Linear Theory for Filtering Nonlinear Multiscale Systems with Model Error

Tyrus Berry1

Department of Mathematics
The Pennsylvania State University

Collaborator: John Harlim
The Pennsylvania State University

Dec 18, 2013

1Supports: Office of Naval Research and the National Science Foundation
Consider the following prototype continuous-time filtering problem,

\[
dx = f_1(x, y; \theta) dt + \sigma_x(x, y; \theta) dW_x,
\]

\[
dy = \frac{1}{\epsilon} f_2(x, y; \theta) dt + \frac{\sigma_y(x, y; \theta)}{\sqrt{\epsilon}} dW_y,
\]

\[
dz = h(x) dt + \sqrt{R} dV.
\]
Consider the following prototype continuous-time filtering problem,

\[dx = f_1(x, y; \theta) \, dt + \sigma_x(x, y; \theta) \, dW_x, \]
\[dy = \frac{1}{\epsilon} f_2(x, y; \theta) \, dt + \frac{\sigma_y(x, y; \theta)}{\sqrt{\epsilon}} \, dW_y, \]
\[dz = h(x) \, dt + \sqrt{R} \, dV. \]

Model Error from Neglected Scales:
- Model for slow time variables \(x \) are known (\(f_1 \) and \(\sigma_x \)).
- Observation only depends on \(x \) and is known (\(h \)).
- Fast variables \(y \) are unknown and unobserved. (\(f_2 \) and \(\sigma_y \)).
Consider the two-layer Lorenz-96 model,

\[
\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - ax_i + F + \frac{h_x}{M} \sum_{j=1}^{M} y_{i,j},
\]

\[
\epsilon \frac{dy_{i,j}}{dt} = y_{i,j+1}(y_{i,j-1} - y_{i,j+2}) - y_{i,j} + h_y x_i,
\]

where \(x = x(t) \in \mathbb{R}^N \) and \(y = y(t) \in \mathbb{R}^{NM} \) and the subscript \(i \) is taken modulo \(N \) and \(j \) is taken modulo \(M \).
Consider the two-layer Lorenz-96 model,

\[\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - ax_i + F + \frac{h_x}{M} \sum_{j=1}^{M} y_{i,j}, \]

\[\epsilon \frac{dy_{i,j}}{dt} = y_{i,j+1}(y_{i,j-1} - y_{i,j+2}) - y_{i,j} + h_y x_i, \]

where \(x = x(t) \in \mathbb{R}^N \) and \(y = y(t) \in \mathbb{R}^{NM} \) and the subscript \(i \) is taken modulo \(N \) and \(j \) is taken modulo \(M \).

Proposed Reduced Filter Model:

\[\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - ax_i + F \]
Consider the two-layer Lorenz-96 model,

\[
\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - ax_i + F + \frac{h_x}{M} \sum_{j=1}^{M} y_{i,j},
\]

\[
\epsilon \frac{dy_{i,j}}{dt} = y_{i,j+1}(y_{i,j-1} - y_{i,j+2}) - y_{i,j} + h_y x_i,
\]

where \(x = x(t) \in \mathbb{R}^N \) and \(y = y(t) \in \mathbb{R}^{NM} \) and the subscript \(i \) is taken modulo \(N \) and \(j \) is taken modulo \(M \).

Proposed Reduced Filter Model:

\[
\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - ax_i + F + \left(- \alpha x_i + \sum_{j=1}^{N} \sigma_{ij} \dot{W}_j + \sum_{j=1}^{N} \beta_{ij} \circ x_j \dot{V}_j \right)
\]
Details of the Simulation

- $M = 9$ slow variables, $N = 8$ implies 72 fast variables.
- Data generated from the 81-dimensional two-layer L96 model.
- The 9 slow variables are observed with Gaussian noise.
- Ensemble Kalman Filter (EnKF) with each model.
- Parameters α and σ are fit from the data.

- We measure the performance of the mean estimate (RMSE).
- We use a measure called *consistency* to measure the accuracy of the covariance estimate.
- Consistency $> 1 \implies$ Underestimating covariance.
- Consistency $< 1 \implies$ Overestimating covariance.
Numerical results \((x \in \mathbb{R}^9, y \in \mathbb{R}^{72})\)

RDF = Reduced Deterministic Filter \((\alpha = \beta = \sigma = 0)\)
RDFD = Reduced Deterministic Filter with damping \((\beta = \sigma = 0)\)
RSFA = Reduced Stochastic Filter with additive noise \((\alpha = \beta = 0)\)
RSFAD = Reduced Stochastic Filter with damping and additive noise \((\beta = 0)\)
Motivation for the Reduced Model

Recall: We compensate for the model error with linear damping and additive and multiplicative stochastic forcing.
Motivation for the Reduced Model

Recall: We compensate for the model error with linear damping and additive and multiplicative stochastic forcing.

Linear Example: Consider a two-dimensional system of SDEs,

\[
\begin{align*}
 dx &= (a_{11}x + a_{12}y) \, dt + \sigma_x \, dW_x, \\
 dy &= \frac{1}{\varepsilon} (a_{21}x + a_{22}y) \, dt + \frac{\sigma_y}{\sqrt{\varepsilon}} \, dW_y,
\end{align*}
\]
Recall: We compensate for the model error with linear damping and additive and multiplicative stochastic forcing.

Linear Example: Consider a two-dimensional system of SDEs,

\[
\begin{align*}
 dx &= (a_{11}x + a_{12}y) \, dt + \sigma_x \, dW_x, \\
 dy &= \frac{1}{\epsilon}(a_{21}x + a_{22}y) \, dt + \frac{\sigma_y}{\sqrt{\epsilon}} \, dW_y,
\end{align*}
\]

Want best parameters in reduced model: \(dX = \alpha X dt + \sigma dW_x \)
Motivation for the Reduced Model

Recall: We compensate for the model error with linear damping and additive and multiplicative stochastic forcing.

Linear Example: Consider a two-dimensional system of SDEs,

\[
\begin{align*}
 dx &= (a_{11}x + a_{12}y) \, dt + \sigma_x \, dW_x, \\
 dy &= \frac{1}{\epsilon} (a_{21}x + a_{22}y) \, dt + \frac{\sigma_y}{\sqrt{\epsilon}} \, dW_y,
\end{align*}
\]

Want best parameters in reduced model: \(dX = \alpha X dt + \sigma dW_x \)

Standard approach applies averaging theory to find reduced model

\[
 dX = \tilde{a} X dt + \sigma_x dW_x,
\]

where \(\tilde{a} = a_{11} - a_{12} a_{22}^{-1} a_{21} \). This is an \(O(\sqrt{\epsilon}) \) closure.
Understanding covariance inflation

Gottwald & Harlim made the following $O(\epsilon)$ closure rigorous.

\[
\begin{align*}
dx &= (a_{11}x + a_{12}y) \ dt + \sigma_x dW_x, \\
dy &= \frac{1}{\epsilon} (a_{21}x + a_{22}y) \ dt + \frac{\sigma_y}{\sqrt{\epsilon}} dW_y,
\end{align*}
\]

Rewrite the fast equation as follows

\[
y = -\frac{a_{21}}{a_{22}} x - \sqrt{\epsilon} \frac{\sigma_x}{a_{22}} \dot{W}_y + O(\epsilon)
\]

and substitute it to the slow equation and ignore the $O(\epsilon)$-term, we obtain

\[
d\tilde{X} = \tilde{a} \tilde{X} \ dt + \sigma_x dW_x - \sqrt{\epsilon} \sigma_y \frac{a_{12}}{a_{22}} dW_y.
\]

Remarks: This closure approach is known as the stochastic invariant manifold theory (Fenichel 1979, Boxler 1989).
New approach: Asymptotic expansion of the filter (not the model).

The full model steady-state filter covariance \hat{S} solves,

$$A_\epsilon \hat{S} + \hat{S} A_\epsilon^\top + \hat{S} G^\top R^{-1} G \hat{S} + Q_\epsilon = 0.$$

Solving for \hat{s}_{11} and expanding in ϵ we have:

$$-(1 + 2 \epsilon \hat{a} R) \hat{s}_{21} + 2 \tilde{a} (1 + \epsilon \hat{a}) \hat{s}_{11} + (\sigma^2 x + \epsilon \sigma^2 y a^2 a_{12} a_{22}) + O(\epsilon^2) = 0.$$
New approach: Asymptotic expansion of the filter (not the model).

The full model steady-state filter covariance \hat{S} solves,

$$A_\epsilon \hat{S} + \hat{S} A_\epsilon^\top + \hat{S} G^\top R^{-1} G \hat{S} + Q_\epsilon = 0.$$

Solving for \hat{s}_{11} and expanding in ϵ we have:

$$- \left(\frac{1 + 2\epsilon \hat{a}}{R} \right) \hat{s}_{11}^2 + 2\hat{a} (1 + \epsilon \hat{a}) \hat{s}_{11} + \left(\sigma_x^2 + \epsilon \sigma_y^2 \frac{a_{12}^2}{a_{22}^2} \right) + O(\epsilon^2) = 0$$
New approach: Asymptotic expansion of the filter (not the model).

The full model steady-state filter covariance \(\hat{S} \) solves,

\[
A_\epsilon \hat{S} + \hat{S} A_\epsilon^\top + \hat{S} G^\top R^{-1} G \hat{S} + Q_\epsilon = 0.
\]

Solving for \(\hat{s}_{11} \) and expanding in \(\epsilon \) we have:

\[
- \left(\frac{1 + 2 \epsilon \hat{a}}{R} \right) \hat{s}_{11}^2 + 2 \tilde{a} (1 + \epsilon \hat{a}) \hat{s}_{11} + \left(\sigma_x^2 + \epsilon \sigma_y^2 \frac{a_{12}^2}{a_{22}^2} \right) + O(\epsilon^2) = 0
\]

The reduced model has steady state covariance solution, \(\tilde{s} \), that satisfies the 1D Riccati equation,

\[
- \frac{\tilde{s}^2}{R} + 2 \alpha \tilde{s} + \sigma^2 = 0.
\]
New approach: Asymptotic expansion of the filter (not the model).

The full model steady-state filter covariance \hat{S} solves,

$$A_{\epsilon} \hat{S} + \hat{S}A_{\epsilon}^\top + \hat{S}G^\top R^{-1} G \hat{S} + Q_{\epsilon} = 0.$$

Solving for \hat{s}_{11} and expanding in ϵ we have:

$$-\left(1 + 2\epsilon \hat{a}\right) \hat{s}_{11}^2 + 2\tilde{a} (1 + \epsilon \hat{a}) \hat{s}_{11} + \left(\sigma_x^2 + \epsilon \sigma_y^2 \frac{a_{12}^2}{a_{22}^2}\right) + O(\epsilon^2) = 0$$

The reduced model has steady state covariance solution, \tilde{s}, that satisfies the 1D Riccati equation,

$$-\frac{\tilde{s}^2}{R} + 2\alpha \tilde{s} + \sigma^2 = 0.$$

Find parameters $\{\alpha, \sigma\}$ such that $\tilde{s} = s_{11} \hat{s} + O(\epsilon^2)!$
Theorem (Manifold of Parameters, BH2013)

Let \hat{s}_{11} be the first diagonal component of the 2D algebraic Riccati equation associated with the true filter and let \tilde{s} be the solution of one-dimensional Ricatti equation associated with the reduced filter. Then $\lim_{\epsilon \to 0} \frac{\tilde{s} - \hat{s}_{11}}{\epsilon} = 0$ if and only if

$$\sigma^2 = 2(\alpha - \bar{a}(1 - \epsilon \hat{a}))\hat{s}_{11} + \sigma_x^2(1 - 2\epsilon \hat{a}) + \epsilon \sigma_y^2 \frac{a_{12}^2}{a_{22}^2} + O(\epsilon^2). \quad (1)$$

Remarks: For any parameters on the manifold (1), the reduced filter mean estimate solves,

$$d\tilde{x} = \alpha \tilde{x} dt + \tilde{s} R (dz - \tilde{x} dt),$$

while the true filter mean estimate for x-variable solves,

$$d\hat{x} = G \epsilon (\hat{x}, \hat{y})^\top dt + \hat{s}_{11} R (dz - \hat{x} dt).$$

Impose consistency between the actual error covariance, $E(e^2)$, where $e \equiv \tilde{x} - x$, and \tilde{s} to obtain a unique $\{\alpha, \sigma\}$ in the manifold.
Theorem (Manifold of Parameters, BH2013)

Let \(\hat{s}_{11} \) be the first diagonal component of the 2D algebraic Riccati equation associated with the true filter and let \(\tilde{s} \) be the solution of one-dimensional Riccati equation associated with the reduced filter. Then

\[
\lim_{\epsilon \to 0} \frac{\tilde{s} - \hat{s}_{11}}{\epsilon} = 0 \text{ if and only if }
\]

\[
\sigma^2 = 2(\alpha - \tilde{a}(1 - \epsilon \hat{a}))\hat{s}_{11} + \sigma^2_x(1 - 2\epsilon \hat{a}) + \epsilon \sigma^2_y \frac{a^2_{12}}{a^2_{22}} + O(\epsilon^2). \tag{1}
\]

Remarks: For any parameters on the manifold (1), the reduced filter mean estimate solves,

\[
d\tilde{x} = \alpha \tilde{x} \, dt + \frac{\tilde{s}}{R} (dz - \tilde{x} \, dt),
\]

while the true filter mean estimate for \(x \)-variable solves,

\[
d\hat{x} = GA_\epsilon(\hat{x}, \hat{y})^\top \, dt + \frac{\hat{s}_{11}}{R} (dz - \hat{x} \, dt).
\]
Theorem (Manifold of Parameters, BH2013)

Let \hat{s}_{11} be the first diagonal component of the 2D algebraic Riccati equation associated with the true filter and let \tilde{s} be the solution of one-dimensional Ricatti equation associated with the reduced filter. Then $\lim_{\epsilon \to 0} \frac{\tilde{s} - \hat{s}_{11}}{\epsilon} = 0$ if and only if

$$\sigma^2 = 2(\alpha - \tilde{a}(1 - \epsilon \hat{a}))\hat{s}_{11} + \sigma_x^2(1 - 2\epsilon \hat{a}) + \epsilon \sigma_y^2 \frac{a_{12}^2}{a_{22}^2} + O(\epsilon^2). \quad (1)$$

Remarks: For any parameters on the manifold (1), the reduced filter mean estimate solves,

$$d\tilde{x} = \alpha \tilde{x} \, dt + \frac{\tilde{s}}{R} (dz - \tilde{x} \, dt),$$

while the true filter mean estimate for x-variable solves,

$$d\hat{x} = GA_\epsilon (\hat{x}, \hat{y})^\top \, dt + \frac{\hat{s}_{11}}{R} (dz - \hat{x} \, dt).$$

Impose consistency between the actual error covariance, $E(e^2)$, where $e \equiv \tilde{x} - x$, and \tilde{s} to obtain a unique $\{\alpha, \sigma\}$ in the manifold.
Optimal Reduced Stochastic Filter

Theorem (Existence and Uniqueness, BH2013)

There exists a unique optimal reduced filter given by the following prior model,

\begin{equation}
 d\tilde{X} = (\tilde{a} - \epsilon \hat{a} \hat{a}^{-1})\tilde{X} dt + \sigma_x (1 - \epsilon \hat{a})dW_x - \sqrt{\epsilon} \sigma_y \frac{a_{12}}{a_{22}} dW_y,
\end{equation}

where \(\tilde{a} = a_{11} - a_{12}a_{21}a_{22}^{-1} < 0 \) and \(\hat{a} = a_{12}a_{21}a_{22}^{-2} \). The optimality is in the sense that, both the mean and covariance estimates converges uniformly to the corresponding estimates from the true filter, with convergence rate on the order of \(\epsilon^2 \).
Optimal Reduced Stochastic Filter

Theorem (Existence and Uniqueness, BH2013)

There exists a unique optimal reduced filter given by the following prior model,

\[d\tilde{X} = (\tilde{a} - \epsilon\hat{a})\tilde{X} \, dt + \sigma_x (1 - \epsilon\hat{a}) dW_x - \sqrt{\epsilon} \sigma_y \frac{a_{12}}{a_{22}} dW_y, \]

where \(\tilde{a} = a_{11} - a_{12}a_{21}a_{22}^{-1} < 0 \) and \(\hat{a} = a_{12}a_{21}a_{22}^{-2} \). The optimality is in the sense that, both the mean and covariance estimates converge uniformly to the corresponding estimates from the true filter, with convergence rate on the order of \(\epsilon^2 \).

Remark: So, if \(\{\tilde{x}, \tilde{s}\} \) are the solutions of the reduced filter in (2) and \(\{\hat{x}, \hat{s}_{11}\} \) are the solutions of the perfect model, there exists time-independent constants \(C_1, C_2 \), such that

\[|\hat{s}_{11}(t) - \tilde{s}(t)| \leq C_1 \epsilon^2, \]

\[\mathbb{E}(|\hat{x}(t) - \tilde{x}(t)|^2) \leq C_2 \epsilon^4. \]
Remarks:
▶ Notice that for optimal 1D-filter, the MSE (left) approximately equal to the Covariance estimate (right). This is what we called consistent filter: the actual error of the mean estimate matches the filtered covariance estimates.
▶ Optimal solutions are always consistent, but consistent solutions are not necessarily optimality.
Remarks:

- Notice that for optimal 1D-filter, the MSE (left) approximately equal to the Covariance estimate (right). This is what we called **consistent** filter: the actual error of the mean estimate matches the filtered covariance estimates.

- Optimal solutions are always consistent, but consistent solutions are not necessarily optimality.
Summary (Theory):

- Model error creates inconsistency in the filtered statistical estimates.
Summary (Theory):

- Model error creates inconsistency in the filtered statistical estimates.
- For linear problems there exists a unique reduced model for the slow variables which gives optimal mean and covariance estimates.
Summary (Theory):

- Model error creates inconsistency in the filtered statistical estimates.
- For linear problems there exists a unique reduced model for the slow variables which gives optimal mean and covariance estimates.
- Finding the reduced model requires imposing consistency on the filter mean and covariance estimates.
Summary (Theory):

- Model error creates inconsistency in the filtered statistical estimates.
- For linear problems there exists a unique reduced model for the slow variables which gives optimal mean and covariance estimates.
- Finding the reduced model requires imposing consistency on the filter mean and covariance estimates.
- The reduced model includes correction terms in the form of a linear damping and an additive stochastic forcing.
Summary (Theory):

- Model error creates inconsistency in the filtered statistical estimates.
- For linear problems there exists a unique reduced model for the slow variables which gives optimal mean and covariance estimates.
- Finding the reduced model requires imposing consistency on the filter mean and covariance estimates.
- The reduced model includes correction terms in the form of a linear damping and an additive stochastic forcing.
- For general nonlinear filtering problems, it is impractical to find the unique reduced model since it requires imposing consistency on higher-order moments.
Summary (Theory):

- Model error creates inconsistency in the filtered statistical estimates.
- For linear problems there exists a unique reduced model for the slow variables which gives optimal mean and covariance estimates.
- Finding the reduced model requires imposing consistency on the filter mean and covariance estimates.
- The reduced model includes correction terms in the form of a linear damping and an additive stochastic forcing.
- For general nonlinear filtering problems, it is impractical to find the unique reduced model since it requires imposing consistency on higher-order moments.
- A simple test case shows that general nonlinear problems require multiplicative noise.
Based on these results, we propose the ansatz used above,

\[
\left(-\alpha x_i + \sum_{j=1}^{N} \sigma_{ij} \dot{W}_j + \sum_{j=1}^{N} \beta_{ij} \circ x_j \dot{V}_j \right)
\]

as a stochastic parameterization for model error.
Summary (Practical):

Based on these results, we propose the ansatz used above,

\[
\left(-\alpha x_i + \sum_{j=1}^{N} \sigma_{ij} \dot{W}_j + \sum_{j=1}^{N} \beta_{ij} \circ x_j \dot{V}_j \right)
\]

as a stochastic parameterization for model error.

Many practical questions remain:

- Should \(\alpha\) be a matrix (spatial dependent)?
- How can we estimate \(\alpha, \beta, \sigma\) efficiently from data?
- In particular, we currently set \(\beta = 0\) since we do not have an estimation procedure available.
- Is it feasible to make these parameters state dependent?
References:

- J. Harlim, “Data assimilation with model error from unresolved scales”, submitted.
Definition (Consistency of Covariance)

Let \(\tilde{x}(t) \) and \(\tilde{S}(t) \) be a realization of the solution to a filtering problem for which the true signal of the realization is \(x(t) \). The consistency of the realization is defined to be,

\[
C(x, \tilde{x}, \tilde{S}) = \langle \|x - \tilde{x}\|_2^2 \rangle = \frac{1}{n} \langle (x(t) - \tilde{x}(t))^\top \tilde{S}(t)^{-1}(x(t) - \tilde{x}(t)) \rangle.
\]

We say that a filter is consistent if \(C = 1 \) almost surely (independent of the realization).
Empirical Consistency measure

Definition (Consistency of Covariance)

Let $\tilde{x}(t)$ and $\tilde{S}(t)$ be a realization of the solution to a filtering problem for which the true signal of the realization is $x(t)$. The consistency of the realization is defined to be,

$$C(x, \tilde{x}, \tilde{S}) = \langle \| x - \tilde{x} \|^2 \rangle = \frac{1}{n} \langle (x(t) - \tilde{x}(t))^\top \tilde{S}(t)^{-1}(x(t) - \tilde{x}(t)) \rangle.$$

We say that a filter is consistent if $C = 1$ almost surely (independent of the realization).

Remarks:

- Consistency does not imply accurate filter.
- A consistency filter with a good estimate of posterior mean has a good estimate of posterior covariance.
Returning to Nonlinear Filtering Problems

Consider the following prototype continuous-time filtering problem,

\[dx = f_1(x, y; \theta)dt + \sigma_x(x, y; \theta)\, d\mathcal{W}_x, \]
\[dy = \frac{1}{\epsilon} f_2(x, y; \theta)dt + \frac{\sigma_y(x, y; \theta)}{\sqrt{\epsilon}}\, d\mathcal{W}_y, \]
\[dz = h(x)\, dt + \sqrt{R}\, dV. \]

The true filter solutions are characterized by conditional distribution \(p(x, y, t|z_{\tau}, 0 \leq \tau t) \), that satisfy Kushner equation (1964):

\[dp = \mathcal{L}^* p\, dt + p(h - \mathbb{E}[h])^\top R^{-1}(dz - \mathbb{E}[h]\, dt), \]
Returning to Nonlinear Filtering Problems

Consider the following prototype continuous-time filtering problem,

\[
\begin{align*}
 dx &= f_1(x, y; \theta)dt + \sigma_x(x, y; \theta)\,dW_x, \\
 dy &= \frac{1}{\epsilon}f_2(x, y; \theta)dt + \frac{\sigma_y(x, y; \theta)}{\sqrt{\epsilon}}\,dW_y, \\
 dz &= h(x)\,dt + \sqrt{R}\,dV.
\end{align*}
\]

The true filter solutions are characterized by conditional distribution \(p(x, y, t|z_\tau, 0 \leq \tau t)\), that satisfy Kushner equation (1964):

\[
dp = \mathcal{L}^* p\,dt + p(h - \mathbb{E}[h])^\top R^{-1}(dz - \mathbb{E}[h]\,dt),
\]

Practical issues:

- We have no access to \(p\) for high-dimensional nonlinear problems.
- Nonlinearity causes the covariance solutions to depend on higher-order moments and to not equilibrate.
Consider [Gershgorin, Harlim, Majda 2010]:

\[
\begin{align*}
\frac{du}{dt} &= - (\tilde{\gamma} + \lambda_u) u + \hat{b} + \tilde{b} + f(t) + \sigma_u \dot{W}_u, \\
\frac{d\tilde{b}}{dt} &= - \frac{\lambda_b}{\epsilon} \tilde{b} + \frac{\sigma_b}{\sqrt{\epsilon}} \dot{W}_b, \\
\frac{d\tilde{\gamma}}{dt} &= - \frac{\lambda_\gamma}{\epsilon} \tilde{\gamma} + \frac{\sigma_\gamma}{\sqrt{\epsilon}} \dot{W}_\gamma,
\end{align*}
\]
Nonlinear Test model

Consider [Gershgorin, Harlim, Majda 2010]:

\[
\frac{du}{dt} = -(\tilde{\gamma} + \lambda_u)u + \hat{b} + \tilde{b} + f(t) + \sigma_u \dot{W}_u,
\]

\[
\frac{d\tilde{b}}{dt} = -\frac{\lambda_b}{\epsilon} \tilde{b} + \frac{\sigma_b}{\sqrt{\epsilon}} \dot{W}_b,
\]

\[
\frac{d\tilde{\gamma}}{dt} = -\frac{\lambda_\gamma}{\epsilon} \tilde{\gamma} + \frac{\sigma_\gamma}{\sqrt{\epsilon}} \dot{W}_\gamma,
\]

Using the same strategy as for the linear model, we perform asymptotic expansion on the solutions of the optimal filter.
Nonlinear Test model

Consider [Gershgorin, Harlim, Majda 2010]:

\[
\begin{align*}
\frac{du}{dt} &= -(\tilde{\gamma} + \lambda_u)u + \hat{b} + \tilde{b} + f(t) + \sigma_u \dot{W}_u, \\
\frac{d\tilde{b}}{dt} &= -\frac{\lambda_b}{\epsilon} \tilde{b} + \frac{\sigma_b}{\sqrt{\epsilon}} \dot{W}_b, \\
\frac{d\tilde{\gamma}}{dt} &= -\frac{\lambda_{\gamma}}{\epsilon} \tilde{\gamma} + \frac{\sigma_{\gamma}}{\sqrt{\epsilon}} \dot{W}_{\gamma},
\end{align*}
\]

Using the same strategy as for the linear model, we perform asymptotic expansion on the solutions of the optimal filter.

A detailed computation proves that the optimal reduced filter requires both additive and multiplicative noise.
Numerical Solutions for the nonlinear test filtering problems in a regime that mimics dissipative range.