Data assimilation with and without a model

Tyrus Berry
George Mason University

NJIT
Feb. 28, 2017

Postdoc supported by NSF
This work is in collaboration with:

Tim Sauer, GMU

Franz Hamilton, Postdoc, NCSU
DATA ASSIMILATION

\[x_k = f(x_{k-1}) + \eta_k \quad \eta_k \in \mathcal{N}(0, Q) \]
\[y_k = h(x_k) + \nu_k \quad \nu_k \in \mathcal{N}(0, R) \]

Main Problem: Given the model above plus observations \(y_k \),

- **Filtering:** Estimate the current state \(p(x_k \mid y_1, \ldots, y_k) \)
- **Forecasting:** Estimate a future state \(p(x_{k+\ell} \mid y_1, \ldots, y_k) \)
- **Smoothing:** Estimate a past state \(p(x_{k-\ell} \mid y_1, \ldots, y_k) \)
- **Parameter estimation**

Apply ensemble Kalman filter (EnKF) to achieve these goals.
DATA ASSIMILATION

\[
x_k = f(x_{k-1}) + \eta_k \quad \eta_k \in \mathcal{N}(0, Q)
\]
\[
y_k = h(x_k) + \nu_k \quad \nu_k \in \mathcal{N}(0, R)
\]

Possible obstructions:

- Observations \(y_k \) mix system noise \(\eta_k \) with obs noise \(\nu_k \)
- Observations may be sparse in space or time
- Model error
 - \(Q \) and \(R \) may be unknown
 - Known model with unknown parameters
 - Wrong model, even with best fit parameters
 - Have model for some, not all of the variables
EXAMPLE 1. LORENZ 96

\[
\frac{dx^i}{dt} = -x^{i-2}x^{i-1} + x^{i-1}x^{i+1} - x^i + F
\]
EXAMPLE 2. MEA RECORDINGS

Given: Voltages + Model

Want to find:

- **State:**
 - Sodium
 - Potassium
 - Currents

- **Parameters**
 - Neuron
 - Network
TWO STEP FILTERING TO FIND $p(x_k | y_1, \ldots, y_k)$

- Assume we have $p(x_{k-1} | y_1, \ldots, y_{k-1})$

- **Forecast Step:** Find $p(x_k | y_1, \ldots, y_{k-1})$

- **Assimilation Step:** Perform a Bayesian update,

$$p(x_k | y_1, \ldots, y_k) \propto p(x_k | y_1, \ldots, y_{k-1})p(y_k | x_k, y_1, \ldots, y_{k-1})$$

 Posterior \propto Prior \times Likelihood

- **Alternative:** Variational methods (e.g. 3DVAR, 4DVAR)
 - Minimize a cost functional \Rightarrow Hard optimization problem
BEST POSSIBLE SCENARIO

\[
\begin{align*}
 x_k &= f(x_{k-1}) + \eta_k & \eta_k &\in \mathcal{N}(0, Q) \\
 y_k &= h(x_k) + \nu_k & \nu_k &\in \mathcal{N}(0, R)
\end{align*}
\]

\textit{f} and \textit{h} are linear, all parameters known.

\[
\begin{align*}
 x_k &= F_{k-1}x_{k-1} + \eta_k & \eta_k &\in \mathcal{N}(0, Q) \\
 y_k &= H_kx_k + \nu_k & \nu_k &\in \mathcal{N}(0, R)
\end{align*}
\]
Kalman Filter

- Assume linear dynamics/obs and additive Gaussian noise

\[
\begin{align*}
 x_k &= F_{k-1}x_{k-1} + \omega_k & \omega_k &\sim \mathcal{N}(0, Q) \\
 y_k &= H_kx_k + \nu_k & \nu_k &\sim \mathcal{N}(0, R)
\end{align*}
\]

- For linear systems, easy observability condition:

\[
\tilde{H}_k^\ell = \begin{pmatrix}
 H_k \\
 H_{k+1}F_k \\
 \vdots \\
 H_{k+\ell+1}F_{k+\ell} \cdots F_k
\end{pmatrix}
\]

Must be full rank for some \(\ell \) \(\Rightarrow \) KF guaranteed to work!
Kalman Filter

- Assume linear dynamics/obs and additive Gaussian noise

\[
x_k = F_{k-1} x_{k-1} + \omega_k \quad \omega_k \sim \mathcal{N}(0, Q)
\]

\[
y_k = H_k x_k + \nu_k \quad \nu_k \sim \mathcal{N}(0, R)
\]

- Assume current estimate is Gaussian:

\[
p(x_{k-1} \mid y_1, \ldots, y_{k-1}) = \mathcal{N}(x_{k-1}^a, P_{k-1}^a)
\]

- **Forecast:** Linear combinations of Gaussians

 - **Prior:** \(p(x_k \mid y_1, \ldots, y_{k-1}) = \mathcal{N}(x_k^f, P_k^f) \)

 - \(x_k^f = F_{k-1} x_{k-1}^a \)
 - \(P_k^f = F_{k-1} P_{k-1} F_{k-1}^\top + Q \)

 - **Likelihood:** \(p(y_k \mid x_k, y_1, \ldots, y_{k-1}) = \mathcal{N}(y_k^f, P_k^y) \)

 - \(y_k^f = H_k x_k^f \)
 - \(P_k^y = H_k P_k^f H_k^\top + R \)
Kalman Filter

- Forecast: Linear combinations of Gaussians
 - Prior: \(p(x_k \mid y_1, \ldots, y_{k-1}) = \mathcal{N}(x_k^f, P_k^f) \)
 - \(x_k^f = F_{k-1}x_{k-1}^a \)
 - \(P_k^f = F_{k-1}P_{k-1}F_{k-1}^T + Q \)
 - Likelihood: \(p(y_k \mid x_k, y_1, \ldots, y_{k-1}) = \mathcal{N}(y_k^f, P_k^y) \)
 - \(y_k^f = H_kx_k^f \)
 - \(P_k^y = H_kP_k^fH_k^T + R \)

- Assimilation: Product of Gaussians (complete the square)
 \[
p(x_k \mid y_1, \ldots, y_k) = \mathcal{N}(x_k^f, P_k^f) \times \mathcal{N}(y_k^f, P_k^y) = \mathcal{N}(x_k^a, P_k^a)
\]
- Define the Kalman gain: \(K_k = P_k^fH_k^T(P_k^y)^{-1} \)
 - \(x_k^a = x_k^f + K_k(y_k - y_k^f) \)
 - \(P_k^a = (I - K_kH_k)P_k^f \)
Kalman Filter Summary

Forecast

\[x_k^f = F_{k-1} x_{k-1} \]
\[y_k^f = H_k x_k \]

Covariance update

\[P_k^f = F_{k-1} P_{k-1}^a F_{k-1}^T + Q \]
\[P_k^y = H_k P_k^f H_k^T + R \]

Kalman gain & Innovation

\[K_k = P_k^f H_k^T (P_k^y)^{-1} \]
\[\epsilon_k = y_k - y_k^f \]

Assimilation

\[x_k^a = x_k^f + K_k \epsilon_k \]
\[P_k^a = (I - K_k H_k) P_k^f \]
What about nonlinear systems?

- Consider a system of the form:
 \[
 x_{k+1} = f(x_k) + \omega_{k+1} \\
 y_{k+1} = h(x_{k+1}) + \nu_{k+1}
 \]
 \[\omega_{k+1} \sim \mathcal{N}(0, Q)\]
 \[\nu_{k+1} \sim \mathcal{N}(0, R)\]

- More complicated observability condition (Lie derivatives)

- Extended Kalman Filter (EKF):
 - Linearize \(F_k = Df(x_k^a) \) and \(H_k = Dh(x_k^f) \)

- Problem: State estimate \(x_k^a \) may not be well localized

- Solution: Ensemble Kalman Filter (EnKF)
ENSEMBLE KALMAN FILTER (EnKF)

Generate an ensemble with the current statistics (use matrix square root):

\[x_t^i = \text{“sigma points” on semimajor axes} \]
\[x_t^f = \frac{1}{2n} \sum F(x_t^i) \]
\[P_{xx}^f = \frac{1}{2n-1} \sum (F(x_t^i) - x_t^f)(F(x_t^i) - x_t^f)^T + Q \]
ENSEMBLE KALMAN FILTER (EnKF)

Calculate \(y_t^i = H(F(x_t^i)) \). Set \(y_t^f = \frac{1}{2n} \sum_i y_t^i \).

\[
P_{yy} = (2n - 1)^{-1} \sum (y_t^i - y_t^f)(y_t^i - y_t^f)^T + R
\]

\[
P_{xy} = (2n - 1)^{-1} \sum (F(x_t^i) - x_t^f)(y_t^i - y_t^f)^T
\]

\[
K = P_{xy}P_{yy}^{-1} \text{ and } P_{xx}^a = P_{xx}^f - KP_{yy}K^T
\]

\[
x_{t+1}^a = x_t^f + K(y_t - y_t^f)
\]
PARAMETER ESTIMATION (STATE AUGMENTATION)

- When the model has parameters θ,
 \[x_{k+1} = f(x_k, \theta) + \omega_{k+1} \]
- Augment the state $\tilde{x}_k = [x_k, \theta_k]$, $\tilde{Q} = \begin{bmatrix} Q & 0 \\ 0 & Q^\theta \end{bmatrix}$
- Introduce trivial dynamics $d\theta = Q^\theta d\omega^\theta$
 \[x_{k+1} = f(x_k, \theta_k) + \omega_{k+1} \]
 \[\theta_{k+1} = \theta_k + \omega^\theta_{k+1} \]
- Need to tune the covariance Q^θ of ω^θ
- Can track slowly varying parameters, $Q^\theta \approx \text{var}(\theta)$
EXAMPLE OF PARAMETER ESTIMATION

Consider a network of n Hodgkin-Huxley neurons

\[
\begin{align*}
\dot{V}_i &= -g_{Na}m^3 h(V_i - E_{Na}) - g_K n^4 (V_i - E_K) - g_L (V_i - E_L) \\
&\quad + I + \sum_{j \neq i} \Gamma_{HH}(V_j) V_j \\
\dot{m}_i &= a_m(V_i)(1 - m_i) - b_m(V_i)m_i \\
\dot{h}_i &= a_h(V_i)(1 - h_i) - b_h(V_i)h_i \\
\dot{n}_i &= a_n(V_i)(1 - n_i) - b_n(V_i)n_i \\
\Gamma_{HH}(V_j) &= \beta_{ij}/(1 + e^{-10(V_j+40)})
\end{align*}
\]

Only observe the voltages V_i

Recover all variables and the connection parameters β
EXAMPLE OF PARAMETER ESTIMATION

Can even turn connections on and off (grey dashes)

Variance estimate ⇒ statistical test (black dashes)
ROBUSTNESS TO MODEL ERROR?

Fit a generic spiking model (Hindmarsh-Rose)

\[
\begin{align*}
\dot{V}_i &= a_i V_i^2 - V_i^3 - y_i - z_i + I_i + \sum_{j \neq i}^{n} \Gamma_{HH}(V_j) V_j \\
\dot{y}_i &= (a_i + \alpha_i) V_i^2 - y_i \\
\dot{z}_i &= \mu_i (b_i V_i + c_i - z_i) \\
\Gamma_{HH}(V_j) &= \beta_{ij}/(1 + e^{-10(V_j+40)})
\end{align*}
\]

Observe voltages \(V_i \) from Hodgkin-Huxley!

Fit parameters to match neuron characteristics

Recover the connection parameters \(\beta \)
LINK DETECTION FROM NETWORKS OF MODEL NEURONS

Network of Hindmarsh-Rose neurons, modeled by Hindmarsh-Rose

Network of Hodgkin-Huxley neurons, modeled by Hindmarsh-Rose
L I N K D E T E C T I O N F R O M M E A R E C O R D I N G S
LINK DETECTION FROM MEA RECORDINGS

MEA Recording

Recovered Network

% of 160 sec each connection was statistically significant
ENKF: Influence of Q and R

- Simple example with full observation and diagonal noise covariances
- Red indicates RMSE of unfiltered observations
- Black is RMSE of ‘optimal’ filter (true covariances known)
ENKF: INFLUENCE OF Q AND R

Standard Kalman Update:

$P_k^f = F_{k-1} P_{k-1}^a F_{k-1}^T + Q_{k-1}$

$P_k^y = H_k P_k^f H_k^T + R_{k-1}$

$K_k = P_k^f H_k^T (P_k^y)^{-1}$

$P_k^a = (I - K_k H_k) P_k^f$

$\epsilon_k = y_k - y_k^f = y_k - H_k x_k^f$

$x_k^a = x_k^f + K_k \epsilon_k$

![Graph showing the influence of Q and R on RMSE]
A D A P T I V E F I L T E R: E S T I M A T I N G Q A N D R

- Innovations contain information about Q and R

\[\epsilon_k = y_k - y_k^f \]
\[= h(x_k) + \nu_k - h(x_k^f) \]
\[= h(f(x_{k-1}) + \omega_k) - h(f(x_{k-1}^a)) + \nu_k \]
\[\approx H_k F_{k-1}(x_{k-1} - x_{k-1}^a) + H_k \omega_k + \nu_k \]

- IDEA: Use innovations to produce samples of Q and R:

\[\mathbb{E} [\epsilon_k \epsilon_k^T] \approx H P^f H^T + R \]
\[\mathbb{E} [\epsilon_{k+1} \epsilon_k^T] \approx H F P^e H^T - H F K \mathbb{E} [\epsilon_k \epsilon_k^T] \]
\[P^e \approx F P^a F^T + Q \]

- In the linear case this is rigorous and was first solved by Mehra in 1970
Adaptive Filter: Estimating Q and R

- To find Q and R we estimate H_k and F_{k-1} from the ensemble and invert the equations:

\[
\mathbb{E}[\epsilon_k \epsilon_k^T] \approx HP^f H^T + R \\
\mathbb{E}[\epsilon_{k+1} \epsilon_k^T] \approx HFP^e H^T - HFK\mathbb{E}[\epsilon_k \epsilon_k^T]
\]

- This gives the following empirical estimates of Q_k and R_k:

\[
P^e_k = (H_{k+1} F_k)^{-1} (\epsilon_{k+1} \epsilon_k^T + H_{k+1} F_k K_k \epsilon_k \epsilon_k^T) H_k^{-T} \\
Q^e_k = P^e_k - F_{k-1} P^a_{k-1} F_{k-1}^T \\
R^e_k = \epsilon_k \epsilon_k^T - H_k P^f_k H_k^T
\]

- Note: P^e_k is an empirical estimate of the background covariance
ADAPTIVE ENKF

We combine the estimates of Q and R with a moving average.

Original Kalman Eqs.

\[
P_k^f = F_{k-1} P_{k-1}^a F_{k-1}^T + Q_{k-1}
\]

\[
P_k^y = H_k P_k^f H_k^T + R_{k-1}
\]

\[
K_k = P_k^f H_k^T (P_k^y)^{-1}
\]

\[
P_k^a = (I - K_k H_k) P_k^f
\]

\[
\epsilon_k = y_k - y_k^f
\]

\[
x_k^a = x_k^f + K_k \epsilon_k
\]

Our Additional Update

\[
P_{k-1}^e = F_{k-1}^{-1} H_k^{-1} \epsilon_k \epsilon_{k-1}^T H_k^{-T}
\]

\[
+ K_{k-1} \epsilon_k \epsilon_{k-1}^T H_k^{-T}
\]

\[
Q_{k-1}^e = P_{k-1}^e - F_{k-2} P_{k-2}^a F_{k-2}^T
\]

\[
R_{k-1}^e = \epsilon_{k-1} \epsilon_{k-1}^T - H_{k-1} P_{k-1}^f H_{k-1}^T
\]

\[
Q_k = Q_{k-1} + (Q_{k-1} - Q_{k-1})/\tau
\]

\[
R_k = R_{k-1} + (R_{k-1} - R_{k-1})/\tau
\]
We will apply the adaptive EnKF to the 40-dimensional Lorenz96 model integrated over a time step $\Delta t = 0.05$

$$\frac{dx^i}{dt} = -x^{i-2}x^{i-1} + x^{i-1}x^{i+1} - x^i + F$$

We augment the model with Gaussian white noise

$$x_k = f(x_{k-1}) + \omega_k \quad \omega_k = \mathcal{N}(0, Q)$$
$$y_k = h(x_k) + \nu_k \quad \nu_k = \mathcal{N}(0, R)$$

The Adaptive EnKF uses $F = 8$

We will consider model error where the true $F^i = \mathcal{N}(8, 16)$
RECOVERING Q AND R, PERFECT MODEL

<table>
<thead>
<tr>
<th>True Covariance</th>
<th>Initial Guess</th>
<th>Final Estimate</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RMSE (bottom right) for the initial guess covariances (red) the true Q and R (black) and the adaptive filter (blue)
COMPENSATING FOR MODEL ERROR

The adaptive filter compensates for errors in the forcing F^i

<table>
<thead>
<tr>
<th>True Covariance</th>
<th>Initial Guess</th>
<th>Final Estimate</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RMSE (bottom right) for the initial guess covariances (red) the perfect model (black) and the adaptive filter (blue)
OPEN PROBLEM

- Determining Q^θ for parameters fails: $d\theta = Q^\theta d\omega^\theta$
- Often Q^θ increases unrealistically or diverges
- Brownian motion \Rightarrow Non-identifiability?
- Ornstein-Uhlenbeck works: $d\theta = \alpha(\bar{\theta} - \theta)d\theta + Q^\theta d\omega^\theta$
- But now need to estimate $\alpha, \bar{\theta}$!
Starting with historical observations \(\{y_0, \ldots, y_n\} \)

Form Takens delay-embedding state vectors

\[
x_i = (y_i, y_{i-1}, \ldots, y_{i-d})^\top
\]

Build an EnKF:

- Apply analog forecast to each ensemble member
- Use the observation function \(Hx_i = y_i \)
- Crucial to estimate \(Q \) and \(R \)
KALMAN RECONSTRUCTION
ANALOG FORECAST
ANALOG FORECAST
Kalman-Takens filter: Lorenz-63

EnKF w/ model

Kalman-Takens
Kalman-Takens Filter

Comparing K-T (red) with full model (blue)
KALMAN-TAKENS FILTER: LORENZ-96
MODEL ERROR

Lorenz-63

Lorenz-96
Kalman-Takens filter

Forecast error: El Nino index

![Graph showing forecast error for El Nino index](image-url)
LIMITS OF PARAMETER ESTIMATION

- Depends on model complexity and observability
- Typically estimate ≈ 4 parameters per observation
- New work: (F. Hamilton et al., Hybrid modeling and prediction of dynamical systems)
 - Problem: Too many parameters, model is useless
 - Solution: To fit params, replace other equations with K-T
 - Extends the boundaries of parameter estimation
ESTIMATING UNMODELED DYNAMICS (FRANZ)

Want to track un-modeled variable S

\[
\dot{w} = F(w) + \omega_t \\
\begin{bmatrix}
y \\
\vdots \\
y \\
S
\end{bmatrix} = H(w) + \nu_t
\]

Run m model with different parameters p_i

\[
w = \begin{bmatrix}
x^1 \\
\vdots \\
x^m \\
c^1 \\
\vdots \\
c^m \\
d
\end{bmatrix}, \quad F = \begin{bmatrix}
f(x, p_1) \\
\vdots \\
f(x, p_m) \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}, \quad H(w) = \\
\begin{bmatrix}
h(x^1) \\
\vdots \\
h(x^m) \\
\sum_{i,j} c^i x^j + d
\end{bmatrix}
\]

Fit regression params c^i_j and d from training data S
RECONSTRUCTING UNMODELED IONIC DYNAMICS

Observing seizure voltage, reconstruct unmodeled potassium and sodium dynamics (assimilation model is Hindmarsh-Rose)

RECONSTRUCTING UNMODELED IONIC DYNAMICS
Observing seizure voltage, reconstruct unmodeled potassium and sodium dynamics (assimilation model is Hindmarsh-Rose)
RECONSTRUCTING UNMODELED IONIC DYNAMICS
Observing seizure voltage, reconstruct unmodeled potassium and sodium dynamics (assimilation model is Hindmarsh-Rose)
RECONSTRUCTING EXTRACELLULAR POTASSIUM FROM AN *In Vitro* NETWORK

We want to track extracellular potassium dynamics in a network but measurements are difficult and spatially limited.

Extracellular potassium is an **unmodeled variable**
RECONSTRUCTING EXTRACELLULAR POTASSIUM FROM AN *In Vitro* NETWORK

The local extracellular potassium in an MEA network can be reconstructed and predicted using our approach (assimilation model is Hindmarsh-Rose)
RECONSTRUCTING EXTRACELLULAR POTASSIUM FROM AN *In Vitro* NETWORK

The local extracellular potassium in an MEA network can be reconstructed and predicted using our approach (assimilation model is Hindmarsh-Rose)

RECONSTRUCTING EXTRACELLULAR POTASSIUM FROM AN In Vitro NETWORK

The local extracellular potassium in an MEA network can be reconstructed and predicted using our approach (assimilation model is Hindmarsh-Rose)

![Graph showing Actual, Observed, and Predicted potassium levels over time](image)
SUMMARY

- EnKF is a useful data assimilation technique for neurodynamics and other types of data
- Parameter estimation
- Adaptive QR is helpful when Q and R are unknown
- Difficulties
 - Model error
 - Unmodeled variables
 - No model
- Kalman-Takens filter
- Multimodel data assimilation
REFERENCES

▶ F. Hamilton, A. Lloyd, K. Flores, Hybrid modeling and prediction of dynamical systems. Submitted.
Kalman Filter: Forecast Step

- At time $k-1$ we have mean x_{k-1}^a and covariance P_{k-1}^a

$$x_k = F_{k-1}x_{k-1} + \omega_k$$

- Linear combinations of Gaussians are still Gaussian so:

 - $p(F_{k-1}x_{k-1} \mid y_1, \ldots, y_{k-1}) = \mathcal{N}(F_{k-1}x_{k-1}^a, F_{k-1}P_{k-1}F_{k-1}^T)$
 - $p(x_k \mid y_1, \ldots, y_{k-1}) = \mathcal{N}(F_{k-1}x_{k-1}^a, F_{k-1}P_{k-1}F_{k-1}^T + Q)$

- Define the **Forecast mean**: $x_k^f \equiv F_{k-1}x_{k-1}^a$

- Define the **Forecast covariance**: $P_k^f \equiv F_{k-1}P_{k-1}F_{k-1}^T + Q$
Recall that \(y_k = H_k x_k + \nu_k \) where \(\nu_k \sim \mathcal{N}(0, R) \) is Gaussian.

The forecast distribution: \(p(x_k | y_1, ..., y_{k-1}) = \mathcal{N}(x^f_k, P^f_k) \)

Likelihood:
\[
p(y_k | x_k, y_1, ..., y_{k-1}) = \mathcal{N}(H_k x^f_k, H_k P^f_k H_k^\top + R)
\]

Define the **Observation mean**: \(y^f_k = H_k x^f_k \)

Define the **Observation covariance**: \(P^y_k = H_k P^f_k H_k^\top + R \)
Kalman Filter: Assimilation Step

- Gaussian prior \times Gaussian likelihood \Rightarrow Gaussian posterior

$$p(y|x)p(x) \propto \exp \left\{ -\frac{1}{2}(y - Hx)^\top (P^y)^{-1}(y - Hx)
- \frac{1}{2}(x - x^f)^\top (P^f)^{-1}(x - x^f) \right\}$$

$$\propto \exp \left\{ -\frac{1}{2}x^\top ((P^y)^{-1} + H(P^f)^{-1}H^\top)x
+ x^\top (H^\top (P^y)^{-1}y - (P^f)^{-1}x^f) \right\}$$

- Posterior Covariance: $P^a = ((P^f)^{-1} + H^\top (P^y)^{-1}H)^{-1}$
- Posterior Mean: $x^a = P^a (H^\top (P^y)^{-1}y - (P^f)^{-1}x^f)$
Kalman Filter: Assimilation Step

- **Kalman Equations:** (after some linear algebra...)
 - Kalman Gain: $K_k = P_k^f H_k^\top (P_k^y)^{-1}$
 - Innovation: $\epsilon_k = y_k - y_k^f$
 - Posterior Mean: $x_k^a = x_k^f + K_k \epsilon_k$
 - Posterior Covariance: $P_k^a = (I - K_k H_k) P_k^f$
 - x_k^a is the least squares/minimum variance estimator of x_k