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MOTIVATING EXAMPLE: NEMATIC LIQUID CRYSTAL

Video provided by Rob Cressman, Krasnow Institute, GMU
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FINDING HIDDEN STRUCTURE IN DATA

20 40 60 80 100 120

20

40

60

80

100

⇒
5 10 15 20

5

10

15

20

⇒
1

100

200

300

400

∈ R400

The sub-image geometry:



DIMENSIONALITY HIDDEN STRUCTURE NONUNIFORMITY CLUSTERS HOMOLOGY SPATIOTEMPORAL CHALLENGES

OUTLINE

Lessons:

I Dimensionality: Intrinsic vs. Extrinsic

I Non-uniformity: Respect the density

I Meta-structure: Images and times series

Challenges:

I Curse-of-dimensionality (intrinsic)

I Extrapolation
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INTRINSIC VS. EXTRINSIC DIMENSION

100 points on a Circle
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INTRINSIC VS. EXTRINSIC DIMENSION
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INTRINSIC VS. EXTRINSIC DIMENSION
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INTRINSIC VS. EXTRINSIC DIMENSION
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INTRINSIC VS. EXTRINSIC DIMENSION

I Intrinsic Dimension = 1

θi = 2π
i

100

I Extrinsic Dimension = 2 + N

xi = cos(θi)

yi = sin(θi)

z1
i = a1xi + b1yi

...

zN
i = aNxi + bNyi

=




1 0
0 1
a1 a2
...

...
aN bN




[
cos(θi)
sin(θi)

]
= A

[
cos(θi)
sin(θi)

]

A is a (2 + N)× 2 matrix



DIMENSIONALITY HIDDEN STRUCTURE NONUNIFORMITY CLUSTERS HOMOLOGY SPATIOTEMPORAL CHALLENGES

PRINCIPAL COMPONENT ANALYSIS (PCA)

I Matrix times intrinsic data⇒ limitless redundancy

I These linear redundancies are easy to remove

I PCA finds X given Y = AX

I Does this really happen?
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DOES THIS REALLY HAPPEN?

Consider 11× 11 subimages from a pattern:
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DOES THIS REALLY HAPPEN?
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DOES THIS REALLY HAPPEN?
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DOES THIS REALLY HAPPEN?
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DOES THIS REALLY HAPPEN?
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PRINCIPAL COMPONENT ANALYSIS (PCA)

I Matrix times intrinsic data⇒ limitless redundancy

I These linear redundancies are easy to remove

I PCA finds X given Y = AX

I What about nonlinear redundancies?
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NONLINEAR ⇒ GRAPH

I Represent the nonlinear curved structure with a graph

I Locally linear⇒ Connect nearby points
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NONLINEAR ⇒ GRAPH

I Problem: Noise and outliers can lead to bridging
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NONLINEAR ⇒ GRAPH

I To prevent bridging, edges weighted: Kδ(x , y) = e− ||x−y||2

4δ2

I Theorem: Graph encodes all nonlinear information
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NONLINEAR ⇒ GRAPH

I Equivalently: Restrict to closer points

I Does this always work?

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1



DIMENSIONALITY HIDDEN STRUCTURE NONUNIFORMITY CLUSTERS HOMOLOGY SPATIOTEMPORAL CHALLENGES

NONUNIFORM DENSITY: FIXED BALLS

Black outlines indicate true clusters:

(a) (b)

(a) Dense regions bridged before connecting sparse region

(b) Graph connecting all points with distance less than ε

||x − y || < ε
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NONUNIFORM DENSITY: NEAREST NEIGHBORS (NN)

(c) (d)

(c) Connect each point to its nearest neighbor (NN)

(d) Connect each point to its two nearest neighbors (2NN)
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NONUNIFORM DENSITY: CKNN

(e) (f)

(e) Distance to 10-th nearest neighbor

(f) Continuous k-Nearest Neighbors (CkNN)

||x − y ||√
||x − kNN(x)|| · ||y − kNN(y)||

< δ
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NONUNIFORM DENSITY: MORE DATA?

(g)

(g) Five times more data, 4 nearest neighbors works

Does nearest neighbors always work given sufficient data?
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NONUNIFORM DENSITY: CONCLUSION

(h)

(h) Real data has sparse tails: More data = bigger gaps!

Theorem: NN fails even with infinite data. CkNN succeeds.
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HOW CKNN ‘SEES’ DATA

CkNN defines a symmetric measure of dissimilarity:

dCkNN(x , y) =
||x − y ||√

||x − kNN(x)|| · ||y − kNN(y)||
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HOW CKNN ‘SEES’ DATA

CkNN defines a symmetric measure of dissimilarity:

dCkNN(x , y) =
||x − y ||√

||x − kNN(x)|| · ||y − kNN(y)||
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IMPROVED CLUSTERING USING CKNN
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IMAGE SEGMENTATION

Original Image: Break into subimages

A Manifold Learning Approach to Image Segmentation
Marilyn Y. Vazquez, Tyrus Berry, and Tim Sauer

George Mason University, Fairfax, VA, U.S.A.

OVERVIEW

• The goal of our research is to do texture segmentation using what we call the
“Cut-Cluster-Classify” algorithm on the patch space

• We start by using a density estimator as a way to determine a threshold
value, i.e. the cutting step, that will make the clustering step easier

• The clustering step is done using a very efficient and accurate algorithm
formulated by T. Berry and T. Sauer in [1]

• Finally, the classification step is done using a very simple but efficient
classification algorithm

Sample material images where texture segmentation becomes important. Source: NIST

CLUSTERING ALGORITHM

The CkNN algorithm is presented in [1]. The advantages of this algorithm is that
it preserves the topology of the manifold represented by non-uniformly sampled
cloud data. For example, the 0-level homology identifies the connected
components, which other algorithms are not able to preserve (shown below).

1. Find the k nearest neighbor xk for each point x in the dataset
2. Connect the points x, y if d(x, y) < �

p
d(x, xk)d(y, yk)

3. Chose the � that is the most persistent

(a) (b) (c)

The results of (a) kNN, (b) ✏-balls, and (c) CkNN in the same data with 3 components, two of

which were densely sampled and one was sparsely sampled. Source: [1]

TEXTURE SEGMENTATION

Patch Space
• Since texture is a local feature depending on more than a single pixel, we

decided to look at m ⇥ m patches instead of one pixel at the time
• The plan is to first look at a collection of random patches R and cluster them.

Then, we will go back to the rest of the data and classify it according to how
close it is to the found clusters

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(a) Original image. (b)-(c) patches from polkadot region. (d)-(e) patches from line region. (f)-(i)

patches in the border region.

TEXTURE SEGMENTATION

Density Based Clustering
Since density based clustering suffers from the curse of dimensionality, for large
m a projection of the patches to `  m2 dimensions may be necessary. For
simplicity, suppose n is the number of clusters in your data, Sm,` is the collection
of all patches which have been projected down to ` dimensions, and si 2 Sm,`.
Let q : R` ! R be the local density. Then, we follow these steps:

1. Select random collection R ✓ Sm,` of N patches
2. Select quasi-random ⇢ 2 (0, 1)

3. For j = d⇢Ne, let � be the jth smallest density. Grab R� = {si 2 R|q(si) � �}.
Removing low density patches, or outliers, creates a larger separation
between clusters

4. Cluster R� and calculate the proportion of data in the smallest cluster �n,�

5. If �n,� < tolerance, go to step 2. Else, go to classification step. (i.e. this is a
meaningful clustering)

kNN Classifier

To classify, put back the outliers and for each patch identify the k nearest
neighbors in R`. Give the patch the cluster number that happens most frequently
in those k nearest neighbors identified.

(a) (b)

(c) (d)

(a) R` viewed from its 2 principal components and clustered, and (b) the patches plotted in these

coordinates. (c) Sm,` viewed from its 2 principal components and classified, and (d) the patches

plotted in these coordinates.

TEXTURE SEGMENTATION

Voting
Suppose the pixel x` is found 10 times in Cj and 2 times in Cj+1 and 0 times in the
other n � 2 clusters. Then x` would be assigned to the jth cluster.

RESULTS

Scanning Electron Microscope (SEM) images and our results:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a)-(c) Original images and (d)-(f) the results. (g)-(i) Original images and (j)-(l) the results. Original

image credits: Mark R. Stoudt and Steve P. Mates.

REFERENCES

[1] T. Berry, and T. Sauer. “Consistent Manifold Representation for Topological Data Analysis.”
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[2] B. Peng, L. Zhang, and D. Zhang. “A Survey of Graph Theoretical Approaches to Image Segmentation.”
Pattern Recognition. 46.3 (2013): 1020-1038.
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Images produced by Marilyn Vazquez.
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IMAGE SEGMENTATION

Clustering shown projected to two principal components

all points

with low
density
points
removed

Images produced by Marilyn Vazquez.
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IMAGE SEGMENTATION

Results - synthetic images

Images produced by Marilyn Vazquez.
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IMAGE SEGMENTATION: REAL IMAGES

Images produced by Marilyn Vazquez.
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IMAGE SEGMENTATION: REAL IMAGES

A Manifold Learning Approach to Image Segmentation
Marilyn Y. Vazquez, Tyrus Berry, and Tim Sauer

George Mason University, Fairfax, VA, U.S.A.

OVERVIEW

• The goal of our research is to do texture segmentation using what we call the
“Cut-Cluster-Classify” algorithm on the patch space

• We start by using a density estimator as a way to determine a threshold
value, i.e. the cutting step, that will make the clustering step easier

• The clustering step is done using a very efficient and accurate algorithm
formulated by T. Berry and T. Sauer in [1]

• Finally, the classification step is done using a very simple but efficient
classification algorithm

Sample material images where texture segmentation becomes important. Source: NIST

CLUSTERING ALGORITHM

The CkNN algorithm is presented in [1]. The advantages of this algorithm is that
it preserves the topology of the manifold represented by non-uniformly sampled
cloud data. For example, the 0-level homology identifies the connected
components, which other algorithms are not able to preserve (shown below).

1. Find the k nearest neighbor xk for each point x in the dataset
2. Connect the points x, y if d(x, y) < �

p
d(x, xk)d(y, yk)

3. Chose the � that is the most persistent

(a) (b) (c)

The results of (a) kNN, (b) ✏-balls, and (c) CkNN in the same data with 3 components, two of

which were densely sampled and one was sparsely sampled. Source: [1]

TEXTURE SEGMENTATION

Patch Space
• Since texture is a local feature depending on more than a single pixel, we

decided to look at m ⇥ m patches instead of one pixel at the time
• The plan is to first look at a collection of random patches R and cluster them.

Then, we will go back to the rest of the data and classify it according to how
close it is to the found clusters

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(a) Original image. (b)-(c) patches from polkadot region. (d)-(e) patches from line region. (f)-(i)

patches in the border region.

TEXTURE SEGMENTATION

Density Based Clustering
Since density based clustering suffers from the curse of dimensionality, for large
m a projection of the patches to `  m2 dimensions may be necessary. For
simplicity, suppose n is the number of clusters in your data, Sm,` is the collection
of all patches which have been projected down to ` dimensions, and si 2 Sm,`.
Let q : R` ! R be the local density. Then, we follow these steps:

1. Select random collection R ✓ Sm,` of N patches
2. Select quasi-random ⇢ 2 (0, 1)

3. For j = d⇢Ne, let � be the jth smallest density. Grab R� = {si 2 R|q(si) � �}.
Removing low density patches, or outliers, creates a larger separation
between clusters

4. Cluster R� and calculate the proportion of data in the smallest cluster �n,�

5. If �n,� < tolerance, go to step 2. Else, go to classification step. (i.e. this is a
meaningful clustering)

kNN Classifier

To classify, put back the outliers and for each patch identify the k nearest
neighbors in R`. Give the patch the cluster number that happens most frequently
in those k nearest neighbors identified.

(a) (b)

(c) (d)

(a) R` viewed from its 2 principal components and clustered, and (b) the patches plotted in these

coordinates. (c) Sm,` viewed from its 2 principal components and classified, and (d) the patches

plotted in these coordinates.

TEXTURE SEGMENTATION

Voting
Suppose the pixel x` is found 10 times in Cj and 2 times in Cj+1 and 0 times in the
other n � 2 clusters. Then x` would be assigned to the jth cluster.

RESULTS

Scanning Electron Microscope (SEM) images and our results:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a)-(c) Original images and (d)-(f) the results. (g)-(i) Original images and (j)-(l) the results. Original

image credits: Mark R. Stoudt and Steve P. Mates.

REFERENCES

[1] T. Berry, and T. Sauer. “Consistent Manifold Representation for Topological Data Analysis.”
Submitted . Annals of Statistics, 2016.

[2] B. Peng, L. Zhang, and D. Zhang. “A Survey of Graph Theoretical Approaches to Image Segmentation.”
Pattern Recognition. 46.3 (2013): 1020-1038.

Department of Mathematics, George Mason University, Fairfax, VA 22030 mvazque3@masonlive.gmu.edu

Original images by Mark R. Stoudt and Steve P. Mates. Analysis by Marilyn Vazquez.
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PERSISTENT VS. CONSISTENT HOMOLOGY

ε-ball

CkNN
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PERSISTENT VS. CONSISTENT HOMOLOGY
A noncompact example, with ε-balls
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Adding data cannot help.
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PERSISTENT VS. CONSISTENT HOMOLOGY

Noncompact example, with CkNN
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IDENTIFYING PATTERNS
Compute homology of point cloud of p × p subimages
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SPATIOTEMPORAL DATA

I Spatial⇒ Short spatial windows (subimages)

I Temporal⇒ Short time windows (delay embedding)
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TAKENS RECONSTRUCTION
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SPIRAL WAVES

ut = ∆u +
1
ρ

u(1 − u)

(
u − v + b

a

)
vt = u − v

(D. Barkley 1991)
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SPIRAL WAVES

... and later ...

Depending on a and b, spirals may or may not meander.
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SPIRAL WAVES: NON-MEANDERING
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SPIRAL WAVES: MEANDERING
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LIQUID CRYSTAL EXPERIMENT

Electroconvection in
liquid crystal
produces
spatiotemporal
patterns.

Sample is 0.1× 0.1
mm and 25 µm thick.

Driven at 22 V.
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LIQUID CRYSTAL
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LIQUID CRYSTAL
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CURSE-OF-(INTRINSIC)-DIMENSIONALITY

I Try to cut into independent components

I Otherwise math/stat says it is impossible

I Need more/better assumptions and/or questions

I Better assumptions: Smoothness

I Better questions: Feature of interest (supervised)
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EXTRAPOLATION

I Given only part of a structure recover the whole
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I Need to exploit symmetry
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EXTRAPOLATION

I Given only part of a structure recover the whole

?

I Need to exploit symmetry


	Dimensionality
	Hidden Structure
	Nonuniformity
	Clusters
	Homology
	Spatiotemporal
	Challenges

	anm0: 
	anm1: 
	anm2: 


