the reset value of the volt-
ge v and recovery variable u once a spike occurs. Various settings
f these parameters cause the neurons in the generated network
o exhibit a range of firing behaviors. The four different behaviors
regular spiking, fast spiking, intrinsically bursting and chattering)
re shown in Fig. 2.

As in the previous section, we simulated networks of 10 neurons
ith 10 randomly generated, excitatory or inhibitory connections

ut of 90 possible. The connection strengths vary randomly around
 prescribed average strength. For each of the different qualitative
ehaviors of the Izhikevich neurons, the simulation was  repeated
0 times with different connectivities.

Surprisingly, the performance of the Cox method was consis-
ent across all four behaviors. As with the proportional hazard

odel, for each behavior the test was repeated on 10 randomly
elected networks for the 95% and 99% confidence levels. Fig. 3
lots the sensitivity and specificity of the Cox method statistical
est for two of the four behaviors (regular spiking and chattering,
orresponding to (a) and (d) in Fig. 2). Sensitivity is asymptotically
atisfactory, and the expected confidence levels for specificity are
learly attained. Results for the other two behaviors are similar (not
hown). The Izhikevich model is not known to obey a proportional
azard property, and the influence function was unknown, so the
eneric shape specified in (2) was used. Moreover, the same generic
nfluence function ZBi

(t) with parameters �S = 10, �R = 0.1, and ı = 0
as applied to each behavior of the Izhikevich model without any

uning of the parameters.
As can be expected, finding correct connections of the net-

ork (true positives) depends monotonically on the strength of the
onnection. Therefore the sensitivity increases with strength. We

ested networks for Izhikevich neurons as described above, with
onnection strengths chosen randomly with means 3, 4, and 6,
nd show the results, averaged across all four spiking behaviors,
n Fig. 4.
curve) and 99% confidence (upper curve). Since the results for the three different
tion strengths as well as the 10 realizations per number of spikes per target, for

While this statistical agreement was  expected for the propor-
tional hazard model, where the modeling assumptions are exact
and the influence function ZBi

was known, it is a nontrivial fact
for the Izhikevich model. This represents a compelling example
where the hazard function is unknown, but where a statistically
significant nonzero strength indicates a connection with the cor-
rect specificity. This demonstrates a key feature of the Cox method
which makes it appropriate for laboratory applications, where the
influence function is rarely known. We  make this application to
determine dynamic changes in networks from neuron cultures in
the next section.

4. Detecting changes in neural cultures

In this section we  illustrate the application of the Cox method
to track network connections over time. We  use neural cultures
grown in the laboratory as an experimental test case. The existence
of a statistical test for specificity in the Cox method, independent
of arbitrary threshold selection, is an essential characteristic of the
approach.

In vitro networks provide a reduced size and complexity and
allow researchers to study the dynamics of a network in a dish,
under controlled conditions. We  plated cortical murine cells (E18)
onto a micro-electrode array (MEA). The MEA  records the spiking
behavior of nearby plated neurons by measuring the change in volt-
age in the extracellular environment that occurs when a neuron
spikes. They allow for the simultaneous recording of spike trains
from a plated culture.

We  analyzed recordings of several channels of a network
of spinal cord cells plated on a commercially available MEA
with 64 electrodes. The area of each electrode is approximately
400 �m2. Neuronal-glial cultures from E18 mice (approximately
300,000 cells/dish) were plated and kept in neurobasal culture
media supplemented with fetal bovine serum. Dishes were kept
sterile, and handled in a biological hood when necessary. Cultures
were visually checked under an inverted microscope for contami-
nation and homogeneous cell coverage of the MEA. Cultures were
kept in incubators with controlled humidity and temperature for
up to 21 days before recording commenced.
Once the MEA  was connected to a recording system (64
channels at 40 kHz per channel, bandpass filter from 0.5 Hz to
8 kHz, 2000× gain), temperature was  adjusted to 37 ◦C through a
heated base plate; no perfusion was applied. Thresholds for spike
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ig. 2. Examples of neuron behavior from the Izhikevich model. (a) Regular spiking: 

ursting: a = 0.02, b = 0.2, c = −55, d = 4 and (d) chattering: a = 0.02, b = 0.2, c = −50, d 

etection were set to 15% of the amplitude of a typical spike.
fter a 1-h stabilization period, spontaneous activity from
ctive channels was recorded for a 3-h period. When recording
as completed, the culture was returned to the incubator for

torage.
After the data collection process was completed, the raw data

as sorted. Sorting was done offline to disregard noisy events and
o separate individual units. The term “unit” is used to describe
n individual neuron. Since each electrode records all activity
ithin a small radius of its location, it can potentially record the

ctivity of multiple neurons. Sorting the data allows us to distin-
uish multiple units recorded by an electrode so that they can
e included individually in our analysis. The sorting was done
ased on examination of the waveforms of recorded spiking activ-

ty. Five spike waveforms from the same sorted unit are shown
n Fig. 5.

.1. Detecting structural network changes

In the experiment we used spike times recorded from 10 units
f an in vitro network obtained from 9 active channels. A continu-
us 180-min recording was split into nine equal time segments of
0 min  each, which was determined to ensure that each unit had at

east 1000 spikes per segment. The Cox method was applied to each
egment of data to produce an estimated connection strength ˇij for
ach of the 90 candidate connections. The results in Fig. 6 indicate
he total number of segments in which each connection’s strength
as statistically different from zero. For example, the 9 occurring
n the (1, 2) position indicates that the influence of unit 2 on unit 1
as statistically significant in each of the nine time segments; the

 in the (2, 1) position indicates that the reverse influence is also
ignificant in 8 of the 9 segments. On the other hand, comparison
2, b = 0.2, c = −65, d = 8; (b) fast spiking: a = 0.10, b = 0.2, c = −65, d = 2; (c) intrinsically

of the (2, 3) and (3, 2) positions shows that unit 2 drives 3 during
seven of the nine time segments but that no reverse influence was
detected. The entire test was  conducted with a Familywise Error
Rate of 5%, which corresponds to a confidence level of 99.994% per
neuron using the Bonferroni correction for 810 tests (90 candidate
connections for each of the 9 segments).

This test found many connections to be stable, either appearing
in every segment or not appearing in any segments. Moreover, the
strong control of the FWER indicates that each statistically signifi-
cant connection should correspond to a real connection. However,
the nature of the statistical test prevents us from concluding that
the network structurally changed. This is because we do not have
control of the false negatives, meaning that when a connection is
not found to be statistically significant, that does not imply that it
is not present. To overcome this challenge and determine whether
the network is in fact changing with time, we introduce a new
method in the next section which is sensitive to modifications in
the strength of connections.

4.2. Detecting changes in connection strength

We now apply the Cox method across multiple data segments
in order to test whether the strength of a connection has changed.
Note that although the true influence function is unknown, if
the influence function is stationary then the strength ˇij deter-
mined by the Cox method will be constant since we use the same
generic influence function for each test. Thus if we split our data
into multiple time segments, we  can test whether the change of

the ˇij coefficients is significantly different from zero, in which
case we can conclude that the connection strength has changed.
While a change in a connection may  be due to nonstationarity
of the unknown influence function, the  ̌ coefficients are always
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Fig. 3. Sensitivity and specificity for spiking and chattering behaviors of the Izhikevich model. (a) Sensitivity of regular spiking neuronal network for 95% confidence (upper
c onfide
n e). (d)
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urve) and 99% confidence (lower curve). (b) Specificity for regular spiking: 95% c
euronal network for 95% confidence (upper curve) and 99% confidence (lower curv
urve). Results are averaged across mean connection strength E[ˇij] = 3, 4 and 6 wit
etermined relative to the same generic influence function. Thus
he strengths estimated by the Cox method can still be compared
s long as the same generic influence function is used in each
est.
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f  connections) increases as a function of the number of spikes per target neuron,
or  connection strengths 3 (lowest curve), 4 (middle curve), and 6 (highest curve).
esults are averaged across Izhikevich model (all four behaviors).
nce (lower curve) and 99% confidence (upper curve). (c) Sensitivity of chattering
 Specificity for chattering: 95% confidence (lower curve) and 99% confidence (upper
imulations per level; error bars denote standard error.

We  first apply this method to a network of simulated Izhikevich
neurons to validate the use of the Cox method for detecting changes
in connectivity strength. The network consists of 10 neurons with
10 connections (no self-connections) of varying strengths. In each
simulation, we  generated two time segments of data. The first seg-

ment consists of multivariate spike train series with a minimum of
500 spikes per neuron. Next we  randomly select 5 of the 10 con-
nections and either increase or decrease the connection strength by
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Fig. 5. Voltage trace of five waveforms. Based on the similarity of waveform shape,
these were classified as belonging to the same unit.
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Fig. 6. Summary connectivity matrix for the Bonferroni correction with 95% FWER.
The (i, j) entry of the matrix corresponds to the number of time segments when there
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as  a statistically significant influence on unit i by unit j. Results are from in vitro
ata recording split into nine equal time length segments (at least 1000 spikes per
arget per segment).

 specified percentage. The choice of increase/decrease was made
andomly. In the second segment we repeat the simulation with the
odified connection strengths, again for a minimum of 500 spikes

er neuron. For each percentage change in strength, we repeated
he simulation 10 times and calculated the sensitivity and speci-
city.

In Fig. 7 we plot the results of the simulation. As the magnitude of
he change in connection strength increases, there is a correspond-
ng increase in sensitivity of detection of the change. Moreover, the
est performs above the 95% confidence level (plotted as dashed line
n Fig. 7(b)). We  used a 95% confidence level with the Bonferroni
orrection to account for the 90 repeated tests, one for each poten-
ial connection change. The Bonferroni correction is conservative,
ccounting for the high specificity compared to the expected level.
his validates our use of the Cox method across time segments to
etect changes in network connection strength.

Next, we apply the same method to the neural culture data.
nstead of the two time segments in the simulation, we  have 9 sepa-
ate time segments to analyze. We  apply the above test based on the
ox method to each pair of adjacent time segments, and tabulate

he statistically significant changes.

In Fig. 8, the changes between adjacent time segments are
isplayed. The results indicate the total number of statistically sig-
ificant changes in strength that occurred across adjacent time
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ig. 7. Sensitivity and specificity of changes in connection strength across two adjacent ti
tandard error over 10 realizations. (a) Sensitivity and (b) specificity.
Fig. 8. Total number of statistically significant changes in strength across adjacent
time segments for each connection.

segments out of a total of nine segments; thus the most pos-
sible changes is eight. The entire test was conducted with a
FWER of 5% which corresponds to a confidence level of 99.993%
per neuron using the Bonferroni correction for 720 tests (90
candidate connections for each of 8 adjacent pairs of time
segments).

An evaluation of the stationarity of four different  ̌ coefficients
is shown in Fig. 9. If a segment’s midpoint does not fall within
the range of the confidence interval of the previous segment, then
a change is assumed. For example, Fig. 9(a) tracks change in the
connection ˇ12 from node 1 to node 2 over time. There are signif-
icant changes in the first seven transitions, corresponding to the
7 in the (1, 2) entry of Fig. 8. Fig. 8(b)–(d) corresponds to tran-
sition in the (1, 4), (1, 10), and (2, 1) connections, respectively.
Fig. 9 shows that some of the changes in network connectivity
are extreme, while others are relatively smooth. This comparison
shows the wide variety of levels of stationarity in neural cultures.
We  find this to be a key issue for the evaluation of neural cultures
and neural networks in general. Such statistical tools provide a cru-
cial foundation for attempting analysis of medium- to long-term
studies of such networks, when observations are limited to spike
trains.
5. Discussion

The Cox method is a powerful technique for studying connec-
tivity in networks from spike train observations. While the model
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me segments for a simulated network of Izhikevich neurons. Error bars display the
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ig. 9. (a–d) A selection of Cox  ̌ coefficients which have statistically significant ch
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eems to require knowledge of an influence function, which quan-
ifies the interaction mechanism, we have shown that a generic
nfluence function achieves the correct statistics when searching
or connections. Indeed the Cox method achieved the correct statis-
ics even for the physically realistic Izhikevich model. However,
ne difference between the computational model and the in vitro
xperiment is that in vitro we only have partial information as
any neurons in the culture are unobserved. Thus the connections

ound in vitro may  represent complex pathways in the unobserved
etwork.

We have shown that the Cox method can also be used to detect
hanges in connections. Detecting the creation or elimination of
onnections is difficult because of the nature of the statistical test
or connectivity. However, by modifying the test we are able to find
tatistically significant changes in the strength of connections. For
eural cultures in the laboratory, we consider the stationarity or

ack thereof to be a key issue and note that tools that can give a
alidated statistical test are sorely needed.

Applications of the results presented here range from cortical,
ippocampal, and spinal cord networks kept in vitro for long term,
o deep brain stimulation situations. Here we have demonstrated
he case of a network of spinal cord neurons. We  intend to expand
hese experimental results to other neuronal-glial cultures in vitro.
ne of our long term objectives is to demonstrate the steering of
eural activity with electrical stimulation.

A potential clinical use of our implementation of the Cox method
s in closed loop control implants for neurodisorders, such as in a
eep brain stimulation scenario. Careful applications of this method

ould indicate network connections that are changing faster than
thers, representing the evolution of the disease or defect being
onitored. Knowledge of these changes could improve the ability

f the control system to apply an appropriate stimulation protocol,
 across segments. Error bars indicate 99.993% confidence intervals. A connection is
s counted for each segment where the midpoint lies outside the confidence interval

with the objective of counteracting symptoms or delaying the pro-
gression of the neurodisorder.
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