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Abstract. For data sampled from an arbitrary density on a manifold embed-
ded in Euclidean space, the Continuous k-Nearest Neighbors (CkNN) graph

construction is introduced. It is shown that CkNN is geometrically consistent

in the sense that under certain conditions, the unnormalized graph Laplacian
converges to the Laplace-Beltrami operator, spectrally as well as pointwise. It

is proved for compact (and conjectured for noncompact) manifolds that CkNN

is the unique unweighted construction that yields a geometry consistent with
the connected components of the underlying manifold in the limit of large

data. Thus CkNN produces a single graph that captures all topological fea-

tures simultaneously, in contrast to persistent homology, which represents each
homology generator at a separate scale. As applications we derive a new fast

clustering algorithm and a method to identify patterns in natural images topo-

logically. Finally, we conjecture that CkNN is topologically consistent, meaning
that the homology of the Vietoris-Rips complex (implied by the graph Lapla-

cian) converges to the homology of the underlying manifold (implied by the

Laplace-de Rham operators) in the limit of large data.

1. Introduction. Building a discrete representation of a manifold from a finite
data set is a fundamental problem in machine learning. Particular interest pertains
to the case where a set of data points in a possibly high-dimensional Euclidean
space is assumed to lie on a relatively low-dimensional manifold. The field of topo-
logical data analysis (TDA) concerns the extraction of topological invariants such
as homology from discrete measurements.

Currently, there are two major methodologies for representing manifolds from
data sets. One approach is an outgrowth of Kernel PCA [37], using graphs with
weighted edges formed by localized kernels to produce an operator that converges
to the Laplace-Beltrami operator of the manifold. These methods include versions
of diffusion maps [1, 12, 5, 4] that reconstruct the geometry of the manifold with
respect to a desired metric. Convergence of the weighted graph to the Laplace-
Beltrami operator in the large data limit is called consistency of the graph con-
struction. Unfortunately, while such constructions implicitly contain all topological
information about the manifold, it is not yet clear how to use a weighted graph to
build a simplicial complex from which simple information like the Betti numbers
can be extracted.
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A second approach, known as persistent homology [8, 16, 18], produces a se-
ries of unweighted graphs that reconstructs topology one scale at a time, tracking
homology generators as a scale parameter is varied. The great advantage of an un-
weighted graph is that the connection between the graph and a simplicial complex
is immediate, since the Vietoris-Rips construction can be used to build an abstract
simplicial complex from the graph. However, the persistent homology approach
customarily creates a family of graphs, of which none is guaranteed to contain all
topological information. The goal of a consistent theory is not possible since there
is not a single unified homology in the large data limit.

In this article we propose replacing persistent homology with consistent homology
in data analysis applications. In other words, our goal is to show that it is possi-
ble to construct a single unweighted graph from which the underlying manifold’s
topological information can be extracted. We introduce a specific graph construc-
tion from a set of data points, called continuous k-nearest neighbors (CkNN), that
achieves this goal for any compact Riemannian manifold. Theorem 2 states that the
CkNN is the unique unweighted graph construction for which the (unnormalized)
graph Laplacian converges spectrally to a Laplace-Beltrami operator on the mani-
fold in the large data limit. Furthermore, even when the manifold is not compact
we compute the optimal bias-variance tradeoff, and show that CkNN always results
in a geometry where the Laplace-Beltrami operator has a discrete spectrum.

The proof of consistency for the CkNN graph construction is carried out in Sec-
tion 6 for both weighted and unweighted graphs. There we complete the theory of
graphs constructed from variable bandwidth kernels, computing for the first time
the bias and variance of both pointwise and spectral estimators. Combined with
existing work on spectral convergence [48, 2, 45, 46, 39] we obtain consistency. Our
analysis reveals the surprising fact that the optimal bandwidth for spectral estima-
tion is significantly smaller than the optimal choice for pointwise estimation (see
Fig. 12). This is crucial because existing statistical estimates [40, 4] imply very dif-
ferent parameter choices that are not optimal for the spectral convergence desired
in most applications. Moreover, requiring the spectral variance to be finite allows
us to specify which geometries are accessible on non-compact manifolds. Details on
the relationship of our new results to previous work are given in Section 6.

As mentioned above, the reason for focusing on unweighted graphs is their relative
simplicity for topological investigation. In an unweighted graph construction, one
can apply the depth first search algorithm to determine the zero homology. On
the other hand, there are many weighted graph constructions that converge to the
Laplace-Beltrami operator with respect to various geometries [1, 12, 5, 4]. Although
these methods are very powerful, they are not convenient for extracting topological
information. For example, to determine the zero homology from a weighted graph
requires numerically estimating the dimension of the zero eigenspace of the graph
Laplacian, much less efficient than a depth-first search. Secondly, determination of
the number of zero eigenvalues requires setting a nuisance parameter as a numerical
threshold. For higher-order homology generators, the problem is even worse, as
weighted graphs require the construction of the Laplace-de Rham operators which
act on differential forms. (We note that the 0-th Laplace-de Rham operator acts on
function, or 0-forms, and is called the Laplace-Beltrami operator.) In contrast, the
unweighted graph construction allows the manifold to be studied using topological
data analysis methods that are based on simplicial homology (e.g. computed from
the Vietoris-Rips complex).
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The practical advantages of the CkNN are: (1) a single graph representation of
the manifold that captures topological features at multiple scales simultaneously
(see Fig. 5) and (2) identification of the correct topology even for non-compact
sampling measures (see Fig. 6). In CkNN, the length parameter ε is eliminated,
and replaced with a unitless scale parameter δ. Fortunately, for computational pur-
poses, the consistent homology in terms of δ uses the same efficient computational
homology algorithms as conventional persistent homology.

For some applications, the unitless parameter δ may be a disadvantage; for ex-
ample, if the distance scales of particular features need to be explicitly separated.
In such a case, absolute distances are meaningful, units are important, and the stan-
dard ε ball persistence diagram may be more relevant to the problem than a single
consistent topology. The point of this article is that if one is truly interested only
in the topology in TDA, a unitless δ is more appropriate and leads to a consistency
theory. Finally, for a fixed data set, the consistent homology approach requires
choosing the parameter δ (which determines the CkNN graph) and we re-interpret
the classical persistence diagram as a tool for selecting δ.

We introduce the CkNN in Section 2, and demonstrate its advantages in topo-
logical data analysis by considering a simple but illustrative example. In Section
3 we show that consistent spectral estimation of the Laplace-de Rham operators
is the key to consistent estimation of topological features. In particular, the key
to estimating the connected components of a manifold is spectral estimation of the
Laplace-Beltrami operator. We show how these results guarantee consistency of the
connected components (clustering), and combined with recent results [6] on spectral
exterior calculus (SEC), imply consistency of the higher order homology. In Section
4, these results are used to show that the CkNN is the unique unweighted graph con-
struction which yields a consistent geometry via the Laplace-Beltrami operator on
functions. We give several examples that demonstrate the consistency of the CkNN
construction in Section 5, including a fast and consistent clustering algorithm that
allows more general sampling densities than existing theories. Theoretical results
are given in Section 6. We conclude in Section 7 by discussing the relationship of
CkNN to classical persistence. In this article, we focus on applications to TDA,
but the theoretical results will be of independent interest to those studying the
geometry as well as topology of data.

2. Continuous scaling for unweighted graphs. We begin by describing the
CkNN graph construction and comparing it to other approaches. Then we discuss
the main issues of this article as applied to a simple example of data points arranged
into three rectangles with nonuniform sampling.

2.1. Continuous k-Nearest Neighbors. Our goal is to create an unweighted,
undirected graph from a point set with interpoint distances given by a metric d.
Since the data points naturally form the vertices of a graph representation, for each
pair of points we only need to decide whether or not to connect these points with
an edge. There are two standard approaches for constructing the graph:

1. Fixed ε-balls: For a fixed ε, connect the points x, y if d(x, y) < ε.
2. k-Nearest Neighbors (kNN): For a fixed integer k, connect the points x, y

if either d(x, y) ≤ d(x, xk) or d(x, y) ≤ d(y, yk) where xk, yk are the k-th
nearest neighbors of x, y respectively.

The fixed ε-balls choice works best when the data is uniformly distributed on the
manifold, whereas the kNN approach adapts to the local sampling density of points.
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However, we will see that even when answering the simplest topological questions,
both standard approaches have severe limitations. For example, when clustering a
data set into connected components, they may underconnect one part of the graph
and overestimate the number of components, while overconnecting another part of
the graph and bridging parts of the data set that should not be connected. Despite
these drawbacks, the simplicity of these two graph constructions has led to their
widespread use in manifold learning and topological data analysis methods [8].

Our main point is that a less discrete version of kNN sidesteps these problems,
and can be proved to lead to a consistent theory in the large data limit. Define the
Continuous k-Nearest Neighbors (CkNN) graph construction by

3. CkNN: Connect the points x, y if d(x, y) < δ
√
d(x, xk)d(y, yk)

where the parameter δ is allowed to vary continuously. Of course, the discrete nature
of the (finite) data set implies that the graph will change at only finitely many
values of δ. The continuous parameter δ has two uses. First, it allows asymptotic
analysis of the graph Laplacian in terms of δ, where we interpret the CkNN graph
construction as a kernel method. Second, it allows the parameter k to be fixed for
each data set, which allows us to interpret d(x, xk) as a local density estimate.

The CkNN construction is closely related to the “self-tuning” kernel introduced
in [49] for the purposes of spectral clustering, which was defined as

K(x, y) = exp

(
− d(x, y)2

d(x, xk)d(y, yk)

)
. (1)

The kernel (1) leads to a weighted graph, but replacing the exponential kernel with
the indicator function

K(x, y) = 1{
d(x,y)2

d(x,xk)d(y,yk)
<1

} (2)

and introducing the continuous parameter δ yields the CkNN unweighted graph
construction. The limiting operator of the graph Laplacian based on the kernels
(1) and (2) was first analyzed pointwise in [44, 4]. In Sec. 6 we provide the first
complete analysis of the spectral convergence of these graph Laplacians, along with
the bias and variance of the spectral estimates.

The CkNN is an instance of a broader class of multi-scale graph constructions:

(*) Multi-scale: Connect the points x, y if d(x, y) < δ
√
ρ(x)ρ(y)

where ρ(x) defines the local scaling near the point x. In Section 4 we will show that

ρ(x) ∝ q(x)−1/m (3)

is the unique multi-scale graph construction that yields a consistent limiting geom-
etry, where q(x) is the sampling density and m is the intrinsic dimension of the
data.

In applications to data, neither q(x) nor m may be known beforehand. Fortu-
nately, for points on a manifold embedded in Euclidean space, the kNN itself pro-
vides a very simple density estimator, which for k sufficiently small approximately
satisfies

||x− xk|| ∝ q(x)−1/m (4)

where xk is the k-th nearest neighbor of x and m is the dimension of the underlying
manifold [26]. Although more sophisticated kernel density estimators could be used
(see for example [43]), a significant advantage of (4) is that it implicitly incorporates
the exponent −1/m without the need to estimate the intrinsic dimension m of the
underlying manifold.
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(a) (b)

Figure 1. Rectangular regions indicate the true clusters. (a)
Circles of a fixed radius ε show that bridging of the dense regions
occurs before any connections are made in the sparse region. (b)
Graph connecting all points with distance less than ε.

In the next section, we demonstrate the advantages of the CkNN on a simple
example before turning to the theory of consistent topological estimation.

2.2. Example: Representing non-uniform data. In this section we start with a
very simple example where both the fixed ε-ball and simple kNN graph constructions
fail to identify the correct topology.

Example 1. Fig. 1 shows a simple “cartoon” of non-uniform sampling of data
that is common in real applications, and reveals the weakness of standard graph
constructions. All the data points lie in one of the three rectangular connected
components outlined in Fig. 1(a). The left and middle components are densely
sampled and the right component is more sparsely sampled. Consider the radius ε
indicated by the circles around the data points in Fig. 1(a). At this radius, the points
in the sparse component are not connected to any other points in that component.
This ε is too small for the connectivity of the sparse component to be realized, but
at the same time is too large to distinguish the two densely sampled components.
A graph built by connecting all points within the radius ε, shown in Fig. 1(b),
would find many spurious components in the sparse region while simultaneously
improperly connecting the two dense components. We are left with a serious failure:
The graph cannot be tuned, with any fixed ε, to identify the “correct” three boxes
as components.

The kNN approach to local scaling is to replace the fixed ε approach with the
establishment of edges between each point and its k-nearest neighbors. While this
is an improvement, in Fig. 2 we show that it still fails to reconstitute the topology
even for the very simple data set considered in Fig. 1. Notice that in Fig. 2(a) the
graph built based on the nearest neighbor (k = 1) leaves all regions disconnected,
while using two nearest neighbors (k = 2) incorrectly bridges the sparse region with
a dense region, as shown in Fig. 2(b). Of course, using kNN with k > 2 will have
the same problem as k = 2. Fig. 2 shows that simple kNN is not a panacea for
nonuniformly sampled data.

Finally, we demonstrate the CkNN graph construction in Fig. 3. An edge is
added between points x and y when d(x, y) < δ

√
d(x, xk)d(y, yk). We denote the

kth-nearest neighbor of x (resp., y) by xk (resp., yk). The coloring in Fig. 3(a)
exhibits the varying density between boxes. Assigning edges according to CkNN
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(a) (b)

Figure 2. Data set from Fig. 1. (a) Graph based on connecting
each point to its (first) nearest neighbor leaves all regions discon-
nected internally. (b) Connecting each point to its two nearest
neighbors bridges the sparse region to one of the dense regions
before fully connecting the left and center boxes.

(a) (b)

Figure 3. Data set from Fig. 1. (a) Color indicates the relative
values of the bandwidth function ρ(x) = d(x, xk) using k = 10 and
optimally tuning δ (blue = low, red = high). (b) Graph connecting

pairs of data points with ||x − y|| < δ
√
ρ(x)ρ(y). Notice that

the connected components are fully connected and triangulated,
yielding the correct homology in dimensions 0, 1, and 2.

with k = 10 and optimally tuning δ, shown in Fig. 3(b), yields an unweighted graph
whose connected components reflect the manifold in the large data limit. Theorem
2 guarantees the existence of such a δ, that yields an unweighted CkNN graph with
correct topology.

Although we have focused on the connected components of the point set, the
CkNN graph in Fig. 3 fully triangulates all regions, which implies that the 1-
homology is correctly identified as trivial. Clearly, the graph constructions in Fig-
ures 1 and 2 are very far from identifying the correct 1-homology.

To complete our analysis of the three-box example, we compare CkNN to a
further alternative. Two crucial features of the CkNN graph construction are (1)
symmetry in x and y which implies an undirected graph construction, and (2)
introduction of the continuous parameter δ which allows k to be fixed so that
ρ(x) = ||x − xk|| is an estimator of q(x)−1/m. There are many alternative ways of
combining the local scaling function ρ(x) with the continuous parameter δ. Our

detailed theoretical analysis in Sec. 6 shows that the geometric average δ
√
ρ(x)ρ(y)

is consistent in the large data limit, but it does not discount all alternatives.
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(a) (b)

Figure 4. Non-compact version of data set from Fig. 1, density
of leftmost ‘box’ decays continuously to zero. (a) The kNN ‘AND’
construction bridges the components while the 1-homology still has
spurious generators (holes) in the sparse regions. (b) The CkNN is
capable of capturing the correct homology for this data set. Both
methods use k = 10 and the value of δ was tuned to give the best
results for each method. Decreasing δ for (a) would obtain the
correct clusters but introduce more spurious holes.

For example, we briefly consider the much less common ‘AND’ construction
for kNN, where points are connected when d(x, y) ≤ min{d(x, xk), d(y, yk)} (as
opposed to standard kNN which uses the max). Intuitively, the advantage of the
‘AND’ construction is that it will not incorrectly connect dense regions to sparse
regions because it takes the smaller of the two kNN distances. However, on a non-
compact domain, shown in Fig. 4, this construction does not identify the correct
homology whereas the CkNN does. We conclude the ‘AND’ version of kNN is not
generally superior to CkNN. Moreover, our analysis in Sec. 6 does not apply to this
alternative, due to the fact that the max and min functions are not differentiable,
making their analysis more difficult than the geometric average used by CkNN.

2.3. Multiscale homology. In Section 4 we will see that the geometry represented
by the CkNN graph construction captures the true topology with comparatively lit-
tle data by implicitly choosing a geometry that is adapted to the sampling measure.
The CkNN construction yields a natural multi-scale geometry, which is assumed to
be very smooth in regions of low density and can have finer features in regions
of dense sampling. Since all geometries yield the same topology, this multi-scale
geometry is a natural choice for studying the topology of the underlying manifold,
and this advantage is magnified for small data sets. In Fig. 5 we demonstrate the
effect of this geometry on the persistent homology for a small data set with multiple
scales. Following that, in Fig. 6 we show how the CkNN graph construction can
capture the homology even for a non-compact manifold.

Example 2. To form the data set in Fig. 5 we sampled 60 uniformly random points
on a large annulus in the plane centered at (−1, 0) with radii in [2/3, 1] and another
60 uniformly random points on a much smaller annulus centered at (1/5, 0) with
radii in [1/5, 3/10]. Together, these 120 points form a “figure eight” with a sparsely
sampled large hole and a densely sampled small hole as shown in Fig. 5(b)(d). We
then used the JavaPlex package [42] to compute the H1 persistence diagram for the
VR complex based on the standard ε-ball graph construction, shown in Fig. 5(a).
Note that two major generators of H1 are found along with some “topological
noise”, and the generators do not exist for a common ε.

Since JavaPlex can build the VR complex persistence diagram for any distance
matrix, we could easily compute the CkNN persistence diagram, shown in Fig. 5(c),
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Figure 5. (a) Standard ε-ball persistent 1-homology reveals that
no value of ε captures both holes simultaneously: Each homology
class persists at separate ε scales. (b) When ε = 0.16 we see that the
small hole is completely triangulated (the black segment completes
the triangulation), while the large hole is still not connected. (c)
CkNN persistent 1-homology as a function of δ shows that both
homology classes (top two lines) are present simultaneously over
a large range of δ values. (d) When δ = 0.1, the resulting graph
represents the true topology of the manifold.

by using the ‘distance’ matrix d(x, y) = ||x−y||√
||x−xk|| ||y−yk||

, and we used k = 10 to

form the matrix. The CkNN captures both generators in a single graph, giving
a multi-scale representation, whereas the standard ε-ball graph captures only one
scale at a time. Fig. 5(d) shows the edges for δ = 0.1, at which the graph cap-
tures the correct topology in all dimensions. Moreover, the CkNN construction is
more efficient in this example, requiring only 934 edges to form a single connected
component, whereas the ε-ball construction requires 2306 edges.

In the above examples, we saw that CkNN outperforms the standard ε-ball ap-
proach, and kNN methods, for a given finite data set sampled nonuniformly from
a compact manifold. However, in the large data limit, all of the above approaches
converge to the correct homology, so the advantage of CkNN is only one of efficiency.
Next we examine an example of non-compact data, where the CkNN construction
converges to the correct topological information in the large data limit, and the
ε-ball method cannot.



CONSISTENT MANIFOLD REPRESENTATION 9

(a)

0 0.05 0.1 0.15 0.2

D
im

 0

0 0.05 0.1 0.15 0.2

ǫ

D
im

 1

(b)

(c) (d)

0 0.1 0.2 0.3 0.4

D
im

 0

0 0.1 0.2 0.3 0.4

δ

D
im

 1

(e) (f)

Figure 6. (a) Data sampled from a 2-dimensional Gaussian with
a radial gap forming a non-compact manifold. (b) Standard fixed ε-
ball persistence diagram has no persistent region with 2 connected
components and one non-contractible hole. (c) When ε = 0.135 the
1-homology is correct, but outliers are still not connected. (d) For
ε = 0.16 the outliers are still not connected and the middle section
is bridged. For any size gap this bridge will happen in the limit
of large data as the outliers become more spaced out. (e) CkNN
persistence in terms of δ shows the correct homology (β0 = 2 and
β1 = 1) for 0.180 < δ < 0.215. (f) The CkNN construction for
δ = 0.20.
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Example 3. To form the data set in Fig. 6(a) we sampled 150 points from a 2-
dimensional Gaussian distribution and then removed the points of radius between
[1/4, 3/4], leaving 120 points lying on two connected components with a single non-
contractible hole. In this case the standard ε-ball persistence does not even capture
the correct 0-homology for the manifold, due to the decreasing density near the
outlying points, as shown in Fig. 6(c-d). Furthermore, since the true manifold is
non-compact, there is no reason to expect the ε-ball construction to converge to
the correct topology even in the limit of large data. In fact, as the amount of
data is increased, the outlying points will become increasingly spaced out, leading
to worse performance for the fixed ε-ball construction, even for the H0 homology.
In contrast, the CkNN construction is able to capture all the correct topological
features for a large range of δ values, as shown in Fig. 6(e-f).

In Sections 3 and 4 we prove that the CkNN is the unique graph construction
that provides a consistent representation of the geometry of the underlying compact
(or noncompact, under some technical assumptions) manifold in the limit of large
data. An immediate consequence is the consistency of the connected components.

3. Manifold topology from graph topology. Our goal is to access the true
topology of the underlying manifold using the Vietoris-Rips (VR) complex, which is
an abstract simplicial complex on the finite data set. The VR complex is constructed
inductively, first adding a triangle whenever all the faces are in the graph and then
adding a higher order simplex whenever all the faces of the simplex are included.

Definition 1. We say that a graph construction from a random sampling is topo-
logically consistent if the homology computed from the VR complex is isomorphic
to the homology of the underlying manifold with probability approaching 1 as the
number of data points goes to infinity.

Topological consistency has been shown directly for the ε-ball graph construc-
tion on compact manifolds without boundary [25, 34, 7]. However, Example 3 above
shows why the ε-ball construction cannot be guaranteed to be consistent for non-
compact manifolds. In this section we delineate our notion of graph consistency
for CkNN on Riemannian manifolds, compact and noncompact, based on spectral
consistency of graph Laplacians with the Laplace-Beltrami operator. Of course,
this will establish geometric properties of the data that go beyond topological data
analysis.

We first note that on a Riemannian manifold, the Laplace-Beltrami operator
completely determines the Riemannian metric and thus the entire topology of a
Riemannian manifold. To make this connection explicit, in coordinates x1, ..., xm

we can compute the Riemannian metric by

gij = gx(∇xi,∇xj) =
1

2
(∆(xixj)− xi∆xj − xj∆xi).

The Riemannian metric g is used to define the lengths of curves. In turn, the
distance between points is defined as the infimum of these lengths over all curves
between the points [35]. The notion of distance determines the natural metric
topology on the manifold. In this formal way, perfect knowledge of the Laplace-
Beltrami operator implies perfect knowledge of the topology.

Of course, this formal construction falls short of practical usage for two reasons.
First, our discrete approximation does not yield perfect knowledge of the Laplace-
Beltrami operator, but only convergence in a certain sense in the limit of large data.
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Second, extracting a given topological invariant from knowledge of the Laplace-
Beltrami operator may be very difficult.

In this article, we are concerned mainly with addressing the first problem by
showing the spectral convergence required to obtain certain types of topological
invariants, namely cohomology. In Sec. 6, combined with a result of [48], we prove
pointwise and spectral convergence of the CkNN graph Laplacian to the Laplace-
Beltrami operator, which we refer to as spectral consistency of the graph Laplacian.
In particular, for a manifold without boundary or with a smooth boundary, conver-
gence of the CkNN graph construction is guaranteed, and the manifold topology is
uniquely determined.

The question remains, does spectral consistency to the Laplace-Beltrami operator
imply topological consistency? The question can be visualized in the following
diagram.

Graph VR Homology Hn(G)
topological−−−−−−→
consistency

Manifold Homology Hn(M)

Graph Theory

x

xHodge Theory + SEC [6]

Graph Laplacian Lun = ∂∂>
spectral−−−−−−−−→

consistency
Laplace-Beltrami ∆ = δd

The left vertical arrow corresponds to the fact that the graph Laplacian Lun =
D−W can trivially be used to reconstruct the entire graph since the non-diagonal
entries are simply the negative of the adjacency matrix. Since the graph deter-
mines the entire VR complex, the graph Laplacian completely determines the VR
homology of the graph. This connection is explicitly spectral for the zero homology,
since the zero-homology of a graph corresponds exactly to the zero-eigenspace of
the graph Laplacian [47].

For higher homology, one would need to establish that the VR homology com-
puted from the graph Laplacian agrees with the homology uniquely determined
by the Laplace-Beltrami operator (which is uniquely determined by the converging
CkNN graph Laplacians). We next explore the plausibility of this conjecture.

The right vertical arrow follows from the fact that from the Laplace-Beltrami
operator, it is possible to reconstruct the metric on a Riemannian manifold which
completely determines the homology of the manifold. The Riemannian metric lifts
to an inner product on forms g(ω, ν) which defines the Hodge inner products

〈ω, ν〉 =

∫
M
g(ω, ν) dV

on differential forms. From the Hodge inner products, one defines the codifferential
operators δk as the formal adjoint of the exterior derivative dk on k-forms. Finally,
the Laplace-de Rham operator on differential k-forms is defined by ∆k = δk+1dk +
dk−1δk, and the Hodge theorem [35] states that the kernel of ∆k is isomorphic
to the k-th de Rham cohomology group and the k-th singular cohomology group,
ker(∆k) ∼= Hk

dR(M) ∼= Hk
sing(M). For closed manifolds without boundary, Poincare

duality relates the homology to the cohomology Hn−k(M) ∼= Hk(M). In general,
cohomology is considered a stronger invariant.

A partial solution to this problem is given in [6], with a method of extracting
cohomology information that relies on constructing estimators of Laplace-de Rham
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operators on k-forms. The construction of these estimators and their consistency
relies on the spectral convergence results shown here. This construction is called the
spectral exterior calculus (SEC) since the Laplace-de Rham operators are approx-
imated by Galerkin truncation on a spectral basis (as opposed to a finite element
basis) constructed using the eigenfunction of the Laplace-Beltrami operator. While
a finite element basis would require a simplicial complex, the SEC construction is
valid for an abstract complex such as the VR complex, since it relies only on the
spectral consistency of the graph Laplacian. Estimators of the Laplace-de Rham
operators on 1-forms are constructed and are shown to converge spectrally, thus
insuring that the kernel of these estimators yields the true cohomology in the limit
of large data. In [6] a general strategy is outlined for lifting the results to the
Laplace-de Rham operators on k-forms for k > 1. The restriction to 1-forms was
simply due to the complexity of the explicit formulations. The SEC together with
the spectral convergence of the graph Laplacian to the Laplace-Beltrami operator
completes the right vertical arrow by giving an explicit construction.

An alternative approach that has not been fully explored yet would be to con-
struct the Laplace-de Rham operators on k-forms directly from the VR-complex.
This is an alternative to the SEC construction which represents these operators on
a basis built from eigenfunction of the Laplace-Beltrami operator. Such a construc-
tion would allow for the top horizontal arrow to be shown directly. Establishing
this connection requires defining a discrete analog of differential forms and discrete
analogs of the higher-order Laplace-de Rham operators and then showing spectral
convergence to the corresponding operators on the manifold. One promising con-
struction is the discrete exterior calculus [15, 23] but so far only very restricted
consistency results have been shown [36, 38].

To summarize the above discussion, just as the discrete Laplacian completely
determines the graph VR homology, the Laplace-Beltrami operator ∆ completely
determines the manifold homology. In perfect analogy to the discrete case, the
zero-homology of the manifold corresponds to the zero-eigenspace of the Laplace-
Beltrami operator. This connection is explicitly spectral, and we conjecture that
the isomorphism generalizes to higher-order homology groups via the Laplace-de
Rham operators on differential forms.

Similar results exist for weighted graphs, which are less helpful to topological data
analysis because they are not directly interpretable through VR calculations. For
example, [12] proves pointwise convergence on compact manifolds for any smooth
sampling density, but their construction requires a weighted graph in general. For
graph Laplacian methods (including the results developed here), the dependence
on the curvature and nearness to self-intersection appears in the bias term of the
estimator as shown in [12, 20]. Using more complicated weighted graph construc-
tions, recent results show that for a large class of non-compact manifolds [20] with
smooth sampling densities that are allowed to be arbitrarily close to zero [4], the
graph Laplacian can converge pointwise to the Laplace-Beltrami operator. These
results require weighted graph constructions due to several normalizations which
are meant to remove the influence of the sampling density on the limiting operator.

4. The unique consistent unweighted graph construction. In this section we
show that the continuous k-nearest neighbors (CkNN) construction is the unique
unweighted graph construction that yields a consistent unweighted graph Laplacian
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for any smooth sampling density on manifolds of the class defined in [20], including
many non-compact manifolds.

Consider a data set {xi}Ni=1 of independent samples from a probability distribu-
tion q(x) that is supported on a m-dimensional manifoldM embedded in Euclidean
space. For a smooth function ρ(x) on M, we will consider the CkNN graph con-
struction, where two data points xi and xj are connected by an edge if

d(xi, xj) < δ
√
ρ(xi)ρ(xj). (5)

This construction leads to the N×N adjacency matrix W whose ijth entry is 1 if xi
and xj have an edge in common, and 0 otherwise. Let D be the diagonal matrix of
row sums of W , and define the “unnormalized” graph Laplacian Lun = D −W . In
Sec. 6 we show that for an appropriate factor c depending only on δ and N , in the
limit of large data, c−1Lun converges both pointwise and spectrally to the operator
defined by

Lq,ρf ≡ qρm+2
(
∆f −∇ log

(
q2ρm+2

)
· ∇f

)
, (6)

where ∆ is the positive definite Laplace-Beltrami operator and ∇ is the gradient,
both with respect to the Riemannian metric inherited from the ambient space. In
fact, pointwise convergence follows from a theorem of [44], and the pointwise bias
and a high probability estimate of the variance was first computed in [4]. Both of
these results follow for a larger class of kernels than the one defined in (5).

Although the operator in (6) appears complicated, we now show that it is still a
Laplace-Beltrami operator on the same manifoldM, but with respect to a different
metric. A conformal change of metric corresponds to a new Riemannian metric
g̃ ≡ ϕg, where ϕ(x) > 0, and which has Laplace-Beltrami operator

∆g̃f =
1

ϕ
(∆f − (m− 2)∇ log

√
ϕ · ∇f). (7)

For expressions (6) and (7) to match, the function ϕ must satisfy

1

ϕ
= qρm+2 and ϕ

m−2
2 = q2ρm+2. (8)

Eliminating ϕ in the two equations results in q−(m+2) = ρm(m+2), which implies
ρ ≡ q− 1

m as the only choice that makes the operator (6) equal to a Laplace-Beltrami

operator ∆g̃. The new metric is g̃ = q2/mg. Computing the volume form dṼ of the
new metric g̃ we find

dṼ =
√
|g̃| =

√
|q2/mg| = q

√
|g| = q dV (9)

which is precisely the sampling measure. Moreover, the volume form dṼ is exactly
consistent with the discrete inner product

E
[
~f · ~f

]
= E

[
N∑
i=1

f(xi)
2

]
= N

∫
f(x)2q(x) dV = N 〈f, f〉dṼ .

This consistency is crucial since the discrete spectrum of Lun are the minimizers of
the functional

Λ(f) =
~f >c−1Lun

~f

~f > ~f
→N→∞

〈f,∆g̃f〉dṼ
〈f, f〉dṼ

where c is a scalar depending only on δ and N (see Theorem 3 in Sec. 6). If the

Hilbert space norm implied by ~f > ~f were not the volume form of the Riemannian
metric g̃, then the eigenvectors of Lun would not minimize the correct functional in
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the limit of large data. This shows why it is important that the Hilbert space norm
is consistent with Laplace-Beltrami operator estimated by Lun.

Another advantage of the geometry g̃ concerns the spectral convergence of Lun

to Lq,ρ shown in Theorem 7 in Sec. 6, which requires the spectrum to be discrete.
Assuming a smooth boundary, the Laplace-Beltrami operator on any manifold with
finite volume will have a discrete spectrum [11]. This insures that spectral conver-
gence always holds for the Riemannian metric g̃ = q2/mg since the volume form is
dṼ = qdV , and therefore the volume of the manifold is exactly

volg̃(M) =

∫
M
dṼ =

∫
M
q dV = 1.

Since all geometries on a manifold have the same topology, this shows once again
that the metric g̃ is completely natural for topological investigations since spectral
convergence is guaranteed, and spectral convergence is crucial to determining the
homology.

The fact that ρ = q−1/m is the unique solution to (8) along with the spectral
consistency implies the following result.

Theorem 2 (Unique consistent geometry). Consider data sampled from a compact
Riemannian manifold satisfying Assumption 1 (see Section 6). Among unweighted
graph constructions (5), ρ = q−1/m is the unique choice which yields a consistent
geometry in the sense that the unnormalized graph Laplacian converges spectrally to
a Laplace-Beltrami operator. Thus, the CkNN graph construction yields a consistent
clustering for any density q.

Based on the results in Section 6, we conjecture that spectral convergence also
holds for non-compact manifolds. This would imply that CkNN is the unique con-
sistent graph construction for clustering, since for any other ρ, there will exist

densities q where M has infinite volume with respect to q
4

m−2 ρ
2m+4
m−2 dV , precluding

consistency. Based on the discussion in the previous section, and in particular the
fact that the Laplace-Beltrami operator determines the entire cohomology of the
manifold, we propose the following conjecture:

Conjecture 1 (Unique consistent topology). CkNN is the unique graph construc-
tion (5) with an associated VR complex that is topologically consistent in the limit
of large data.

As mentioned in the previous section, completing the proof of this conjecture
would require explicit estimation of the Laplace-de Rham operators, ∆k, and cor-
responding spectral convergence proofs. In this paper we establish this fact for the
Laplace-Beltrami operator, ∆ = ∆0, which is the key first step to supporting the
conjecture. The spectral exterior calculus (SEC) [6] provides a construction which
lifts this results to general ∆k, and explicitly proves spectral convergence for ∆1

which is the most challenging theoretical barrier. The only remaining challenge to
lifting the result to ∆k for all k is simply the problem of formulating the explicit
construction.

The theorem and conjecture above have practical ramifications since (as shown
in the previous section) a consistent graph construction will have the same limiting
topology as the underlying manifold. In Examples 5 and 6 we will empirically
illustrate the consistency of the CkNN choice ρ = q−1/m as well as the failure of
alternative constructions.
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As a side note, we mention that the unnormalized graph Laplacian is not the only
graph Laplacian. With the same notation as above, the “normalized”, or “random-
walk” graph Laplacian is often defined as Lrw = I − D−1W = D−1Lun, and has
the limiting operator

c−1Lrw ≡ c−1D−1Lun →N→∞ ρ2
(
∆−∇ log

(
q2ρm+2

)
· ∇
)

= q
4

m−2 ρ
4m

m−2 ∆g̃

(see for example [44, 4]; the constant c is different from the unnormalized case). Note
that again ρ = q−1/m is the unique choice leading to a Laplace-Beltrami operator.

This choice implies that to leading order D~f ≈ qρmf = f , so the corresponding

Hilbert space has norm ~f >D~f →N→∞ 〈f, f〉dṼ . This implies spectral consistency

since Lrw
~f = λ~f is equivalent to Lun

~f = λD~f , which is related to the functional

Λ(f) =
~f >c−1Lun

~f

~f >D~f
→N→∞

〈f,∆g̃f〉dṼ
〈f, f〉dṼ

.

Therefore, for the choice ρ = q−1/m, both the unnormalized and normalized graph
Laplacians are consistent with the same underlying Laplace-Beltrami operator with
respect to the metric g̃.

We emphasize that we are not using either graph Laplacian directly for com-
putations. Instead, we are using the convergence of the graph Laplacian to show
convergence of the graph connected components to those of the underlying man-
ifold. Since this consistency holds for an unweighted graph construction, we can
make use of more computationally efficient methods to find the topology of the
graph, such as depth-first search to compute the zero-level homology. More gen-
erally we compute the higher order homology from the VR complex of the graph,
which our conjecture suggests should converge to that of the underlying manifold.
A wider class of geometries are accessible via weighted graph constructions (see for
example [12, 4, 5]), but fast algorithms for analyzing graph topology only apply to
unweighted graphs.

5. Further applications to topological data analysis. The fundamental idea
of extracting topology from a point cloud by building unweighted graphs relies on
determining what is considered an edge in the graph as a function of a parameter,
and then considering the graph as a VR complex. In the ε-ball, kNN and CkNN
procedures, edges are added as a parameter is increased, from no edges for extremely
small values of the parameter to full connectivity for sufficiently large values. From
this point of view, the procedures differ mainly by the order in which the edges are
added.

Classical persistence orders the addition of possible edges by ||x − y||, whereas

the CkNN orders the edges by ||x−y||√
||x−xk|| ||y−yk||

. More generally, a multi-scale graph

construction with bandwidth function ρ(x) orders the edges by ||x−y||√
ρ(x)ρ(y)

. Our

claim is that CkNN gives an order that allows graph consistency to be proved. In
addition, we have seen in Figs. 5 and 6 that the CkNN ordering is more efficient.
In this section we show further examples illustrating this fact. We will quantify
the persistence or stability of a feature by the percentage of edges (out of the total
N(N − 1)/2 possible in the given ordering) for which the feature persists. This
measure is an objective way to compare different orderings of the possible edges.

The consistent homology approach differs from the persistent homology approach
by using a single graph construction to simultaneously represent all the topological
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features of the underlying manifold. This requires selecting the parameter δ which
determines the CkNN graph. The asymptotically optimal choice of δ in terms of
the number of data points is derived in Sec. 6, however the constants depend on
the geometry of the unknown manifold. There are many existing methods of tuning
δ for learning the geometry of data [14, 4]. As a practical method of tuning δ for
topological data analysis, we can use the classical persistence diagram to find the
longest range of δ values such that all of the homological generators do not change.
In a sense we are using the classical persistence diagram in reverse, looking for a
single value of δ where all the homology classes are stable. In Examples 5 and 6
below we validate this approach by showing that the percentage of edges which
capture the true homology is longest when using ordering defined by ρ = q−1/m

which is equivalent to the CkNN.

5.1. A fast graph-based clustering algorithm. We consider the problem of
identifying the connected components of a manifold from a data set using the con-
nected components of the CkNN graph construction. While clustering connected
components is generally less difficult than segmenting a connected domain, outliers
can easily confuse many clustering algorithms. Many rigorous methods, including
any results based on existing kernel methods [27, 49, 48, 29], require the sampling
density to be bounded away from zero. In other words, rigorous clustering algo-
rithms require the underlying manifold to be compact. A common work-around for
this problem is the estimate the density of the data points and then remove points
of low density. However, this leaves the removed points unclustered [10, 9, 41, 28].
We have shown that the CkNN method is applicable to a wide class of non-compact
manifolds, and in particular the connected components of the CkNN graph will
converge to the connected components of the underlying manifold.

Here we use the CkNN to put an ordering on the potential edges of the graph.
While the full persistent homology of a large data set can be computationally very
expensive, the 0-homology is easily accessible using fast graph theoretic algorithms.
First, the connected components of a graph can be quickly identified by the depth-
first search algorithm. Second, unlike the other homology classes, the 0-homology
is monotonic; as edges are added, the number of connected components can only
decrease or stay the same. This monotonicity allows us to easily identify the entire 0-
homology δ-sequence by only finding the transitions, meaning the numbers of edges
where the 0-th Betti number changes. We can quickly identify these transitions
using a binary search algorithm as outlined below.

Algorithm 1. Fast Binary Search Clustering.

Inputs: Ordering of the N(N − 1)/2 possible edges, number of clusters C > 1.
Outputs: Number of edges, L, such that the graph has C components and

adding an edge yields C − 1 components.

1. Initialize the endpoints L = 0 and R = N(N − 1)/2
2. while L < R− 1

(a) Set M = floor((L+R)/2)
(b) Build a graph using the first M edges from the ordering

(c) Use depth-first search to find the number of components C̃

(d) If C̃ ≥ C set L = M otherwise set R = M
3. return L.
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Figure 7. The fast clustering algorithm applied to a set of three
spirals with densities which decay exponentially along the length of
the spiral. (a) 1000 total points sampled from three 2-dimensional
spirals in the plane. (b) Diagram shows number of clusters as a
function of the percentage of possible edges added to the graph
(a unitless measure of persistence) (c) Graph corresponding to the
maximum number of edges with 3 components, colored according to
identification by depth-first-search. (d) 2000 total points sampled
from three 3-dimensional spirals in R3. (e) Large interval identifies
the correct number of clusters. (f) Graph with maximum number
of edges having 3 components, colored by clustering algorithm.

When the goal is to find all of the transition points, Algorithm 1 can easily be
improved by storing all the numbers of clusters from previous computations and
using these to find the best available left and right endpoints for the binary search.

Example 4. In Fig. 7, we illustrate the use of Algorithm 1 on a point set consisting
of the union of three spiral-shaped subsets with nonuniform sampling. In fact, the
density of points falls off exponentially in the radial direction. Fig. 7(a) shows
the original set, and panel (b) shows the number of components as a function
of the proportion of edges. When the number of edges is between one and two
percent of the possible pairs of points, the persistence diagram in (b) detects three
components, shown in (c) along with the edges needed. A three-dimensional version
of three spiral-shaped subsets is depicted in Fig. 7(d)-(f), with similar results.

In the next two examples, we illustrate the theoretical result that the choice of
β = −1/m in the bandwidth function ρ = qβ is optimal, where m is the dimension
of the data.

Example 5. We begin with the zero-order homology. We will demonstrate empiri-
cally that the choice β = −1/m maximizes the persistence of the correct clustering,
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Figure 8. Persistence of the clustering of a cut-Gaussian distri-
bution using the multi-scale graph construction with ρ = qβ , where
the distribution is in dimension (a) 1 (b) 2 (c) 3 (d) 4. Persistence
is measured as a percentage of the total number of possible edges
in the graph, N(N − 1)/2 as a function of β. Each data point
represents an average over 500 data sets, each data set starts with
sufficiently many points randomly sampled from an m-dimensional
Gaussian so that after points in the gap region are rejected there
are N points remaining. The correct homology (two connected
components) is most persistent when β is near −1/m implying the
optimal multi-scale graph construction is the CkNN construction
where ρ ∝ q−1/m.

for 1 ≤ m ≤ 4. Consider data sampled from an m-dimensional Gaussian distribu-
tion with a gap of radial width w = 0.11/m centered at radius w + 3m/10. (The
dependence on the dimension m is necessary to insure that there are two connected
components for small data sets.) The radial gap separates Rm into two connected
components, the compact interior m-ball, and the non-compact shell extending to
infinity with density decaying exponentially to zero.

Given a data set sampled from this density, we can construct a graph using
the multi-scale graph construction which connects two points x, y if ||x − y|| <
δ
√
ρ(x)ρ(y). Since the true density is known, we consider the bandwidth functions

ρ = qβ for β ∈ [−3/2,−1/8]. For each value of β we used the fast clustering
algorithm to identify the minimum and maximum numbers of edges which would
identify the correct clusters. We measured the persistence of the correct clustering
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Figure 9. Persistence of the true homology using the multi-scale
graph construction with ρ = qβ . The underlying data sets are (a)
a cut 1-dimensional Gaussian embedded in the plane with a loop
introduced and (b) the same 2-dimensional cut Gaussian density
as in Fig. 8(b). Persistence is measured as a percentage of the total
number of possible edges in the graph, N(N −1)/2 as a function of
β. Each data point represents an average over 200 data sets. The
correct homology (β0 = 2 and β1 = 1 for both (a) and (b)) is most
persistent when β is near −1/m implying the optimal multi-scale
graph construction is the CkNN construction where ρ ∝ q−1/m.

as the difference between the minimum and maximum numbers of edges which
identified the correct clusters divided by the total number of possible edges N(N −
1)/2. We then repeated this experiment for 500 random samples of the distribution
and averaged the persistence of the correct clustering for each value of β. The results
are shown in Fig. 8. Notice that for each dimension m = 1, ..., 4 the persistence has
a distinctive peak centered near β = −1/m which indicates that the true clustering
is the most persistent using the multi-scale graph construction that is equivalent to
the CkNN.

Example 6. Next, we examine the discovery of the full homology for a 1-dimen-
sional and 2-dimensional example using Javaplex [42]. To obtain a one-dimensional
example with two connected components we generated a set of points from a stan-
dard Gaussian on the t-axis with points with 0.4 < t < 0.8 removed, and then
mapped these points into the plane via t 7→ (t3 − t, 1/(t2 + 1))>. The embedding
induces a loop, and so there is non-trivial 1-homology in the 1-dimensional example.
The correct homology for this example has Betti numbers β0 = 2 and β1 = 1, which
is exactly the same as the true homology for the 2-dimensional cut Gaussian from
Fig. 8, which will be our 2-dimensional example. In Fig. 9 we show the persistence
of the correct homology in terms of the percentage of edges as a function of the
parameter β that defines the multi-scale graph construction. As with the clustering
example, the results clearly show that the correct homology is most persistent when
β is near −1/m which corresponds to the CkNN graph construction.

5.2. Identifying patterns in images with homology. In this section we con-
sider the identification of periodic patterns or textures from image data. We take a
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(a)

(b)

(c)

Figure 10. (a) Four simple patterns whose sub-image orbifolds
exhibit nontrivial homology. The true values of β1 for the four
patterns are 1, 2, 2, and 3 respectively. (b) Using fixed ε-ball graph
construction and selecting ε from the region where the homology
generators span the largest proportion L of total edges without
changing (the most persistent homology). (c) Using the CkNN
construction and selecting δ from the region where the homology
generators span the largest L without changing. The homology
was computed with JavaPlex [42].

topological approach to the problem, and attempt to classify the orbifold (the quo-
tient of the plane by the group of symmetries) by its topological signature. Note
that to achieve this, we will not need to learn the symmetry group, but will directly
analyze the orbifold by processing the point cloud of small s× s pixel subimages of

the complete image in Rs2 without regard to the original location of the subimages.

Example 7. In Fig. 10(a) we show four simple patterns that can be distinguished
by homology. To make the problem more difficult, the patterns are corrupted by a
‘brightness’ gradient which makes identifying the correct homology difficult. From
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left to right the patterns are: First, stripes have a single periodicity so that β1 = 1;
second, a pattern that is periodic in both the vertical and horizontal directions,
implying β1 = 2; third, a checkerboard pattern also has only two periodicities β1 =
2, but they have different periods than the previous pattern; fourth, a hexagonal
pattern has 3 periodicities so that β1 = 3. To see the three periodicities in the fourth
pattern, notice that the pattern repeats when moving right two blocks, or down
three blocks, or right one block and down two blocks; each of these periodicities
yields a distinct homology class.

To identify the pattern in each image, we cut each full image into 9-by-9 sub-
images, yielding 121 points in R81. In Fig. 10(b) we show the results of applying
the fixed ε-ball graph construction to each of the four sets of sub-images. In order
to choose ε we used JavaPlex [42] to compute the persistent homology and then
chose the region with the longest persistence (meaning the region of ε where the
homology went the longest without changing). In the title of each plot we show
first two betti numbers for the graph constructed with this value of ε, we also show
the length of the persistence in terms of the percentage of edges for which the
homology is unchanged. In Fig. 10(c) we repeated this experiment using the CkNN
construction, choosing δ from the region with the longest unchanging homology. In
this set of examples, the CkNN construction is more efficient, and finds the correct
orbifold homology.

When the ‘brightness’ gradient is removed, both the fixed ε-ball and CkNN con-
structions identify the correct homology in the most persistent region. However, the
‘brightness’ gradient means that the patterns do not exactly meet (see the leftmost
panels in Figs. 10(b,c)). For the simple stripe pattern, the ε-ball construction can
still bridge the gap and identify the correct homology; however, for the more com-
plex patterns, the ε-ball construction finds many spurious homology classes which
obscure the correct homology.

Example 8. We applied the CkNN graph construction to identify patterns in real
images of zebra stripes and fish scales in Figure 11. The images shown in Fig. 11
were taken from larger images [17, 24]. In order to analyze the subimage spaces we
first decimated the images to reduce the resolution, (by a factor of 2 for the stripes
and factor of 25 for the scales) in each case to yield a 40 × 40 pixel image. We
then formed the set of all 23-pixel by 23-pixel subimages shifting by two pixels in
the vertical and horizontal directions to obtain 136 subimages, considered as points

in R529. We built the rescaled distance matrix ||x−y||√
||x−xk|| ||y−yk||

using k = 5. In

Fig. 11(b,e) we show the persistent homology of the VR complex associated to the
respective distance matrices in terms of the parameter δ of the CkNN. Using this
diagram, we chose the maximal interval of δ for which the homology was stable. In
Fig. 11(c,f) we show the CkNN graph for δ chosen from this region along with the
correct Betti numbers.

6. Convergence of graph Laplacians. We approach the problem of consistent
graph representations of manifolds by assuming we have data points which are
sampled from a smooth probability distribution defined on the manifold. We view
this assumption as establishing a “geometric prior” for the problem. Our main
goal is to approximate the Laplace-Beltrami operator on the manifold, independent
of the sampling distribution, and using as little data as possible. This is a natural
extension of ideas developed by [1] and Coifman and collaborators [12, 32, 13, 31, 30].
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Figure 11. (a) Image of zebra stripes [17]. (b) Persistence dia-
gram for the space of subimages. (c) The CkNN graph construction
on the subimage space with δ chosen from the longest region where
the homology is constant. (d) Image of fish scales [24]. (e) Per-
sistence diagram. (f) The CkNN graph construction on the PCA
projection of the subimage space with δ chosen from the longest re-
gion where the homology is constant. The homology was computed
with JavaPlex [42].

The proof of consistency for any graph construction has three parts, two statisti-
cal and one analytic: (1) showing that the (discrete) graph Laplacian is a consistent
statistical estimator of a (continuous) integral operator (either pointwise or spec-
trally), (2) showing that this estimator has finite variance, and (3) an asymptotic
expansion of the integral operator that reveals the Laplace-Beltrami operator as the
leading order term. The theory of convergence of kernel weighted graph Laplacians
to their continuous counterparts was initiated with [1] which proved parts (1) and
(3) for uniform sampling on compact manifolds, and part (2) was later completed
in [40]. Parts (1) and (3) were then extended to non-uniform sampling in [12], and
part (2) was completed in [4]. The extension to noncompact manifolds was simi-
larly divided. First, [20] provided the proof of parts (1) and (3), and introduced the
necessary additional geometric assumptions which were required for the asymptotic
analysis on non-compact manifolds. However, [4] showed that the pointwise errors
on non-compact manifolds could be unbounded and so additional restrictions had
to be imposed on the kernel used to construct the graph Laplacian. In order to
construct the desired operators on non-compact manifolds, [4] showed that vari-
able bandwidth kernels were required (part (1) for variable bandwidth kernels was
previously achieved in [44]). In all of this previous work, parts (1) and (2) are
always proven pointwise, despite the fact that most applications require spectral
convergence.
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The geometric prior assumes that the set of points that have positive sampling
density is a smooth manifold M ≡ {x ∈ Rn : q(x) > 0} where q is a smooth
sampling density. (This is a natural definition since regions of zero density will not
be observed in data sets.) Some weak assumptions on the manifoldM are required.
The theory of [1, 12] assumes that the manifold is compact, implying that the density
q must be bounded away from zero on M. The theory of [20, 21, 22] showed that
this assumption could be relaxed, and together with the statistical analysis in [4]
allows a large class of noncompact manifolds with densities that are not bounded
away from zero. (Note that since q is continuous, if M is compact the minimum
value of q cannot be zero since it is attained onM which is defined to have nonzero
density.) In this article we requireM to have injectivity radius bounded below and
curvature (intrinsic and extrinsic) bounded above; these technical assumptions hold
for all compact manifolds and were introduced to allow application to noncompact
manifolds in [20].

Assumption 1. The data points are sampled from a density q : Rn → [0,∞) such
that M ≡ {x ∈ Rn : q(x) > 0} is a C3 Riemannian manifold with finitely many
connected components and q restricted to M is a C3 function. The manifold M
inherits a metric g from the ambient space, and the conformal metric q2/dg has
injectivity radius bounded away from zero and curvature and second fundamental
form bounded above. (Note that M may be noncompact and may have a boundary.)

There are several algorithms for estimating the Laplace-Beltrami operator, how-
ever the particularly powerful construction in [4] is currently the only estimator
which allows the sampling density q to be arbitrarily close to zero. Since we are
interested in addressing the problem of non-uniform sampling, we will apply the re-
sult of [4] for variable bandwidth kernels. However, the method of [4] used a special
weighted graph Laplacian in order to approximate the Laplace-Beltrami operator.
The weighted graph Laplacian uses additional normalizations which were first in-
troduced in the diffusion maps algorithm [12] in order to counteract the effect of the
sampling density. The goal of this paper is to use an unweighted graph Laplacian
to approximate the Laplace-Beltrami operator, since this allows us to compute the
topology of the graph using fast combinatorial algorithms. In fact, the unweighted
graph Laplacian will converge to the Laplace-Beltrami operator of the embedded
manifold in the special case of uniform sampling. The power of our new graph
construction is that we can recover a Laplace-Beltrami operator for the manifold
from an unweighted graph Laplacian, even when the sampling is not uniform.

Let q(x) represent the sampling density of a data set {xi}Ni=1 ⊂ M ⊂ Rn. We
combine a global scaling parameter δ with a local scaling function ρ(x) to define
the combined bandwidth δρ(x). Consider the symmetric variable bandwidth kernel

Wδ(x, y) = h

(
||x− y||2

δ2ρ(x)ρ(y)

)
(10)

for any shape function h : [0,∞)→ [0,∞) that has exponential decay. For a function
f and any point x ∈M we can form a Monte-Carlo estimate of the integral operator
given by

E

 1

N

N∑
j=1

Wδ(x, xj)f(xj)

 =

∫
M
Wδ(x, y)f(y)q(y) dV (y). (11)
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From [4] the expression in (11) has the asymptotic expansion

δ−m
∫
M

Wδ(x, y)f(y)q(y) dV (y)

= m0fqρ
m + δ2

m2ρ
m+2

2

[
ωfqρ−2 + L(fq)

]
+O(δ4) (12)

where

Lh ≡ −∆h+ (m+ 2)∇ log(ρ) · ∇h,
∆ is the positive definite Laplace-Beltrami operator, and ∇ is the gradient operator,
both with respect to the Riemannian metric that M inherits from the ambient
space Rn. (Note that in [4] the expansion (12) is written with respect to the
negative definite Laplace Beltrami operator, whereas here we consider the positive
definite version.) In the right-hand side of (12), all functions are evaluated at x.
The function ω = ω(x) depends on the shape function h and the curvature of the
manifold at x.

6.1. Pointwise and integrated bias and variance. The standard graph Lapla-
cian construction starts with a symmetric affinity matrix W whose ij entry quanti-
fies similarity between nodes xi and xj . We assume in the following that W = Wδ

from (10), which includes the CkNN construction as a special case. Define the di-
agonal normalization matrix D as the row sums of W , i.e. Dii =

∑
jWij . The

unnormalized graph Laplacian matrix is then

Lun = D −W. (13)

We interpret this matrix as the discrete analog of an operator. Given a function f ,

by forming a vector ~fj = f(xj) the matrix vector product is(
Lun

~f
)
i

= fiDii −
N∑
j=1

Wijfj =
∑
j 6=i

Wij(fi − fj) (14)

so that Lun
~f is also a vector that represents a function on the manifold. Theorem

3 below makes this connection rigorous by showing that for an appropriate factor c

that depends on N and δ, the vector c−1(Lun
~f)i is a consistent statistical estimator

of the differential operator

Lq,ρf ≡ ρm+2 [fLq − L(fq)] = qρm+2
[
∆f −∇ log

(
q2ρm+2

)
· ∇f

]
(15)

where all functions are evaluated at the point xi. The last equality in (15) fol-
lows from the definition of L and applying the product rules for positive definite
Laplacian ∆(fg) = f∆g + g∆f − 2∇f · ∇g and the gradient ∇(fg) = f∇g + g∇f .
Theorem 3 shows that Lun is a pointwise consistent statistical estimator of a dif-
ferential operator. In fact consistency was first shown in [44] and the bias of this
estimator was first computed in [4]. Here we include the variance of this estimator
as well.

Theorem 3 (Pointwise bias and variance of Lun). Let M be an m-dimensional
Riemannian manifold embedded in Rn, let q :M→ R be a smooth density function,
and define Lun as in (13). For {xi}Ni=1 independent samples of q, and f ∈ C3(M)
we have

E
[
c−1

(
Lun

~f
)
i

]
= Lq,ρf(xi) +O(δ2) (16)
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and

var
[
c−1

(
Lun

~f
)
i

]
= a

δ−m−2

N − 1
ρ(xi)

m+2q(xi)||∇f(xi)||2 +O(N−1, δ2) (17)

where c ≡ m2

2 (N − 1)δm+2 and a ≡ 4m2,2

m2
2

are constants defined in the table below.

Before proving Theorem 3, we comment on the constants such as m0,m2 and
m2,2, which depend on the shape of the kernel function. It was originally shown
in [12] that the expansion (12) holds for any kernel with exponential decay at
infinity. A common kernel used in geometric applications is the Gaussian h(||z||2) =
exp(−||z||2/2), due to its smoothness. For topological applications, we are interested
in building an unnormalized graph, whose construction corresponds to a kernel
defined by the indicator function 1||z||2<1. The sharp cutoff function enforces the
fact that each pair of points is either connected or not. (The indicator kernel satisfies
(12) since it has compact support and thus has exponential decay.)

In the table below we give formulas for all the constants which appear in the
results, along with their values for the Gaussian and indicator functions (note that
Bm is the unit ball in Rm).

Constant Formula h(x) = e−x/2 h(x) = 1x<1

m0

∫
Rm h(||z||2) dz (2π)m/2 vol(Bm)

m2

∫
Rm z21h(||z||2) dz (2π)m/2 (m+ 2)−1vol(Bm)

m2,2

∫
Rm z21h(||z||2)2 dz 2−1πm/2 (m+ 2)−1vol(Bm)

a 4m2,2(m2)−2 21−mπ−m/2 4(m+ 2)vol(Bm)−1

It turns out that the variance of the statistical estimators considered below are
all proportional to the constant a. As a function of the intrinsic dimension m, the
constant a decreases exponentially for the Gaussian kernel. On the other hand,
since the volume of a unit ball decays like m−m/2−1/2 for large m, the constant a
increases exponentially for the indicator kernel.

Proof of Theorem 3. Notice that the term i = j is zero and can be left out of

the summation, this allows us to consider the expectation of Lun
~f only over the

terms i 6= j which are identically distributed. From (12) the i-th entry of the vector(
Lun

~f
)
i

has expected value

E
[(
Lun

~f
)
i

]
=
m2

2
(N − 1)(δρ)m+2 (fLq − L(fq)) +O(Nδm+4)

and by (15) we have Lq,ρ ≡ ρm+2(fLq − L(fq)). Dividing by the constant c yields
(16), which shows that Lun is a pointwise consistent estimator with bias of order
δ2.

We can also compute the variance of this estimator defined as

var
(
c−1

(
Lun

~f
)
i

)
≡ E

[(
c−1

(
Lun

~f
)
i
− E

[
c−1

(
Lun

~f
)
i

])2]

= c−2E


 N∑
j 6=i,j=1

fiWij −Wijfj − E [fiWij −Wijfj ]

2
 .
(18)
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Since xj are independent we have

var
(
c−1

(
Lun

~f
)
i

)
= c−2(N − 1)E

[
(fiWij −Wijfj − E [fiWij −Wijfj ])

2
]

= c−2(N − 1)E
[
(fiWij −Wijfj)

2
]
− c−2(N − 1)E [fiWij −Wijfj ]

2

Notice that for the last term we have

c−2(N − 1)E [fiWij −Wijfj ]
2

=
1

N − 1
E
[
N − 1

c
(fiWij −Wijfj)

]2
(19)

=
1

N − 1
(Lq,ρf(xi))

2 +O(δ2)

this term will be higher order so we summarize it as O(N−1, δ2). Computing the
remaining term we find the variance to be

var
(
c−1

(
Lun

~f
)
i

)
= c−2(N − 1)E

[
(fiWij −Wijfj)

2
]

+O(N−1, δ2)

= c−2(N − 1)E
[
f2iW

2
ij − 2fiW

2
ijfj +W 2

ijf
2
j

]
+O(N−1, δ2)

(20)

Since W 2
ij is also a local kernel with moments m0,2 and m2,2 the above asymptotic

expansions apply and we find

E
[
f2iW

2
ij − 2fiW

2
ijfj +W 2

ijf
2
j

]
=
m2,2

2
(δρ)m+2

(
f2Lq − 2fL(fq) + L(f2q)

)
+O(δm+4)

= m2,2(δρ)m+2q||∇f ||2 +O(δm+4)

where the last equality follows from the applying the product rule. Substituting the
previous expression into (20) verifies (17).

Theorem 3 gives a complete description of the pointwise convergence of the dis-
crete operator Lun. While the expansion (16) shows that the matrix c−1Lun ap-
proximates the operator Lq,ρ, it does not tell us how the eigenvectors of c−1Lun

approximate the eigenfunctions of Lq,ρ. That relationship is the subject of Theo-
rem 4 below.

Since c−1Lun is a symmetric matrix, we can interpret the eigenvectors ~f as the
sequential orthogonal minimizers of the functional

Λ(f) =
~f >c−1Lun

~f

~f > ~f
. (21)

By dividing the numerator and denominator by N , we can interpret the inner

product N−1 ~f > ~f as an integral over the manifold since

E
[
N−1 ~f > ~f

]
= E

[
1

N

N∑
i=1

f(xi)
2

]
=

∫
M
f(x)2q(x) dV (x) =

〈
f2, q

〉
dV
.

It is easy to see that the above estimator has variance N−1
[〈
f4, q

〉
dV
−
〈
f2, q

〉2
dV

]
.

Similarly, in Theorem 4 we will interpret 1
N
~f>c−1Lun

~f as approximating an integral
over the manifold.
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Theorem 4 (Integrated bias and variance of Lun). Let M be an m-dimensional
Riemannian manifold embedded in Rn and let q : M → R be a smooth density
function. For {xi}Ni=1 independent samples of q, and f ∈ C3(M) we have

E
[
(cN)−1 ~f >Lun

~f
]

= 〈f, qLq,ρf〉dV +O(δ2) (22)

and

var
(

(cN)−1 ~f >Lun
~f
)

=a
δ−m−2

N(N − 1)

〈
f2, qLq,ρ(f2)

〉
dV

+
4

N

〈
f2, q(Lq,ρf)2

〉
dV

+O(δ2). (23)

So assuming the inner products are finite (for example if M is a compact manifold)

we have var
(

(cN)−1 ~f >Lun
~f
)

= O(N−2δ−m−2, N−1, δ2).

Proof. By definition we have

E
[
c−1

N
~f>Lun

~f

]
= E

c−1∑
i 6=j

(Lun)ij
~fi ~fj

 = E
[
f(xi)c

−1
(
Lun

~f
)
i

]

where the term i = j is zero and so the sum is over the N(N−1) terms where i 6= j.
Since xi are sampled according to the density q we have

E
[
c−1

N
~f>Lun

~f

]
=

∫
fq2ρm+2

(
∆f +∇ log(q2ρm+2) · ∇f

)
dV +O(δ2)

=
〈
f, q2ρm+2

(
∆f +∇ log(q2ρm+2) · ∇f

)〉
L2(M,dV )

+O(δ2)

= 〈f, qLq,ρf〉dV +O(δ2). (24)

We can now compute the variance of the estimator c−1

N
~f>Lun

~f which estimates
〈f, qLq,ρf〉dV . To find the variance we need to compute

E

[(
c−1

N
~f>Lun

~f

)2
]

=
c−2

N2
E

∑
i 6=j

(Lun)ij fifj

∑
k 6=l

(Lun)kl fkfl

 (25)

Notice that when i, j, k, l are all distinct, by independence we can rewrite these
terms of (25) as

a1
N2

E

∑
i6=j

c−1 (Lun)ij fifj

E

∑
k 6=l

c−1 (Lun)kl fkfl

 = a1 〈f, qLq,ρf〉2dV . (26)

The constant a1 ≡ (N−2)(N−3)
N(N−1) accounts for the fact that of the N2(N − 1)2 total

terms in (25), only N(N −1)(N −2)(N −3) terms have distinct indices. Since i 6= j
and k 6= l, we next consider the terms where either i ∈ {k, l} or j ∈ {k, l} but not
both. Using the symmetry of Lun, by changing index names we can rewrite all four
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combinations as i = k so that these terms of (25) can be written as

4Exi

 1

N2

∑
i

Exj

∑
j

c−1 (Lun)ij fifj

Exl

[∑
l

c−1 (Lun)il fifl

]
=

4

N2
Exi

[∑
i

f(xi)
2(Lq,ρf(xi))

2

]

=
4

N

〈
f2, q(Lq,ρf)2

〉
dV

(27)

Finally, we consider the terms where i ∈ {k, l} and j ∈ {k, l}. By symmetry we
rewrite the two possibilities as i = k and j = l and these terms become,

2c−2

N2
E

∑
i 6=j

(Lun)ij fifj (Lun)ij fifj

 =
2a2c

−1

N

〈
f2, qLq,ρ(f2)

〉
dV

(28)

where the constant a2 ≡ m2,2

m2
is the ratio between the second moment m2 of the

kernel W and the second moment m2,2 of the squared kernel W 2.
We can now compute the variance of the estimator

var

(
c−1

N
~f>Lun

~f

)
= E

[(
c−1

N
~f>Lun

~f

)2
]
− E

[
c−1

N
~f>Lun

~f

]2
= E

[(
c−1

N
~f>Lun

~f

)2
]
− 〈f, qLq,ρf〉2dV +O(δ2)

=
−4N + 6

N(N − 1)
〈f, qLq,ρf〉2dV +

4

N

〈
f2, q(Lq,ρf)2

〉
dV

+ 4a2m
−1
2

δ−m−2

N(N − 1)

〈
f2, qLq,ρ(f2)

〉
dV

+O(δ2).

In particular this says that

var

(
c−1

N
~f >Lun

~f

)
= O

(
N−2δ−m−2, N−1, δ2

)
assuming that all the inner products are finite.

We should note that determining whether the inner product is finite is nontrivial
when the manifold in question is unbounded and when the sampling density q
is not bounded away from zero. We will return to this issue below. First, we
compute the bias and variance of the spectral estimates. For wider applicability,

we consider the generalized eigenvalue problem, c−1Lun
~f = λM ~f for any diagonal

matrix Mii = µ(xi) which corresponds to the functional

Λ(f) =
~f >c−1Lun

~f

~f >M ~f
.

Notice that N−1E[~f >M ~f ] =
〈
f2, µq

〉
dV

and this estimator has variance

var
(
N−1 ~f >M ~f

)
= N−1

(〈
f4, µ2q

〉
dV
−
〈
f2, µq

〉2
dV

)
= O(N−1).

A particular example which draws significant interest is the so-called ‘normalized
graph Laplacian’ where M = D, implying that µ(xi) = q(xi)ρ(xi)

m +O(δ2).
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Theorem 5 (Spectral bias and variance). Under the same assumptions as Theorem
4 we have

E[Λ(f)] = E

[
~f >c−1Lun

~f

~f >M ~f

]
=
〈f, qLq,ρf〉dV
〈f2, µq〉dV

+O(δ2, N−1) (29)

and

var (Λ(f)) = a
δ−m−2

N(N − 1)

〈
f2, qLq,ρ(f2)

〉
dV

〈f2, µq〉2dV
+

4

N

〈
f2, q(Lq,ρf)2

〉
dV

〈f2, µq〉2dV
+O(δ2, N−1).

(30)

So assuming the inner products are finite (for example if M is a compact manifold)

we have var
(

(cN)−1 ~f >Lun
~f
)

= O(N−2δ−m−2, N−1, δ2).

Proof. We consider Λ(f) to be a ratio estimator of the form Λ(f) = a
b where

a = N−1 ~f >c−1Lun
~f and b = N−1 ~f >M ~f . The correlation of a and b is given by

E[(a− a)(b− b)] =
m2δ

m+2

2N2(N − 1)

∑
i 6=j,k

f(xi)(Lun)ijf(xj)f(xk)2µ(xk)− ab = O(N−1)

since the sum of the terms with k = i or k = j is clearly order N−1, and when both
k 6= i and k 6= j the expectation is equal to ab by independence. Since the variance
of b and the correlation are both order N−1 by the standard ratio estimates, we
have

E
[a
b

]
=
a

b
+O(N−1)

and

var
(a
b

)
=

var(a)

b
2 +O(N−1).

Combined with Theorem 4, these equations yield the desired result.

Comparing Theorems 3 and 5 we find a surprising result, namely that the optimal
δ for spectral approximation of the operator Lq,ρ is different from the optimal δ for
pointwise approximation. To our knowledge this has not been noted before in the
literature. We find the optimal choice of δ by balancing the squared bias with the
variance of the respective estimators. For the optimal pointwise approximation we
need δ4 = N−1δ−m−2 so the optimal choice is δ ∝ N−1/(m+6) and the combined
error of the estimator is then O(N−2/(m+6)). In contrast, for optimal spectral
approximation we need δ4 = N−2δ−m−2 so the optimal choice is

δ ∝ N−2/(m+6)

and the combined error (bias and standard deviation) is

O(N−4/(m+6)).

The one exception to this rule is the case m = 1, where the second term in the
spectral variance dominates, so that the optimal choice is δ ∝ N−1/3 and the
combined error is order N−1.

Since graph Laplacians are often used spectrally (for example to find low-dimen-
sional coordinates with the diffusion map embedding [1, 12], spectral clustering
[33, 48], applications to time series analysis [19, 3], and the spectral exterior calculus
[6]) this implies that the choice of bandwidth δ should be significantly smaller in
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Figure 12. For N ∈ {1000, 5000, 20000} uniformly random
data points on a unit circle. (a) Using δ = 3N−1/7 and letting
~fi = sin(θi) we compare the pointwise estimate

(
c−1Lun

~f
)
i

(red,

dashed) to the true operator ∆f(xi) = − sin(θi) (black, solid). (b)
Using δ = 3N−1/7 we compare the first 9 eigenvalues of c−1Lun

(red, dashed) to the first 9 eigenvalues of ∆ (black, solid). (c,d)
Same as (a,b) respectively but with δ = 3N−1/3.

these applications than suggested in the literature [40, 4]. We demonstrate this for
the cutoff kernel on a circle in the example below.

Example 9 (Pointwise and spectral estimation on the unit circle). We illustrate
by example the difference in bandwidth required for pointwise versus spectral ap-
proximation that are implied by Theorems 3 and 5. Consider data sets consisting
of N ∈ {1000, 5000, 20000} points {xi = (sin(θi), cos(θi))

>}Ni=1 sampled uniformly
from the unit circle and the unnormalized graph Laplacian c−1Lun constructed us-
ing the cutoff kernel. We first chose δ = 3N−1/(m+6) = 3N−1/7 (the constant 3 was
selected by hand tuning) which is optimal for pointwise estimation of the Laplace-
Beltrami operator ∆ as shown in Figure 12(a)(b). Next, we set δ = 3N−1/3 which
is optimal for spectral estimation as shown in Figure 12(c)(d). This demonstrates
how spectral estimation is optimal for a much smaller value of δ that pointwise
estimation. Despite the extremely poor pointwise estimation when δ = 3N−1/3,
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the spectral estimation, which involves an integrated quantity, is superior using this
significantly smaller value of δ. Notice that the relative error in the eigenvalues
increases as the eigenvalues increase. This phenomenon is explained at the end of
the next section.

In general we only know that the optimal choice is δ ∝ N−2/(m+6) for m > 1 and
δ ∝ N−1/3 for m = 1, and the constants for the optimal choice are quite complex.
However, this does indicate the correct order of magnitude for δ, especially for large
data sets. Figure 12 dramatically illustrates the differences in optimal pointwise and
optimal spectral estimation. As mentioned above, graph Laplacians are often used
for spectral approximation, so previous analyses which tune δ for optimal pointwise
estimation [40, 4] are misleading for many applications.

In Figure 13 we verify the power laws for the optimal choice of δ for pointwise
and spectral estimation. For N ∈ {250, 500, 1000, 2000, 4000, 8000} we compute the
pointwise and spectral root mean squared error (RMSE) for a wide range of values
of δ and then plot the optimal value of δ as a function of N . To estimate the
pointwise error for a fixed N and δ we generated N uniformly random points on
a circle {xi = (sin(θi), cos(θi))

>}Ni=1 and then construct the unnormalized graph
Laplacian c−1Lun using the cutoff kernel. We then multiplied this Laplacian matrix

by the vector ~fi = sin(xi) so that
(
c−1Lun

~f
)
i
≈ ∆ sin(xi) = − sin(xi) and we

computed the RMSE (
N∑
i=1

((
c−1Lun

~f
)
i
− (− sin(xi))

)2)1/2

between the estimator and the limiting expectation. We repeated this numerical
experiment 10 times for each value of N and δ and the average RMSE is shown in
Figure 13(a). To estimate the spectral error, we computed the smallest 5 eigenvalues
of c−1Lun and found the RMSE between these eigenvalues and the true eigenvalues
[0, 1, 1, 4, 4] of the limiting operator ∆. This numerical experiment was repeated
10 times for each value of N and δ and the average RMSE is shown in Figure
13(b). Finally, in Figure 13(c) we plot the value of δ which minimized the pointwise
error (black) and the spectral error (red) for each value of N and we compare these
data points to the theoretical power laws for the pointwise error δ ∝ N−1/7 (black,
dashed line) and spectral error δ ∝ N−1/3 (red, dashed line) respectively.

6.2. Limiting geometries and spectral convergence. We now show that the
operator that is approximated spectrally in Theorem 5 is a Laplace-Beltrami opera-
tor on the manifoldM, but with respect to a conformal change of metric. Consider
the functional approximated spectrally by Lun as shown in (29) which is

Λ(f)→
〈f, qLq,ρf〉dV
〈f2, µq〉dV

=

〈
f, q2ρm+2

(
∆f −∇ log q2ρm+2 · ∇f

)〉
dV

〈f2, µq〉dV
. (31)

A conformal change of metric corresponds to a new Riemannian metric g̃ ≡ ϕg,
where ϕ(x) > 0, and which has Laplace-Beltrami operator

∆g̃f =
1

ϕ
(∆f − (m− 2)∇ log

√
ϕ · ∇f). (32)

In order to rewrite the operator in (31) as a Laplace-Beltrami operator, the function

ϕ must be chosen to be ϕ
m−2

2 = q2ρm+2. Moreover, we need to change the inner
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Figure 13. For N ∈ {250, 500, 1000, 2000, 4000, 8000} we show
(a) the root mean squared error (RMSE) of the pointwise approx-

imation of c−1Lun
~f ≈ − sin(xi) where ~fi = sin(xi) and (b) the

RMSE of the first 5 eigenvalues of c−1Lun. Both (a) and (b) are
averaged over 10 random data sets for each N and each δ and the
minimum RMSE in each curve is highlighted with a black point.
(c) For each N , we plot the optimal δ for pointwise approximation
(black points) and the theoretical power law δ ∝ N−1/7 (black,
dashed line) and the optimal δ for spectral approximation (red
points) and the theoretical power law δ ∝ N−1/3 (red, dashed line).

product in (31) to dṼ which is the volume form of the new metric given by

dṼ =
√
|g̃| =

√
|ϕg| = ϕm/2

√
|g| = ϕm/2 dV. (33)

Changing the volume form and substituting ∆g̃ in (31) we find

Λ(f)→
〈
f, q2ρm+2ϕ1−m/2∆g̃f

〉
dṼ〈

f2, µqϕ−m/2
〉
dṼ

=
〈f,∆g̃f〉dṼ〈

f2, µqϕ−m/2
〉
dṼ

where the second equality follows from the definition ϕ
m−2

2 = q2ρm+2. Finally, in
order for the denominator to represent the appropriate spectral normalization we
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require

µ = q−1ϕm/2 = q
m+2
m−2 ρm( m+2

m−2 ).

which implies that

Λ(f)→
〈f,∆g̃f〉dṼ
〈f, f〉dṼ

.

This immediately shows that when m 6= 2 we can always choose ρ, µ to estimate
the operator ∆g̃ for any conformally isometric geometry g̃ = ϕg. In the special case

m = 2 this can also be achieved by setting ρ = q−1/2 and µ = qϕ−1. However, if
we assume that ρ = qβ for some power β, then there are three choices of ρ, µ which
have the same geometry for every dimension m, we summarize these in the table
below.

Geometry g̃ dṼ ρ µ

Sampling measure geometry q2/dg q dV q−1/m 1

Embedding geometry g dV q−2/(m+2) q−1

Inverse sampling geometry q−1g q−d/2 dV q−1/2 qm/2+1

For the choice β = −1/m we find µ = 1, which is explored in the main body of the
paper. The choice µ = 1 is the only one allowing an unweighted graph construction.
To reconstruct the embedding geometry, one can estimate the Laplace-Beltrami
operator ∆g using β = −2

m+2 . Finally, if we select β = −1/2 we find µ = qm/2+1,

which is closely related to the results of [4].
The above construction shows that an appropriately chosen graph Laplacian is

a consistent estimator of the normalized Dirichlet energy

Λ(f)→
〈f,∆g̃f〉dṼ
〈f, f〉dṼ

=

∫
M ||∇g̃f ||

2dṼ∫
M f2dṼ

for any conformally isometric geometry g̃ = ϕg. The minimizers of this normalized
Dirichlet energy are exactly the eigenfunctions of the Laplace-Beltrami operator
∆g̃, so Theorem 5 is the first step towards spectral convergence. However, in the
details of Theorem 5 there is a significant barrier to spectral convergence. This
barrier is a very subtle effect of the second term in the variance of the estimator.
Rewriting (30) from Theorem 5 in terms of the new geometry we find

var (Λ(f))

=a
δ−m−2

N(N − 1)

〈
f2,∆g̃(f

2)
〉
dṼ

〈f, f〉2dṼ
+

4

N

〈
f2, q−1ϕm/2(∆g̃f)2

〉
dṼ

〈f, f〉2dṼ
+O(δ2, N−1). (34)

The first term in (34) normally controls the bias-variance trade-off since it diverges
as δ → 0, and the second term is typically higher order. However, the integral
which defines the constant in the second error term has the potential to be infinite
when q is not bounded below. Ignoring the terms which depend on f , we need
q−1ϕm/2 dṼ = q−1ϕm dV to be integrable in order for the variance of the estimator
to be well-defined, which proves the following result.

Theorem 6 (Spectral Convergence, Part 1). Let {xi}Ni=1 be sampled from a den-
sity q. Consider a conformally equivalent metric g̃ = ϕg such that q−1ϕm is inte-
grable with respect to dV . Define the unnormalized Laplacian Lun using a kernel
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Kδ(x, y) = h
(
||x−y||2
δ2ρ(x)ρ(y)

)
for any h with exponential decay where

ρ =

{
q

2
m+2ϕ

m−2
m+2 m 6= 2

q−1/2 m = 2

and define Mii = µ(xi) where

µ =

{
q−1ϕm/2 m 6= 2
qϕ−1 m = 2

then for f ∈ C3(M, g̃) the functional Λ(f) =
~f >c−1Lun

~f
~f >M ~f

which corresponds to the

generalized eigenvalue problem c−1Lun
~f = λM ~f is a consistent estimator of the

normalized Dirichlet energy functional

E[Λ(f)]→N→∞
〈f,∆g̃f〉dṼ
〈f, f〉dṼ

=

∫
M ||∇g̃f ||

2dṼ∫
M f2dṼ

and the estimator Λ(f) has bias of leading order δ2 and finite variance which is of
leading order δ−m−2N−2. The optimal choice δ ∝ N−2/(m+6) yields a root mean
squared error of order N−4/(m+6).

In particular, for the choice ρ = q−2/(m+2) we find q−1ϕm = q−1 which will often
not be integrable on a non-compact manifold when q is not bounded away from
zero. This implies that we cannot spectrally approximate the Laplace-Beltrami
operator with respect to the embedding metric for many non-compact manifolds.
Notice, that this variance barrier only applies to spectral convergence, so we can
still approximate the operator pointwise using Theorem 3. Similarly, when β =
−1/2 we find q−1ϕm = q−1−m and the exponent on q is negative, also leading to
the possibility of divergence on non-compact manifolds. This shows yet another
advantage of the choice β = −1/m, since q−1ϕm = q which is simply the sampling
measure and is always integrable with respect to dV by definition.

Theorem 6 shows that the functional Λ(f) converges to the normalized Dirichlet
energy functional whose minimizers are the eigenfunctions of the Laplace-Beltrami
operator ∆g̃. It remains only to show that vectors which minimize the discrete
functional Λ(f) converge to the minimizers of the normalized Dirichlet energy func-
tional. In fact this has already been shown in [48] assuming that the spectrum of
∆g̃ is discrete.

Next, will address an issue of spectral convergence that was introduced in [48],
which suggests that unnormalized graph Laplacians have worse spectral convergence
properties than normalized Laplacians. The theory in that article is the basis of
our spectral convergence result below. However, a subtle detail reveals that the
unnormalized Laplacian c−1Lun does not suffer from the spectral convergence issue

they consider. For an unnormalized Laplacian, Lun = D−W where Dii =
∑N
j=1Wij

is the degree function, “Result 2” of [48] states that if the first r eigenvalues of the
limiting operator Lq,ρ do not lie in the range of the degree function

d(x) = lim
N→∞

N∑
j=1

W (x, xj),

then the first r eigenvalues of the unnormalized Laplacian Lun converge to those of
the limiting operator (spectral convergence). This would suggest that the spectral
convergence only holds for eigenvalues which are separated from the range of Dii.
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However, notice that we divide Lun by the normalization constant c = O(Nδm+2)

whereas limN→∞
∑N
j=1W (x, xj) ∝ q(x)Nδm which implies that

c−1d(x) = O(δ−2).

Since δ → 0 as N → ∞, this implies that the range of the true degree function
c−1d(x) approaches ∞ as N grows. This special class of unnormalized Laplacians
avoids this difficulty because the first order term of the degree function in exactly
cancelled by the first order term of the kernel Wij in the limit of large data, which
is why the constant c is higher order than the degree function in terms of δ.

Finally, while Theorem 6 gives an optimal bias-variance tradeoff of δ ∝ N−2/(m+6),
this may not be sufficient for spectral convergence in high dimensions. Taking δ → 0
and N →∞ simultaneously was first addressed in [2] and more recently in [45, 46,

39]. The best results [46] require a bounded manifold and also
(
N−1 logN

)1/m
< δ

but the optimal bias-variance tradeoff only satisfies this constraint for m < 6, so

for m ≥ 6 we require δ =
(
N−1 logN

)1/m
. While [46] has the best current result,

we conjecture that spectral convergence still holds on unbounded manifolds when
the spectrum ∆g̃ is discrete and also when δ ∝ N−2/(m+6) for m ≥ 6.

Theorem 7 (Spectral Convergence, Part 2). Under the assumptions of Theorem
6, in the limit of large data the eigenvalues of c−1M−1Lun converge to those of the
limiting operator ∆g̃, assuming the spectrum is discrete and M is bounded.

In particular, for a manifold without boundary or with a smooth boundary, spec-
tral convergence holds for the unnormalized Laplacian when ρ = q−1/m and µ = 1.

Proof. Notice that the eigenvalues of c−1M−1Lun
~f = λ~f exactly correspond to the

minimizers of the functional Λ(f) in Theorem 6. The first claim follows from the
convergence of the functional Λ(f) to the normalized Dirichlet energy combined
with convergence results of [46] as discussed above.

The guarantee of spectral convergence for ρ = q−1/m and µ = 1 follows from the
fact that q−1ϕm = q is always integrable. Moreover, the volume of the manifold with
respect to dṼ = q dV is always voldṼ (M) =

∫
M q dV = 1, and for any manifold

of finite volume with a smooth boundary the spectrum of the Laplace-Beltrami
operator is discrete [11].

Since the matrix c−1M−1Lun is not symmetric it is numerically preferable to

solve the symmetric generalized eigenvalue problem c−1Lun
~f = λM ~f .

Finally, it is often noticed empirically that the error in the spectral approx-
imations increases as the value of the eigenvalue increases. To understand this
phenomenon, we will use the variance formula (34). First, if f is an eigenfunction
with ∆g̃f = λf we note that〈

f2,∆g̃(f
2)
〉
dṼ

=
〈
f2, 2f∆g̃f − 2∇g̃f · ∇g̃f

〉
dṼ

= 2λ
〈
f2, f2

〉
dṼ
− 2

〈
f2,∇g̃f · ∇g̃f

〉
dṼ

= 2λ
〈
f2, f2

〉
dṼ
− 2

〈
−divg̃

(
f2∇g̃f

)
, f
〉
dṼ

= 2λ
〈
f2, f2

〉
dṼ
− 2

3

〈
−divg̃

(
∇g̃f3

)
, f
〉
dṼ

= 2λ
〈
f2, f2

〉
dṼ
− 2

3

〈
∆g̃(f

3), f
〉
dṼ

= 2λ
〈
f2, f2

〉
dṼ
− 2

3

〈
f3,∆g̃f

〉
dṼ

=
4

3
λ
〈
f2, f2

〉
dṼ
.
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Applying this formula to (34) we find λ̂ ≡ Λ(f) is a consistent estimator of the
eigenvalue λ with relative variance

var(λ̂)

λ
= a

δ−m−2

N(N − 1)

4
〈
f2, f2

〉
dṼ

3 〈f, f〉2dṼ
+

4λ

N

〈
f2, q−1ϕm/2f2

〉
dṼ

〈f, f〉2dṼ
+O(δ2, N−1).

Although the first term (which is typically the leading order term, especially on
compact manifolds) can be tuned to give a constant relative error, the second term
still grows proportionally to the eigenvalue λ. We should expect the spectrum to
be fairly accurate until the order of the second term is equal to that of the first
term, at which point the relative errors in the eigenvalues will grow rapidly. When
ϕ = q2/m as in the CkNN construction, the inner products in the two terms are the
same, so the spectrum will be accurate when

λ < λmax ≡
aδ−m−2

3(N − 1)
=
aN2(m+2)/(m+6)

3(N − 1)
= O

(
N

m−2
m+6

)
where the second and third equalities hold for the optimal choice δ ∝ N−2/(m+6).
This constraint does not apply to the case m = 1, where the second term in (34)
dominates, or to the case m = 2 where the second and first terms are equal order for
the optimal choice of δ. In all cases, the relative error increases as the eigenvalues
increase.

7. Conclusion. We have introduced a new method called continuous k-nearest
neighbors as a way to construct a single graph from a point cloud, that is provably
consistent on connected components. By proving the consistency of the geometry
(spectral convergence of the graph Laplacian to the Laplace-Beltrami operator)
we support our conjecture that CkNN is topologically consistent, meaning that
correct topology can be extracted in the large data limit. For many finite-data
examples from compact Riemannian manifolds, we have shown that CkNN compares
favorably to persistent homology approaches.

The proposed method replaces a small ε radius, or k in the k-nearest neighbors
method, with a unitless continuous parameter δ. The theory proves the existence
of a correct choice of δ, and it needs to be tuned in specific examples. While
the difference between the CkNN and the kNN constructions is fairly simple, the
crucial difference is that the approximation (4) only holds for k small, relative to
N . By varying the parameter δ and holding k constant at a small value we can
construct multi-scale approximations of our manifold that are still consistent with
the underlying manifold. This contrasts with the standard kNN approach, where
the parameter k is varied and both the coarseness of the manifold approximation
and the underlying manifold geometry are changing simultaneously (because the
scaling function is changing).

Surprisingly, a careful analysis of the bias and variance of the graph Laplacian as
a spectral estimator of the Laplace-Beltrami operator is a key element of the proof
of consistency. The variance can be infinite on non-compact manifolds, depending
on the geometry, creating a previously unknown barrier to spectral convergence.
The variance calculation also allows us to explain why the relative error of the
eigenvalue increases along with the eigenvalue, and we determine the part of the
spectrum that can estimated with constant relative error, as a function of the data
size N .

We would like to thank D. Giannakis for helpful conversations.
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