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Background:

I PhD Mathematics at GMU, Advisor: Tim Sauer

I Postdoc at PSU with John Harlim

I NSF Big Data Postdoc at GMU (current)

Research Interests:

I Geometry of data and nonparametric statistics

I Data-driven and model-free forecasting

I Filtering/forecasting with model error

This is also joint work with Franz Hamilton (postdoc at NC State)
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What is the filtering problem?

I Consider a discrete time dynamical system:

xk = fk(xk−1, ωk)

yk = hk(xk , νk)

I Where xk is the state variable, ωk is stochastic forcing, and
the maps fk define the dynamics

I The maps hk are called the observation functions, νk is
observation noise, and yk is a noisy observation
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What is the filtering problem?

I Consider a discrete time dynamical system:

xk = fk(xk−1, ωk)

yk = hk(xk , νk)

I Given the observations y1, ..., yk we define three problems:

I Filtering: Estimate the current state p(xk | y1, ..., yk)

I Forecasting: Estimate a future state p(xk+` | y1, ..., yk)

I Smoothing: Estimate a past state p(xk−` | y1, ..., yk)
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What is the filtering problem?

dx i

dt
= −x i−2x i−1 + x i−1x i+1 − x i + F
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Two Step Filtering to Find p(xk | y1, ..., yk)

I Assume we have p(xk−1 | y1, ..., yk−1)

I Forecast Step: Find p(xk | y1, ..., yk−1)

I Assimilation Step: Perform a Bayesian update,

p(xk | y1, ..., yk) ∝ p(xk | y1, ..., yk−1)p(yk | xk , y1, ..., yk−1)

Posterior ∝ Prior × Likelihood
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Kalman Filter

I Assume linear dynamics/obs and additive Gaussian noise

xk = Fk−1xk−1 + ωk

yk = Hkxk + νk

ωk ∼ N (0,Q)

νk ∼ N (0,R)

I For linear systems, easy observability condition:

H̃`
k =


Hk

Hk+1Fk
...

Hk+`+1Fk+` · · ·Fk


Must be full rank for some `
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Kalman Filter

I Assume linear dynamics/obs and additive Gaussian noise

xk = Fk−1xk−1 + ωk

yk = Hkxk + νk

ωk ∼ N (0,Q)

νk ∼ N (0,R)

I Assume current estimate is Gaussian:

p(xk−1 | y1, ..., yk−1) = N (x̂ak−1,P
a
k−1)
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Kalman Filter: Forecast Step

I At time k − 1 we have mean x̂ak−1 and covariance Pa
k−1

I Linear combinations of Gaussians are still Gaussian so:

I p(Fk−1xk−1 | y1, ..., yk−1) = N (Fk−1x̂
a
k−1,Fk−1Pk−1F

>
k−1)

I p(xk | y1, ..., yk−1) = N (Fk−1x̂
a
k−1,Fk−1Pk−1F

>
k−1 + Q)

I Define the Forecast mean: x̂ fk ≡ Fk−1x̂
a
k−1

I Define the Forecast covariance: P f
k ≡ Fk−1P

a
k−1F

>
k−1 + Q
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Kalman Filter: Defining the Likelihood function

I Recall that yk = Hkxk + νk where νk ∼ N (0,R) is Gaussian

I The forecast distribution: p(xk | y1, ..., yk−1) = N (x̂ fk ,P
f
k )

I Likelihood: p(yk | xk , y1, ..., yk−1) = N (Hk x̂
f
k ,HkP

f
kH
>
k + R)

I Define the Observation mean: y fk = Hk x̂
f
k

I Define the Observation covariance: Py
k = HkP

f
kH
>
k + R
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Kalman Filter: Assimilation Step

I Gaussian prior × Gaussian likelihood ⇒ Gaussian posterior

p(y |x)p(x) ∝ exp

{
−1

2
(y − Hx)>(Py )−1(y − Hx)

− 1

2
(x − x̂ f )>(P f )−1(x − x̂ f )

}
∝ exp

{
−1

2
x>((Py )−1 + H(P f )−1H>)x

+x>(H>(Py )−1y − (P f )−1x̂ f )
}

I Posterior Covariance: Pa =
(
(P f )−1 + H>(Py )−1H

)−1

I Posterior Mean: xa = Pa
(
H>(Py )−1y − (P f )−1x̂ f

)
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Kalman Filter: Assimilation Step

I Kalman Equations: (after some linear algebra...)

I Kalman Gain: Kk = P f
kH
>
k (Py

k )−1

I Innovation: εk = yk − y f
k

I Posterior Mean: x̂ak = x̂ fk + Kkεk

I Posterior Covariance: Pa
k = (I − KkHk)P f

k

I x̂ak is the least squares/minimum variance estimator of xk
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Kalman Filter Summary

x fk = Fk−1x
a
k−1

P f
k = Fk−1P

a
k−1F

T
k−1 + Qk−1

Py
k = HkP

f
kH

T
k + Rk−1

Kk = P f
kH

T
k (Py

k )−1

Pa
k = (I − KkHk)P f

k

εk = yk − y fk = yk − Hkx
f
k

xak = x fk + Kkεk
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What about nonlinear systems?

I Consider a system of the form:

xk+1 = f (xk) + ωk+1

yk+1 = h(xk+1) + νk+1

ωk+1 ∼ N (0,Q)

νk+1 ∼ N (0,R)

I More complicated observability condition (Lie derivatives)

I Extended Kalman Filter (EKF):

I Linearize Fk = Df (x̂ak ) and Hk = Dh(x̂ fk )

I Problem: State estimate x̂ak may not be well localized

I Solution: Ensemble Kalman Filter (EnKF)
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Ensemble Kalman Filter (EnKF)

x
t
+

x
t
i

P
xx
+

F
x

t
−

F(x
t
i)

P
xx
−

~xi
t

Generate an ensemble with the current statistics (use matrix square root):

x i
t = “sigma points” on semimajor axes

x f
t =

1

2n

∑
F (x i

t )

P f
xx =

1

2n − 1

∑
(F (x i

t )− x f
t )(F (x

i
t )− x f

t )
T + Q
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Ensemble Kalman Filter (EnKF)

x
t
+

x
t
i

P
xx
+

F
x

t
−

F(x
t
i)

P
xx
−

~xi
t

Calculate y i
t = H(F (x i

t )). Set y
f
t = 1

2n

∑
i y

i
t .

Pyy = (2n − 1)−1
∑

(y i
t − y f

t )(y
i
t − y f

t )
T + R

Pxy = (2n − 1)−1
∑

(F (x i
t )− x f

t )(y
i
t − y f

t )
T

K = PxyP
−1
yy and Pa

xx = P f
xx − KPyyK

T

xa
t+1 = x f

t + K(yt − y f
t )
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Parameter Estimation

I When the model has parameters p,

xk+1 = f (xk , p) + ωk+1

I Can augment the state x̃k = [xk , pk ]

I Introduce trivial dynamics for p

xk+1 = f (xk , pk) + ωk+1

pk+1 = pk + ωp
k+1

I Need to tune the covariance of ωp
k+1
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Example of Parameter Estimation

Consider the Hodgkin-Huxley neuron model, expanded to a
network of n equations

V̇i = −gNam
3h(Vi − ENa)− gKn

4(Vi − EK )− gL(Vi − EL)

+I +
n∑
j 6=i

ΓHH(Vj)Vj

ṁi = am(Vi )(1−mi )− bm(Vi )mi

ḣi = ah(Vi )(1− hi )− bh(Vi )hi

ṅi = an(Vi )(1− ni )− bn(Vi )ni

ΓHH(Vj) = βij/(1 + e−10(Vj+40))

Only observe the voltages Vi , recover the hidden variables and the
connection parameters β
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Example of Parameter Estimation

Can even turn connections on and off (grey dashes)
Variance estimate ⇒ statistical test (black dashes)
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Nonlinear Kalman-type Filter: Influence of Q and R

I Simple example with full
observation and diagonal
noise covariances

I Red indicates RMSE of
unfiltered observations

I Black is RMSE of ‘optimal’
filter (true covariances
known)
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Nonlinear Kalman-type Filter: Influence of Q and R

Standard Kalman Update:

P f
k = Fk−1P

a
k−1F

T
k−1 + Qk−1

Py
k = HkP

f
kH

T
k + Rk−1

Kk = P f
kH

T
k (Py

k )−1

Pa
k = (I − KkHk)P f

k

εk = yk − y fk = yk − Hkx
f
k

xak = x fk + Kkεk
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Adaptive Filter: Estimating Q and R

I Innovations contain information about Q and R

εk = yk − y fk

= h(xk) + νk − h(x fk )

= h(f (xk−1) + ωk)− h(f (xak−1)) + νk

≈ HkFk−1(xk−1 − xak−1) + Hkωk + νk

I IDEA: Use innovations to produce samples of Q and R :

E[εkε
T
k ] ≈ HP fHT + R

E[εk+1ε
T
k ] ≈ HFPeHT − HFKE[εkε

T
k ]

Pe ≈ FPaFT + Q

I In the linear case this is rigorous and was first solved by
Mehra in 1970
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Adaptive Filter: Estimating Q and R

I To find Q and R we estimate Hk and Fk−1 from the ensemble
and invert the equations:

E[εkε
T
k ] ≈ HP fHT + R

E[εk+1ε
T
k ] ≈ HFPeHT − HFKE[εkε

T
k ]

I This gives the following empirical estimates of Qk and Rk :

Pe
k = (Hk+1Fk)−1(εk+1ε

T
k + Hk+1FkKkεkε

T
k )H−Tk

Qe
k = Pe

k − Fk−1P
a
k−1F

T
k−1

Re
k = εkε

T
k − HkP

f
kH

T
k

I Note: Pe
k is an empirical estimate of the background

covariance
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An Adaptive Kalman-Type Filter for Nonlinear Problems

We combine the estimates of Q and R with a moving average

Original Kalman Eqs.

P f
k = Fk−1P

a
k−1F

T
k−1 + Qk−1

Py
k = HkP

f
kH

T
k + Rk−1

Kk = P f
kH

T
k (Py

k )−1

Pa
k = (I − KkHk)P f

k

εk = yk − y fk

xak = x fk + Kkεk

Our Additional Update

Pe
k−1 = F−1

k−1H
−1
k εkε

T
k−1H

−T
k−1

+ Kk−1εk−1ε
T
k−1H

−T
k−1

Qe
k−1 = Pe

k−1 − Fk−2P
a
k−2F

T
k−2

Re
k−1 = εk−1ε

T
k−1 − Hk−1P

f
k−1H

T
k−1

Qk = Qk−1 + (Qe
k−1 − Qk−1)/τ

Rk = Rk−1 + (Re
k−1 − Rk−1)/τ
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How does this compare to inflation?

I We extend Kalman’s equations to estimate Q and R

I Estimates converge for linear models with Gaussian noise

I When applied to nonlinear, non-Gaussian problems

I We interpret Q as an additive inflation

I Q can have complex structure, possibly more effective than
multiplicative inflation?

I Downside: many more parameters than multiplicative inflation

I Somewhat less ad hoc than other inflation techniques?

Tyrus Berry Adaptive ensemble Kalman filtering of nonlinear systems
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Observability and Parameterization of Q

Recall:

Pe
k−1 = F−1

k−1H
−1
k εkε

T
k−1H

−T
k−1 + Kk−1εk−1ε

T
k−1H

−T
k−1

Qe
k−1 = Pe

k−1 − Fk−2P
a
k−2F

T
k−2

Together these equations imply that:

HkFk−1Q
e
kH

T
k−1 = εkε

T
k−1 + HkFk−1Kk−1εk−1ε

T
k−1

−HkFk−1P
a
k−1F

T
k−1H

T
k−1

Set Ck equal to the right hand side (we simply compute Ck).
Parameterize Qe

k =
∑s

i=1 qi Q̂i where qi are scalar parameters and

Q̂i are ‘shape’ matrices.
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Observability and Parameterization of Q

We now need to solve:

Ck =
s∑

i=1

qiHkFk−1Q̂iH
T
k−1

We vectorize the equation as

vec(Ck) =
s∑

i=1

qivec(HkFk−1Q̂iH
T
k−1) = Ak [q1, ..., qs ]T

where Ak is an m2-by-l matrix where the i-th row is given by
vec(HkFk−1Q̂iH

T
k−1).

We can the solve for the parameters [q1, ..., qs ]T by least squares.
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Adaptive Filter: Application to Lorenz-96

I We will apply the adaptive EnKF to the 40-dimensional
Lorenz96 model integrated over a time step ∆t = 0.05

dx i

dt
= −x i−2x i−1 + x i−1x i+1 − x i + F

I We augment the model with Gaussian white noise

xk = f (xk−1) + ωk ωk = N (0,Q)

yk = h(xk) + νk νk = N (0,R)

I We will consider full and sparse observations

I The Adaptive EnKF uses F = 8

I We will consider model error where the true F i = N (8, 16)
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Recovering Q and R , Full Observability

True Covariance Initial Guess Final Estimate Difference

Q

R
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RMSE shown for the initial guess covariances (red) the true Q and
R (black) and the adaptive filter (blue)
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Recovering Q and R , Sparse Observability

Observing 10 sites results in divergence with the true Q and R

True Covariance Initial Guess Final Estimate Difference
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R
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RMSE shown for the initial guess covariances (red) the true Q and
R (black) and the adaptive filter (blue)
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Compensating for Model Error

The adaptive filter compensates for errors in the forcing F i

True Covariance Initial Guess Final Estimate Difference
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Integration with the LETKF

Simply find a local Q and R for each region

True Covariance Initial Guess Final Estimate Difference

Q

R

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Site Number

Re
lat

ive
 V

ar
ian

ce

0 0.5 1 1.5 2 2.5
x 105

0

0.2

0.4

0.6

0.8

Filter Steps

RM
SE

RMSE shown for the initial guess covariances (red) the true Q and
R (black) and the adaptive filter (blue)

Tyrus Berry Adaptive ensemble Kalman filtering of nonlinear systems



Intro to Filtering
Adaptive Filtering

Application to Lorenz-96

Kalman-Takens Filter: Throwing out the model...

I Starting with historical observations {y0, ..., yn}

I Form Takens delay-embedding state vectors
xi = (yi , yi−1, ..., yi−d)>

I Build an EnKF:

I Apply analog forecast to each ensemble member

I Use the observation function Hxi = yi

I Crucial to estimate Q and R
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Kalman-Takens applied to L96
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Papers with Franz Hamilton and Tim Sauer

http://math.gmu.edu/˜berry/

I Ensemble Kalman filtering without a model. Phys. Rev. X (2016).

I Adaptive ensemble Kalman filtering of nonlinear systems. Tellus A (2013).

I Real-time tracking of neuronal network structure using data assimilation. Phys. Rev. E (2013).

Related/Background Material

I R. Mehra, 1970: On the identification of variances and adaptive Kalman filtering.

I P. R. Bélanger, 1974: Estimation of noise covariance matrices for a linear time-varying stochastic process.

I J. Anderson, 2007: An adaptive covariance inflation error correction algorithm for ensemble filters.

I H. Li, E. Kalnay, T. Miyoshi, 2009: Simultaneous estimation of covariance inflation and observation errors
within an ensemble Kalman filter.

I B. Hunt, E. Kostelich, I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local
ensemble transform Kalman filter.

I E. Ott, et al. 2004: A local ensemble Kalman filter for atmospheric data assimilation.
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