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Abstract. Spectral methods have received attention as powerful theoretical and prac-
tical approaches to a number of machine learning problems. The methods are based on the
solution of the eigenproblem of a similarity matrix formed from distance kernels. In this
article we discuss three problems that are endemic in current implementations of spectral
clustering: (1) the need to use another clustering method such as k-means as a final step,
(2) the determination of the number of clusters, and (3) the failure of spectral clustering on
multi-scale examples. These three problems are manifest even when the clusters are sepa-
rated connected components. We advocate the use of the LU -factorization to solve (1), and
treat clustering as a geometry problem to attack the second two problems. Specifically, the
ideas of persistence and reconstruction of the Laplace-Beltrami operator are introduced as
solutions to (2) and (3). We show that these suggested solutions are robust in a series of
illustrative examples.

1. Introduction. Division of a set of points into clusters is a fundamen-
tal machine learning problem. Clustering underlies segmentation problems in
network theory, image analysis, graph theory, and many other areas. In recent
years, the clustering problem has attracted the attention of many researchers
using spectral methods [25, 30, 14, 15, 10, 11, 29, 28, 13, 12]. These methods
apply a kernel function Wij = W (xi, xj) to all pairs of data points, forming
a square “affinity” matrix. In the typical spectral clustering approach, the
data is projected onto an eigenspace of the kernel matrix, and a more con-
ventional clustering algorithm is applied to the data in the new coordinates.
The reasoning behind spectral methods is that they are matrix versions of the
maximization of graph cuts, which compare pairwise distances within and out-
side the assigned cluster. Comprehensive introductions to spectral clustering
can be found in the tutorials of Chung [7] and Von Luxborg [27].

In this article, we argue that a more geometric treatment of spectral clus-
tering can better illuminate the underlying workings of the method, which
in turn motivates a more powerful algorithm for multiscale problems. Our
contribution has three parts: (1) a new approach to the last step of spectral
clustering, the unmixing of the eigenspace basis that results in indicator func-
tions for cluster assignment; (2) the systematic use of persistence as a way to
simultaneously choose an appropriate global scaling and the correct number
of clusters; and (3) the use of a geometry-motivated local scaling to solve the
problem of varying sampling densities between and within clusters.

The idea of the geometric view of spectral clustering is to assume that
the data points are sampled from a manifold with multiple connected compo-
nents. Finding these connected components and assigning membership is the
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Fig. 2.1. (a) The k-means method identifies clusters as the set of points nearest to des-
ignated centroids; because of the non-convexity, a set like the one shown cannot be correctly
clustered into two sets. (b) Spectral methods can easily divide the two clusters, if the critical
parameter ε is chosen appropriately. The persistence diagram shows the dependence of the
number of calculated clusters on this parameter.

first step toward any clustering objective. Finer distinctions that are based
on probability distribution or other notions may further divide a connected
component, depending on the goals of the analysis, although we view these as
a separate problem that will not be pursued in this article.

By introducing this geometric assumption, it is possible to develop a spec-
tral clustering algorithm (including unmixing and persistence) which provably
yields the correct clustering in the limit of large data. Moreover, the geometric
assumption will show that the local scaling algorithm introduced in [2] is an
appropriate method to reduce the dependence of the clustering results on the
sampling measure.

Our results in this article were motivated by previous work. Attempts
to find a more convenient final step than k-means were discussed by Zelnick-
Manor and Perona in [31], as were methods of handling multiscale point sets.
Coifman, Nadler, Keverekidis et al. [18, 9, 16, 17] introduced diffusion maps as
a preferred means of reconstructing the Laplace-Beltrami operator for cluster-
ing problems. Persistence-based clustering was discussed from a non-spectral
point of view in [6]. Here we take a geometric approach that will extend the
suggestions of these authors and put them in a natural framework.

In Section 2, contributions (1) and (2) are developed in the general spectral
clustering context. These contributions will be interpreted in the geometric
context in Section 3, where we introduce contribution (3). There we further
develop the geometry-motivated solution to varying sampling densities and
demonstrate our improved spectral clustering approach on multiscale exam-
ples.

2. Improved spectral clustering. Spectral clustering is motivated by
the failure of k-means clustering on examples such as that shown in Figure
2.1(a). The k-means approach attempts to choose k cluster centroids in data
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space such that points are sorted by determining the nearest centroid. How-
ever, any choice of two centroids in Figure 2.1(a) implicitly defines a line of
equidistance that must separate the clusters. It is not possible to separate
the points into the obvious two connected components, due to the non-convex
shape of one of the clusters.

In Section 2.1 we briefly review some key results of spectral clustering from
the graph theory perspective, and we show how to interpret global scaling in
terms of persistence. In Section 2.2, we introduce a novel algorithm for the
final ‘unmixing’ step motivated by the normalization of the eigenfunctions
produced by the eigensolver in the spectral clustering approach. Finally, in
Section 2.3, we demonstrate the persistence approach and our new unmixing
on some illustrative example data sets.

2.1. Spectral methods and persistence. Spectral methods arose as
matrix translations of methods for maximizing graph cuts (see [24, 19, 27]
and references therein). The methods have in common the construction of a
graph Laplacian matrix, of which there are several versions. Given a set of n
points, let W be an n× n symmetric weight matrix that describes the affinity
between pairs of points. For example, one could set Wij = 1 if ||xi − xj || < ε
and 0 otherwise, for some fixed ε > 0. Let D be the diagonal matrix of
row sums of W , that is D = W1. Some examples of graph Laplacians are
the unnormalized, the symmetric, the random walk, and the diffusion maps
Laplacian [8], denoted by:

Lun = D −W
Lsym = I −D−1/2WD−1/2

Lrw = I −D−1W
Ldm = I − D̂−1Ŵ

respectively, where Ŵ = D−1WD−1 and D̂ = Ŵ1.
For the symmetric matrix W , let the W -connected components denote the

equivalence classes of points xi where xi ∼ xj if W p
ij 6= 0 for some integer

p > 0. The following theorem is central to spectral clustering, and applies to
each of the graph Laplacians L above. A proof can be found in the tutorial
[27].

Theorem 2.1. For any of the four graph Laplacians L defined above, the
multiplicity k of the eigenvalue 0 of L is equal to the number of W -connected
components.

Moreover, the associated eigenvectors determine the assignment of points
into k clusters, as follows: For Lun, Lrw and Ldm, the eigenspace associated
to eigenvalue 0 is spanned by the indicator functions 1Si of the W -connected
components. For Lsym, the eigenspace is spanned by the vectors D1/21Si.

Notice that the non-symmetric Laplacians Lrw and Ldm are conjugate to
symmetric matrices, for example D1/2LrwD

−1/2 = Lsym. In order to find the
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eigendecomposition of a non-symmetric Laplacian, it is numerically preferable
to find the eigenvectors v of the symmetric matrix Lsym; then the eigenvectors
of Lrw are D−1/2v. Likewise, the eigenvectors of the nonsymmetric matrix
Ldm are D̂−1/2v, where v represents an eigenvector of the symmetric matrix
I − D̂−1/2Ŵ D̂−1/2.

Examples like Fig. 2.1(a), which cause the k-means algorithm to fail, are
easily divided into connected components with any of the above graph Lapla-
cians, as long as an appropriate ε is chosen. Here we want to point out that ε
serves as a global scale parameter. The user will choose it depending on the
context of the data, meaning that it depends on information beyond the data
points themselves. Assume that we are using the weight matrix as defined
above, so that Wij is given by the kernel

Wij = h

(
||xi − xj ||2

ε2

)
, where h(x) =

{
1 if x < 1
0 otherwise.

(2.1)

For the set of points in Fig. 2.1(a), it is clear that if ε is chosen to be larger
than one-half of the distance ε1 between the two clusters, then according to
Theorem 2.1, the spectral method with any of the four graph Laplacians will
group the points into a single component. If ε is smaller than ε1, and larger
than ε2, defined to be one-half of the the maximum radius of a circle centered at
a data point containing no other points, then the graph Laplacians will have
two-dimensional zero-eigenspaces, verifying that there are two components.
This may be the intuitive choice – but it is a choice. As ε decreases beyond
ε2, the two large clusters will gradually break up into subclusters, and for
sufficiently small ε there will be n single-point clusters. These facts are shown
schematically in Fig. 2.1(b).

Fig. 2.1(b) is an example of a persistence diagram [5, 32, 4], which clarifies
the point that the number of clusters is dependent on a parameter of the
spectral method. This choice is inescapable, and in multiscale problems, the
global scaling parameter ε will typically be chosen based on the goals of the
investigation. From another point of view, the persistence diagram is a polite
way of dealing with ε, which would otherwise be called a nuisance parameter.

The “shape function” h is also open to the user’s choice. An alternative
to the sharp cutoff used in (2.1) is an exponential decay function, such as

h(x) = e−x/4. (2.2)

The ε parameter plays a similar role for this shape function, in that smaller
ε localizes the affinity of nearby points. A smooth shape function is more
appropriate for data that is measured with uncertainty. Many other shapes
could be used, and in Section 3 below we will revisit this question and introduce
an even more general class of “local” kernels.

It is worth pointing out that in numerical calculation, the similarity of
the sharp cutoff and exponential decay functions is more pronounced than
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may be obvious at first glance. With the exponential decay shape function,
all weights are nonzero, implying that there is only one cluster, according to
Thm. 2.1. However, in finite precision computation, when the ratios of weights
are greater than the reciprocal of machine epsilon 1/εmach, the computation
of eigenvalues will effectively treat extremely small weights as zero. Although
there is one component in theory, exponential decay shape functions can give
numerical results that resemble those from finite support shape functions, and
they are routinely used in practice.

Thm. 2.1 identifies the vector space of indicator functions of the connected
components as a single eigenspace. A numerical eigensolver can be employed to
construct a basis for this space. However, there is still some work to do. Each
indicator function is a linear combination of the basis. The step that remains
is to “unmix” this set of eigenvectors to extract the indicator functions of the
individual components. The standard approach is to project each point onto
the eigenbasis returned by the eigensolver, and to apply the k-means algorithm
on the results to affix a component label to each point. Instead of outsourcing
this final step to another, non-spectral method, we develop and illustrate a
simpler endgame in the next section.

2.2. Unmixing. The goal of this section is to recover the cluster labels
for each data point from the eigenvectors of a graph Laplacian returned by an
eigensolver. Specifically, we will be given eigenvectors {ϕj}cj=1 corresponding
to eigenvalue 0 from which we want to extract indicator functions {1Sl

}cl=1

of the connected components Si. We refer to this procedure as unmixing the
eigenvectors.

Suppose we consider a graph Laplacian whose zero-eigenspace is spanned
by indicators functions of the components, such as Lun, Lrw, or Ldm discussed
above. The dimension of the zero-eigenspace is exactly the number of W -
connected components and the cluster indicator functions {1Sl

}cl=1 are a basis
for the zero-eigenspace, and therefore there is a linear change of variables A
such that each eigenvector ϕj can be written as ϕj(xi) =

∑
Alj1Sl

(xi). We
will refer to the matrix A as the mixing matrix. The eigenvectors ϕj are
considered mixed and the eigenvectors 1Sl

are unmixed.

As mentioned above, for computational stability reasons, we will always
obtain the spanning set of eigenvectors from a symmetric Laplacian matrix. If
a non-symmetric Laplacian is desired, the eigenvectors can be obtained from
those of the conjugate symmetric Laplacian by multiplying by a symmetric
matrix. As a result, the spanning set will be given by the columns of an N × c
matrix Φ = B−1Φ̃, where Φ̃ has orthonormal columns from the (symmetric)
eigensolver and B is an invertible diagonal matrix. (Namely, B = I for Lun,
B = D1/2 for Lrw, and B = D̂1/2 for Ldm.) Let C be the n × c matrix
whose column l is the indicator function 1Sl

. With this notation the mixing
is represented by Φ = CA, and the goal of unmixing is to recover C from Φ.

In fact, one can see that the mixing matrix A is the product of a diagonal
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Fig. 2.2. Unmixing for the nonconvex example in Fig. 2.1. (a) Two eigenvectors re-
turned by a standard eigensolver (b) Unmixed indicator functions from the LU method.

matrix and an orthogonal matrix. Define the c× c matrix N by

N = (BC)TBC = A−T Φ̃T Φ̃A−1 = A−TA−1 (2.3)

and note that N = CTB2C is diagonal since Nij =
∑

k CkiB
2
kkCkj is only non-

zero when i = j. For example, in the case of Lun we have B = I, which implies
that Nii =

∑
k C

2
ki is simply the number ni of points in the i-th component.

Then (2.3) implies that Q ≡ N1/2A is an orthogonal c× c matrix, and so the
mixing matrix A = N−1/2Q.

In Fig. 2.2 we show the (a) mixed and (b) unmixed eigenfunctions for the
nonconvex example introduced in Fig. 2.1(a) where we have chosen ε2 < ε < ε1
from the persistence diagram in Fig. 2.1(b). Each eigenvector is an n-vector,
where n = 280 is the number of data points. Two eigenvectors are shown,
whose entries are plotted versus point number. Here we have presented the
points in sorted order from left to right, starting with the smaller component,
to clarify the resulting plot.

Since the number of points in each cluster cannot be determined prior
to the unmixing, we cannot easily remove the bias of the unknown diagonal
matrix N , and if the numbers of points in the various components are nonuni-
form, it will not suffice to unmix the eigenvectors only with an orthogonal
matrix. We will introduce a simple method for determining A directly from
the eigenvectors {ϕj}cj=1 that will not be biased by the number of points in
the various clusters.

Since the mixed eigenvectors ϕj are linear combinations of the indicator
functions, all pairs of points x, y in a given component Sl have the same values:
(ϕ1(x), ..., ϕc(x)) = (ϕ1(y), ..., ϕc(y)). So for each component Sl there is a
unique barcode, which is a row vector (ϕ1(x), ..., ϕc(x)), where x is any point
in Sl. These barcodes are shown visually in Figure 2.2(a) where for clarity we
have artificially sorted the data so that all the points in a given cluster are
grouped together, making the barcode structure stand out clearly. Of course,
if the data points were randomly organized, the barcode structure would not
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Fig. 2.3. Clustering of the nonconvex example in Fig. 2.1 using LU unmixing. Results
are shown for global parameter ε resulting in (a) 1 component (b) 2 components (c) 3
components (d) 4 components.

be visually obvious. In fact, the barcodes are simply the rows of the mixing
matrix A, since for x ∈ Sl, all the indicator functions are zero except for 1Sl

so ϕj(x) = Ajl and (ϕ1(x), ..., ϕc(x)) = (Al1, ..., Alc). In fact, since the cluster
indicator functions C which we wish to recover have such a simple form, the
row of the mixing matrix A are simply rows of Φ. Of course, each row of A
will appear many times in Φ, once for each point in the corresponding cluster.
Moreover, the barcodes could appear in any order, corresponding to the order
of the points, so we cannot simply select the first c row of Φ. So in order to
build the matrix A, we only need to select c linearly independent rows from
Φ.

There are many methods which can select c linearly independent rows
from the rows of Φ. We have used a simple technique based on the partial
pivoting approach used in the LU -factorization algorithm [22]. First, apply
the PΦ = LU matrix factorization to the n× c matrix Φ; here, P is an n× n
permutation matrix, L is an n×c lower triangular matrix, and U is c×c upper
triangular. Then define the matrix T = PΦ, so that the square matrix formed
by the top c rows of T is the mixing matrix A (up to a permutation of the
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Fig. 2.4. (a) Target example. (b) Persistence diagram in the global scaling parameter
ε. (c) The 7 mixed eigenvectors associated to eigenvalue 0, each plotted in a different color
as a function of data points. (d) Unmixed indicator functions for the 7 components.

rows of A). This is because the permutation P selects c linearly independent
rows of Φ, which are exactly the rows of A. We can then recover the unmixed
eigenvectors as the columns of C = ΦA−1.

Figures 2.2(b) shows the unmixed eigenvectors C recovered from the mixed
eigenvectors Φ shown in Figures 2.2(a). Of course, the key to this unmixing
approach is the barcode structure of the mixed eigenvectors Φ, which requires
that the columns of Φ are eigenvectors with eigenvalue zero.

In Fig. 2.3 we show the results of our LU unmixing algorithm on the ex-
ample data set from Fig. 2.1. The clustering result in Fig. 2.3(b) corresponds
to the unmixed indicator functions shown in Fig. 2.2(b), where each indicator
function is plotted in a separate color. In Fig. 2.3 we also show the cluster-
ings found by the LU unmixing with three other values of ε, chosen from the
persistence diagram to correspond to (a) one, (c) three and (d) four clusters.
For each value of ε, we find a basis for the zero-eigenspace, using the tolerance
Nεmach to verify that an eigenvalue is numerically zero.
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Fig. 2.5. (a) Example of seven interleaved spirals, consisting of 1000 points. (b) The
persistence diagram has a range of ε where there are 7 components. (c) Mixed eigenvectors,
and (d) unmixed eigenvectors / indicator functions.

2.3. Examples. In this section we demonstrate the complete spectral
clustering algorithm on three challenging toy examples. These examples reveal
the complex structure that can arise in the persistence diagrams, as well as
the significantly complicated mixing that can occur. Both examples exhibit
significant persistence at a particular ‘correct’ number of clusters, and the LU
unmixing is successful at labeling these clusters.

The first example is a data set with a target like structure where the clus-
ters are nested annuli in the plane as shown in Fig. 2.4(a). This is an extended
version of a classical clustering example which typically contains fewer nested
annuli. The additional annuli exacerbate the differences in the number of
points between the clusters, which can be a problem for some unmixing algo-
rithms. There are N = 3000 points shown, chosen randomly to fill the seven
connected components. The numbers of points in each component satisfy the
ratios 1 : 2 : 3 : 4 : 5 : 6 : 7 from inside to outside, so that the density of points
is approximately constant. (Later, in Fig. 3.4, we will explore this example
with varying density.) The exponential shape function (2.2) was used to build
the weight matrix. The persistence diagram in Fig. 2.4(b) shows a substantial
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Fig. 2.6. Example with five interlocking tori. (a) The persistence diagram shows a large
range of ε for which there are 5 effectively zero eigenvalues. (b) The assignment of clusters
due to the LU unmixing.

set of ε for which the zero-eigenspace is 7-dimensional. The mixed eigenfunc-
tions, which form a basis of the 7-dimensional zero-eigenspace, are plotted in
Fig. 2.4(c), where the points have been sorted from inside to outside along
the horizontal axis for clarity. The unmixed linear combinations are plotted
in Fig. 2.4(d), which are used to color part (a) of the figure.

The second example is a data set made up of seven interleaved spirals. In
this example, the seven components contain approximately equal numbers of
points, shown in Fig. 2.5(a). The persistence diagram in Fig. 2.5(b) has a sig-
nificant range of the global scale parameter ε for which there are 7 components.
Fig. 2.5(c) and (d) display the mixed and unmixed eigenvectors, respectively,
where the LU -method introduced above is used for unmixing. The results are
obtained in the same manner as in Fig. 2.4.

Finally, Fig. 2.6 shows an example of two-dimensional manifolds in three
dimensional ambient space, consisting of points sampled uniformly from five
interlocking tori. The persistence diagram locates 5 clusters, whose resulting
assignment is shown in Fig. 2.6(b).

3. Non-constant Density and the Large Data Limit. The example
in Fig. 3.1 shows a more complicated situation, which uncovers a weakness
of the spectral methods discussed thus far. Nominally, there are three com-
ponents. Two components are densely sampled and a third is more sparsely
sampled. Consider the radius ε indicated by the circles around the data points,
and for simplicity assume that the sharp cutoff function (2.1) is used. At this
radius, many of the points in the sparse cluster are not connected to any other
points in that component. This ε is too small for the sparse component to
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Fig. 3.1. An example with varying densities. Any spectral method that relies on a
single global bandwidth (denoted by the circles) cannot properly divide the example into
three clusters.

be seen as one unit, but at the same time is too large to distinguish the two
densely sampled clusters. With the available data, concluding that there are
three components from the zero-eigenspace of the graph Laplacian is impos-
sible; moreover, concluding that there are two components is also impossible.
This leads to a serious failure: Neither two nor three will be found in the
persistence diagram.

The flaw in the framework of standard spectral clustering methods that is
revealed by examples like Fig. 3.1(a) is the following: Definitions of clustering
built on a fixed global scale parameter ε lack the flexibility to deal with point
sets of varying density. In this article we argue that the pathway out of this
paradox, as in many mathematical areas, is to look to the continuous case for
guidance.

Imagine that the data in Fig. 3.1 were generated from an independently and
identically distributed sequence. Now suppose more data could be added to the
three clusters, according to the same underlying distribution. Given enough
data, the number of points in the sparsely sampled cluster would become large
enough that they could be connected with a smaller ε. This ε could further
be made small enough to simultaneously separate the two densely sampled
clusters.

In other words, the persistence diagram in the large data limit would suc-
cessfully find ranges of ε for both two and three clusters. In addition, one
cluster, and N clusters, would be found, for sufficiently large and small ε, re-
spectively. However, far from the large data limit, we may not have the luxury
of populating the data set sufficiently to identify the correct number, or any
appropriate number, of components with a single ε.

In order to handle multiscale problems like this one with a fixed, finite
data set, it would be helpful to replace the global scale parameter ε2 in the
kernel function (2.1) with a quantity ε(x)ε(y) that varies with the points x
and y. In this way, local variations in density could be accounted for. For
example, kernels were introduced by Zelnick-Manor and Perona [31] that rely
on local scaling. Such kernels are not covered by the diffusion maps theory in
[8], which requires a constant global ε. That presents us with the question of
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how to justify such kernels mathematically.

The goal of this section is to provide a mathematical justification for using
local scaling to accomplish spectral clustering in a way that is invariant to the
sampling density. To do this, the focus must be shifted from the point set to
the geometry underlying the point set. Formally, we will make the assumption
that the point sets are finite realizations of probability distributions lying on
manifolds. We view this assumption as establishing a “geometric prior” for
the problem. By appealing to geometry, we will see that spectral methods can
be realized as methods for representing function spaces on a manifold. In this
interpretation, density variations and other epiphenomena of the point set can
be dealt with more readily. Along the way, we will revisit the original role of
the Laplacian in spectral clustering and generalize it. In particular, we will
find that replacing ε with a carefully chosen nonconstant ε(x) can in many
cases reconstruct the correct geometry without the necessity of approaching
the large data limit.

The main goal in Section 3 is to approximate the Laplace-Beltrami oper-
ator with as little data as possible. Most of the groundwork already exists,
and is the natural extension of ideas developed by Belkin and Niyogi [1] and
Coifman and collaborators [8, 18, 9, 17, 16]. In Section 3.1 we briefly sur-
vey the theory of local kernels [3] for describing the geometry of data, and in
Section 3.2 we present the topological grounds for using the Laplace-Beltrami
operator. Section 3.3 shows examples of the use of the local kernel idea for
clustering.

3.1. Geometry of Data. The geometric prior assumes that the subset
of positive sampling density is a smooth manifold M ⊂ Rn. The assumption
of this smooth structure gives us a natural volume form dvol that M inherits
from the ambient space, and we will consider the sampling density q, to be
taken relative to this volume form (rather than relative to the standard mea-
sure on Rn). If the sampling measure is uniform relative to the volume form
(meaning q ≡ 1/vol(M)), it was shown in [1] that the symmetric normalized
Laplacian matrix is a discrete approximation to the Laplace-Beltrami oper-
ator on the manifold M. This was the first re-interpretation of the central
spectral clustering construction in terms of differential geometry. The very re-
strictive assumption of uniform sampling was overcome with the introduction
of diffusion maps [8], by deriving the bias introduced by the sampling density,
and using a kernel density estimate of the sampling density along with a new
normalization technique to control and even remove the bias.

The diffusion maps algorithm depends on a global kernel of form Wij =
h
(
||xi − xj ||2/ε2

)
where h(x) is a radial basis function with exponential decay,

such as h(x) = ex/4. The row sums Dii =
∑N

j=1Wij can be viewed as a
kernel density estimate of the sampling measure q(xi). In order to remove the
sampling bias, the diffusion maps algorithm first forms the normalized kernel
Ŵ = D−1WD−1, and then forms the normalized graph Laplacian matrix
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I − D̂−1Ŵ from the normalized matrix Ŵ , with D̂ii =
∑N

j=1 Ŵij . In the
limit of large data, the diffusion maps algorithm was shown in [8] to estimate
the Laplace-Beltrami operator ∆ on the manifold M, independently of the
sampling measure q. Notice that by using the non-symmetric graph Laplacian,
we guarantee the vector of all ones is an eigenvector with eigenvalue zero. A
noted earlier, the symmetric graph Laplacian matrix I − D̂−1/2Ŵ D̂−1/2 can
be used for computing the eigenvectors, which should then be multiplied by
D̂−1/2 to find the eigenvectors of the non-symmetric graph Laplacian matrix.
The theory of diffusion maps in [8] is applicable to the radial basis functions
most commonly used in spectral clustering, and requires fixed ε.

In [3], a broad generalization of the diffusion maps theory was introduced
that allows local kernels. A local kernel is any nonzero function Wε : Rn×Rn →
R such that there exists constants ε, c, σ > 0 and a vector field b : Rn → Rn
independent of ε that satisfy

0 ≤Wε(x, x+ εz) ≤ ce−σ||z−εb(x)||2

for all x, z ∈ Rn. In particular, taking b = 0 and y = x + εz, we see that any
kernel that satisfies Wε(x, y) ≤ c exp(−σ||x − y||2/ε2) is a local kernel. The
requirement that the kernel is bounded above by an exponentially decaying
function is rather weak, so any compactly supported kernel is local, and any
kernel which decays exponentially in any non-Euclidean norm is also local.
The theory of local kernels developed in [3] showed that applying the diffusion
maps algorithm to the symmetric kernel W ε(x, y) = Wε(x, y)+Wε(y, x) yields
(in the limit of large data and ε→ 0) a Laplacian operator with respect to an
intrinsic geometry which depends on both the data set and the functional form
of the local kernel Wε. Since the choice of local kernel determines a geometry
on the manifold, topological properties (such as the connected components)
are independent of the choice of local kernel in the limit of large data.

Local kernels are designed to alleviate a weakness of the standard diffusion
maps approach, that it uses a globally-scaled estimate of the sampling density
q (contained in the diagonal matrixD). As a result, its estimate of the Laplace-
Beltrami operator is invariant to the true sampling density q only in the limit
of large data. Local kernels allow us to use more powerful, empirical estimates
of q, which results in more accurate approximations of the Laplace-Beltrami
operator in finite data circumstances.

A choice of local kernel that is particularly relevant to clustering was sug-
gested in [2]. Let q(x) represent the sampling density of the data on the
manifold M ⊂ Rn. For a fixed global parameter ε, define ε(x) = εq(x)β for
some real number β. Then consider the symmetric variable bandwidth kernel

Wε(x, y) = h

(
||x− y||2

ε(x)ε(y)

)
= h

(
||x− y||2

ε2q(x)βq(y)β

)
(3.1)

for any shape function h : [0,∞) → [0,∞) that has exponential decay. To
connect variable bandwidth kernels to the Laplace-Beltrami operator, define
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the functions

Fi(xj) =
Wε(xi, xj)f(xj)

qε(xi)αqSε (xj)α
, Gi(xj) =

Wε(xi, xj)

qε(xi)αqSε (xj)α
,

where

qε(xi) =

n∑
l=1

Wε(xi, xl)/q(xi)
dβ, (3.2)

and where d is the manifold dimension. These normalizations are necessary
to control the bias that the sampling density has on the resulting operator, as
is shown in the following result.

Theorem 3.1. [2] Let {xi}Ni=1 be sampled independently with distribution
q. Let Wε(x, y) be a variable bandwidth kernel with bandwidth function ρ =
q β +O(ε2). Then, with high probability,

Lε,α,βf(xi) ≡
1

ε2mρ(xi)2

(∑
j Fi(xj)∑
j Gi(xj)

− f(xi)

)

= Lα,βf(xi) +O

(
ε2,

q(xi)
(1−dβ)/2

√
Nε4+d/2

,
||∇f(xi)||q(xi)−c2√

Nε1+d/2

)
(3.3)

for a finite valued constant m, where

Lα,βf ≡ ∆f + c1∇f ·
∇q
q
, (3.4)

c1 = 2− 2α+ dβ + 2β and c2 = 1/2− 2α+ 2dα+ dβ/2 + β.

The special case α = 1, β = 0 of Theorem 3.1 corresponds to the diffusion
map approximation of the Laplace-Beltrami operator in [8]. In particular, for
each ε, the eigenvectors of the discrete linear operator Lε,1,0 form an approx-
imate basis for functions on the manifold, where the approximation error is
controlled in terms of ε and N .

Since the theorem gives a two-parameter family of choices, there are other
ways to achieve the Laplace-Beltrami operator, including ways that allow use
of a nonhomogeneous kernel with variable local scaling. We will focus on
the choice α = 1/2 − d/4 and β = −1/2. This choice yields c1 = 0, so
that according to (3.4), the operator Lα,β is independent of the sampling
density. Also, according to (3.3), c2 = −1 + 5d/4 − d2/2 < 0, implying
that the error is bounded even for q arbitrarily close to zero. We note that
the dimension d is the intrinsic dimension of the manifold M and can be
determined automatically as part of the numerical algorithm (see Appendix A
for details).

Theorem 3.1 allows us license to apply the whole range of kernel density
estimation theory to approximate the sampling measure q. In the Appendix we
show how to bootstrap an approximation to q from the data set. We generate
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Fig. 3.2. The example with varying densities from Fig. 3.1. The variable bandwidth
kernel with β = −1/2 and an appropriate ε from the persistence diagram divides the example
into three clusters.

an initial approximation of local neighbor distance, and use it to build an
exponential kernel to approximate q.

According to Theorem 3.1, the construction of the discretized approxima-
tion to the Laplace-Beltrami operator begins with the kernel matrixW in (3.1).
Define the diagonal matrix D by Dii = (

∑
jWij)/q(xi)

dβ to represent the

qε(xi) in (3.2), where d is the manifold dimension. Define Wα = D−αWD−α,
and define the diagonal matrix Dα = Wα1. Then the discrete version of the
Laplace-Beltrami operator is the n× n matrix

L = ε−2R−2(D−1α Wα − I)

where R is a diagonal matrix with Rii = ρ(xi) = q(xi)
β. (Here we have

neglected the constant factor m in Theorem 3.1, since it does not affect the
λ = 0 eigenspace.)

To find eigenvectors of L, we instead compute eigenvectors of a similar

matrix that is symmetric. Define the diagonal matrix B = εRD
1/2
α . Then

BL = B−1Wα− ε−2R−2B = SB where S = B−1WαB
−1− ε−2R−2 is symmet-

ric. If ϕ̃ is an eigenvector of S, then ϕ = B−1ϕ̃ is an eigenvector of L with the
same eigenvalue.

Now we can revisit the example of Fig. 3.1 with the kernel

Wε(x, y) = h

(
||x− y||2

ε2(q(x)q(y))−1/2

)
,

where q is the approximated sampling measure. If we can develop a reason-
ably accurate approximation to q, then due to Theorem 3.1, we know that this
method reconstructs the Laplace-Beltrami operator on the underlying mani-
fold and has significantly removed the bias of the sampling measure.

Fig. 3.2 shows the result of the locally-scaled kernel. The data set is the
same as in Fig. 3.1. Each point x is the center of a circle of radius ε(x) =
εq(x)−1/2, where ε is an appropriate choice from the persistence diagram that
delivers the desired clustering into three components. With this local scaling,
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we can use any convenient shape function h, such as the sharp cutoff h in
(2.1), or the standard exponential h(x) = e−x/4, to successfully separate the
three connected components.

3.2. Topological clustering. In order to rigorously define the clustering
problem, we assume that the data set lies on a compact Riemannian manifold
M =

⊕c
l=1Ml which consists of c connected components {Ml}cl=1. We define

the topological clusters of the data set to be the connected components of
the manifold. The goal of topological clustering is to develop an algorithm
which provably identifies the topological clusters in the limit of large data.
The connected components of a manifold are a topological, not a geometric
property: changing the way we measure local distances between points does
not change the connected components of the manifold.

The key to topological clustering is a result from Hodge theory, which con-
nects topological features of a manifold to the geometric Laplacian operator ∆
on the manifold. In particular, every connected component of a manifold corre-
sponds to a unique harmonic function ∆f = 0, meaning that f is an eigenfunc-
tion of the Laplacian with eigenvalue zero. Classical Hodge theory shows that
for closed manifolds (compact without boundary) the only harmonic functions
are constant functions [20]. This fact can be extended to compact manifolds
with boundary by taking Neumann boundary conditions [23]. Of course, when
there are multiple connected components a harmonic function can take a dif-
ferent constant value on each connected component. This shows that every
harmonic function satisfying Neumann boundary conditions can be written as
a linear combination of the indicator functions {1Ml

} of the connected com-
ponents. The indicator functions are the natural harmonic representatives of
the connected components, and they span the zero-eigenspace of the Lapla-
cian with Neumann boundary conditions. Since the topological clusters are
defined to be the connected components, the indicator function 1Ml

is exactly
the cluster function which identifies the cluster Ml.

The topological clustering approach is to approximate a basis for the space
of harmonic functions using a discrete approximation to the Laplacian oper-
ator. While there are many different geometries, which correspond to many
different Laplacian operators on the manifoldM, all of these geometries have
the same topology and the same topological clusters. As mentioned in Section
3.1, a large class of local kernels can be used to estimate the various Laplacian
operators on the manifold. Since any of these Laplacian operators can be used
to recover the topological clusters, any local kernel can be used for topological
clustering in the limit of large data. The topological clustering approach is in
fact a re-interpretation of spectral clustering for local kernels, which provably
recovers the topological clusters in the limit of large data.

3.3. Examples with variable bandwidth kernel. We begin with the
three box example of Fig. 3.1. Using the variable bandwidth kernel with
α = 0, β = −1/2 results in the persistence diagram shown in Fig. 3.3(a).
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Fig. 3.3. (a) Persistence diagram for the three box example of Fig. 3.1 using the variable
bandwidth kernel. For various global scale ε there are (b) two clusters (c) three clusters (d)
four clusters.

There are substantial ranges of the global scale ε for which the approximate
Laplace-Beltrami operator has two and three zero eigenvalues (within tolerance
Nεmach), respectively. The ε used in Fig. 3.2, for example, was chosen from
the latter range. The clusters derived from the LU method mentioned above
are shown in Fig. 3.3(b-c). A short range of even smaller ε divides the set into
four clusters, shown in Fig. 3.3(d).

Generically, as the global scaling is varied, every possible number of clus-
ters is attained. In order to determine both the proper scaling and the number
of clusters simultaneously, we will follow the philosophy of [32, 4] and look for
multiplicities that are persistent across a nontrivial range of global scalings.
In the limit of large data, the true number of clusters will persist from a maxi-
mum scale to any arbitrarily small scale, so in an appropriate sense, the ‘most’
persistent multiplicity gives the true number of clusters. However, for a fixed
finite data set, there can easily be several multiplicities which persist, in which
case there are multiple scales of clustering in the data. Rather than selecting
one scale, we advocate viewing the persistence diagram as a useful tool for
understanding the multiscale nature of the data set.

Next we revisit the target example of Fig. 2.4, but with variable densities.
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Fig. 3.4. Target example with varying densities. (a) Seven clusters with variable band-
width (b) Same with fixed bandwidth kernel given by the standard diffusion map construc-
tion. The variable density causes the fixed bandwidth method to merge the inner two
components and split one of the outer components into two.

Using the same parameters as in the previous example, we obtain a persistence
diagram (not shown) with a range of ε having a 7-dimensional eigenspace
corresponding to the eigenvalue zero, and a clustering shown in Fig. 3.4(a).
For comparison, a diffusion map (fixed bandwidth) kernel results in a less
compelling clustering shown in Fig. 3.4(b).

Fig. 3.5 is an example where density of points varies within connected com-
ponents. The variable bandwidth kernel (3.1) successfully divides the points
into four components, shown in Fig. 3.5(a). On the other hand, the fixed
bandwidth kernel, used by the diffusion maps Laplacian Ldm, fails completely
on this example, since the outlier points tend to form their own components
for any bandwidth small enough to separate the main four in the denser part of
the region. The indicator functions colored in Fig. 3.5(a) are easily found with
either the finite cutoff kernel (2.1) or the exponential kernel (2.2), as long as
the variable bandwith kernel (3.1) is used. Fig. 3.5(b) shows the approximate
ε(x) derived from the kernel density estimate q(x).

While our results indicate that the variable bandwidth kernel of works ro-
bustly for several nontrivial examples, we emphasize that further improvement
may still be possible in terms of adaptive kernels. For example, kernel density
estimation in high dimensions can adapt not only the bandwidth, but also the
ellipsoidal shape of the local similarity function [26, 21]. Another possible area
of exploration for the current kernels is for manifolds with boundary, since the
error bounds of [8] on the boundary are not as strong as in the interior, and
this issue is not addressed in [2, 3].

By adding a global bandwidth parameter, the kernel of [31] can be seen
to be a local kernel; so in the limit of large data the kernels of [31] and [2]
are equivalent in terms of clustering on compact manifolds. Empirically, we
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Fig. 3.5. Four sets with varying densities within the sets. (a) Assignment of clusters
by the variable bandwidth kernel. (b) The variable bandwidth kernel uses the bootstrapped
density estimate to build an appropriate weight matrix.

have had the best results with the kernel of [2], most likely due to the kernel
density estimate being less sensitive to the sampling realization than the ad
hoc scaling function of [31]. We advocate the variable bandwidth kernel of
[2] over that of [31] due to the rigorous error bounds of Thm. 3.1 as well as
empirically better results on numerical examples. In Fig. 3.6 we show the
results of applying the kernel of [31] to the three box data set from Fig. 3.1.

4. Conclusion. Our aim is to clarify and extend the use of spectral clus-
tering, principally by exploiting the assumption of a geometric manifold under-
lying the observed data. This assumption is not new; several authors beginning
with Belkin and Niyogi [1] pursued the idea of reconstructing the Laplace-
Beltrami operator on the manifold. However, with the recent discovery of a
much more general set of “local” kernels that will generate that operator [3],
and in particular kernels that can cope with arbitrarily variable bandwidth
[2], it has become practical to reconstruct the Laplace-Beltrami operator, far
from the large data limit, even when sampling densities fluctuate significantly
throughout the data set.

We also emphasize the imperative of a scaling parameter in clustering
problems, and argued for the viewpoint of persistence in making a decision
about the number of clusters. In essence, we localize the idea of scaling by
replacing the global scaling ε (with units of distance) with a localized ε(x) =
εq(x)β, where q(x) is the (unitless) sampling density. In addition, we advocate
for the use of the LU -factorization as a dependable “final step” in the spectral
clustering algorithm, to circumvent the need for another clustering algorithm
to finish the process.

In this paper we restrict our attention to compact manifolds because the lo-
cal kernel theory of [3] is restricted to compact manifolds. In fact, the variable
bandwidth kernels introduced in [2] and advocated here are also applicable
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Fig. 3.6. Method of [31], assuming 3 clusters, for number of neighbors k set to values
from 3 to 8 in parts (a) - (f), respectively.

to non-compact manifolds assuming that the sampling density has fast decay
at infinity. So clustering on non-compact manifolds is also possible with the
variable bandwidth kernel, although the Hodge theory also changes on non-
compact manifolds. In particular, not all Neumann-harmonic functions are
constant on non-compact manifolds. For example, the function f(x) = x is
harmonic on R. However, if we restrict our attention to Neumann-harmonic
functions which never change sign, we once again recover linear combinations
of indicator functions. This suggests that topological clustering may be possi-
ble on non-compact manifolds, although a more complex unmixing algorithm
would be required, in order to insure that the span of the unmixed eigenfunc-
tions does not include any functions which change sign.
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grants DMS-1216568, DMS-1250936, and CMMI-130007.

Appendix A. Numerical Algorithm.

The numerical clustering algorithm has two main steps. First, we construct
the discrete approximation L to the operator Lα,β of Theorem 3.1 and find
the eigenvectors of L. Second, we unmix the eigenvectors to approximate
indicator functions which will define the clusters. We assume that the data
set consists of n points {xi}Ni=1 ⊂ M ⊂ Rm sampled according to a density q
on a d-dimensional manifold M relative to the volume form on M.
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Theorem 3.1 requires knowledge of the density function q within an error
proportional to ε2. The first task is to bootstrap an approximation to q from
the data set. We will begin with a rough approximation of local neighbor
distance ρ̂, and use an exponential kernel to approximate q. The propagation
of errors in the bootstrap estimate of q into the final kernel are accounted for
in the second term of the error estimate in Theorem 3.1 as shown in [2].

According to Theorem 3.1, the construction of the discretized approxima-
tion to the Laplace-Beltrami operator begins with the kernel matrixW in (3.1).
Define the diagonal matrix D by Dii = (

∑
jWij)/q(xi)

dβ to represent the

qε(xi) in (3.2), where d is the manifold dimension. Define Wα = D−αWD−α,
and define the diagonal matrix Dα = Wα1. Then the discrete version of the
Laplace-Beltrami operator is the n× n matrix

L = ε−2R−2(D−1α Wα − I)

where R is a diagonal matrix with Rii = ρ(xi) = q(xi)
β. (Here we have

neglected the constant factor m in Theorem 3.1, since it does not affect the
λ = 0 eigenspace.)

To find eigenvectors of L, we instead compute eigenvectors of a similar

matrix that is symmetric. Define the diagonal matrix B = εRD
1/2
α . Then

BL = B−1Wα− ε−2R−2B = SB where S = B−1WαB
−1− ε−2R−2 is symmet-

ric. If ϕ̃ is an eigenvector of S, then ϕ = B−1ϕ̃ is an eigenvector of L with the
same eigenvalue.

The shape function h can be any function with exponential decay at in-
finity, and in all our examples we used the shape function h(x) = exp(−x/4).
Note that in Theorem 3.1 the formula for Lε,α,β has a constant term m in the
denominator which is equal to half of the second moment of the shape func-
tion. The constant 4 in the shape function h(x) is chosen to result in m = 1,
but even if a shape function is chosen with m 6= 1, this would only result in
scaling the eigenvalues λj by this constant factor.

In the numerical implementation the matrix W can typically be repre-
sented as a sparse matrix due to the exponential decay in the weights Wij .
This is often accomplished by only allowing nonzero weights between each
point and its nearest neighbors, which will also reduce the amount of memory
required by the algorithm.

The algorithm contains a single nuisance parameter k, which is used in the
initial density estimation. Namely, it is used to construct the ad hoc scaling
function ρ̂, which is used to obtain the kernel density estimate q(xi). We have
found the algorithm to be quite robust to choices 4 ≤ k ≤ 64, and in all of our
examples we used k = 8.
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Clustering with Variable Bandwidth Local Kernels

Inputs: Data set {xi}ni=1 ⊂M ⊂ Rm, global scale parameter ε > 0
and number of nearest neighbors k for ad hoc bandwidth.

Outputs: Number of clusters c at scale ε, and n× c indicator function matrix C

1. Find the pairwise distances ||xi − xj ||.

2. Find a kernel density estimate q(xi). For example:

(a) Define the ad hoc bandwidth function ρ̂i =
√∑k

j=1 ||xi − xI(i,j)||2

where I(i, j) is the index of the j-th nearest neighbor of xi.

Tune the bandwidth for the kernel density estimate in steps (b)-(f).

(b) Let δl = 2l for l = −30,−29.9, ..., 9.9, 10.

(c) Compute Tl =
∑N
i,j=1 exp

(
−||xi−xj ||2

4δ2l ρ̂iρ̂j

)
.

(d) Estimate the local power law Tl = δal at each l by al = log Tl−log Tl−1

log δl−log δl−1
.

(e) Estimate the intrinsic dimension d = maxδl{al} and set δ =
argmaxδl{al}.

(f) Estimate the density

qi = q(xi) = (4πδ2ρ̂2i )
−d/2N−1

∑N
j=1 exp

(
−||xi−xj ||2

4δ2ρ̂iρ̂j

)
.

3. Approximate the discrete Laplacian.

(a) Define the local scaling εi = εqβi . Set β = − 1
2 and α = 1

2 −
d
4 .

(b) Form the kernel matrix Wij = h
(
||xi−xj ||2

εiεj

)
.

(c) Form the diagonal normalization matrix Dii =
∑N
j=1Wij/q

dβ
i .

(d) Form normalized matrix WS
α = D−αWD−α.

(e) Form the diagonal matrices (Dα)ii =
∑N
j=1(Wα)ij , Rii = qβi and

B = εRD
1/2
α .

(f) Form the symmetric matrix S = B−1WαB
−1 − ε−2R−2.

4. Find the eigenvalues λj and eigenvectors ϕ̃j of S. The number of clusters
c is the number of |λj | < nεmach, where εmach is machine precision. The
zero-eigenspace of the Laplacian is spanned by the columns of the n × c
matrix Φ = B−1Φ̃, where Φ̃ holds the orthonormal zero-eigenvectors of S.

5. Unmix the eigenvectors.

(a) Compute the PΦ = LU factorization of Φ.
(b) Set A to be the inverse of the upper c×c block of PΦ. Then C=ΦA−1.
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