Data-driven forecasting for projections of complex systems

Tyrus Berry
George Mason University

July 16, 2019

Joint work with John Harlim, PSU and Dimitris Giannakis, NYU
Supported by NSF-DMS
PARAMETRIC MODELING

- **Design Model**: Limited *resolution* and *complexity*
- **Assimilate Data**: Fit Parameters/Variables
 - Observability and noise
 - Model error
- **Study/Apply**: Ensemble Forecast
Nonparametric Modeling

Data ⇒ ⇐ Model
- Data:
 - Interpolate
 - Quadrature

Result
- Forecast
- Filter
- Control

Data IS the model:
- Assume a model exists
 - Data lies on/near an unknown sub-manifold
 - Data obeys an unknown dynamical system
- Represent the model using training data
WHAT IS MANIFOLD LEARNING?

- **Manifold learning** ⇔ Estimating Laplace Operator

- Euclidean space:
 - Eigenfunctions of Δ are $e^{i\vec{\omega} \cdot \vec{x}}$
 - Basis for Fourier transform

- Unit circle:
 - Eigenfunctions of Δ are $e^{ik\theta}$
 - Basis for Fourier series

- **Key Fact:** Eigenfunctions of Δ give the smoothest basis for square integrable functions on any manifold.
Why the Laplacian?

- Manifold learning ⇔ Estimating Laplace-Beltrami

- Eigenfunctions $\Delta \varphi_i = \lambda_i \varphi_i$ orthonormal basis for $L^2(\mathcal{M})$

- Smoothest functions: φ_i minimizes the functional

$$\lambda_i = \min_{f \perp \varphi_k, k=1,...,i-1} \left\{ \frac{\int_{\mathcal{M}} ||\nabla f||^2 dV}{\int_{\mathcal{M}} |f|^2 dV} \right\}$$

- Eigenfunctions of Δ are custom Fourier basis
 - Smoothest orthonormal basis for $L^2(\mathcal{M})$
 - Can be used to define wavelets
 - Define the Hilbert/Sobolev spaces on \mathcal{M}
DIFFUSION MAPS: GRAPH LAPLACIAN → MANIFOLD LAPLACIAN

- For data points \(\{ x_i \}_{i=1}^{N} \subset \mathcal{M} \subset \mathbb{R}^n \)
- Define \(J_{ij} = J(x_i, x_j) = \exp \left(-\frac{||x_i - x_j||^2}{\delta^2} \right) \)
- Define \(D_i = \sum_j J_{ij} \)
- Right normalization: \(K_{ij} = D_j^{-1/2} J_{ij} \) and \(\hat{D}_i = \sum_j \hat{J}_{ij} \)
- Left normalization: \(\hat{K}_{ij} = D_i^{-1} K_{ij} \) and finally \(L = \frac{I - \hat{K}}{\delta^2} \)
- **Theorem:** \(L \vec{f} = \Delta \rho_{eq} + \mathcal{O} \left(\delta^2, N^{-1/2} \delta^{-1} - d/2 \right) \)
HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

- Unit circle: $\Delta = \frac{d^2}{d\theta^2}$ eigenfunctions are Fourier basis
- General manifold or data set \Rightarrow Custom Fourier basis
HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

- Unit circle: $\Delta = \frac{d^2}{d\theta^2}$ eigenfunctions are Fourier basis
- General manifold or data set \Rightarrow Custom Fourier basis
FORECASTING WITH THE FOKKER-PLANK PDE

- Dynamical system: \(dx = a(x) \, dt + b(x) \, dW_t \)
- Uncertain initial state \(x(0) \) with density \(p(x, 0) \)
- Density solves Fokker-Planck PDE, \(p_t = \mathcal{L}^*p \) where
 \[
 \mathcal{L}^*f = -\nabla \circ (fa) + \frac{1}{2} \sum_{i,j} \frac{\partial^2}{\partial x_i \partial x_j} \left(f \sum_k b_{ik} b_{jk} \right)
 \]
- Semigroup solution, \(p(x, t) = e^{t \mathcal{L}^*} p(x, 0) \)
The Shift Map

- Given data samples $x_i = x(t_i)$ with $\tau = t_{i+1} - t_i$
- Define the shift map of a function by $Sf(x_i) = f(x_{i+1})$
- Using the Itô lemma we can show:

 $$Sf(x_i) = f(x_{i+1}) = e^{\tau L} f(x_i) + \int_{t_i}^{t_{i+1}} \nabla f^\top b \, dW_s + \int_{t_i}^{t_{i+1}} Bf \, ds$$

- Notice: $\mathbb{E}[S(f)] = e^{\tau L} f$
- Need to minimize the stochastic integrand $\nabla f^\top b$
Representing the Shift Map

- Choose a basis \(\{ \varphi_j \} \) orthonormal with respect to \(\langle \cdot, \cdot \rangle_{p_{eq}} \)
- The coefficients \(c_l(t) = \langle p(x, t), \varphi_l \rangle \) have evolution:

\[
c_l(t + \tau) = \langle p(x, t + \tau), \varphi_l \rangle
= \langle e^{\tau \mathcal{L}^*} p(x, t), \varphi_l \rangle
= \langle p(x, t), e^{\tau \mathcal{L}} \varphi_l \rangle
= \sum_j c_j(t) \langle \varphi_j, e^{\tau \mathcal{L}} \varphi_l \rangle_{p_{eq}}
= \sum_j A_{lj} c_j(t)
\]

- So \(\vec{c}(t + \tau) = A \vec{c}(t) \)
- Where \(A_{lj} = \langle \varphi_j, e^{\tau \mathcal{L}} \varphi_l \rangle_{p_{eq}} \approx \frac{1}{N} \sum_{i=1}^{N} \varphi_j(x_i) \varphi_l(x_{i+1}) \)
Forecasting with the Shift Map

\[p(x, t) \xrightarrow{\text{Diffusion Forecast}} p(x, t + \tau) \]

\[\downarrow \langle p, \varphi_j \rangle \quad \quad \quad \sum_j c_j \varphi_j p_{eq} \uparrow \]

\[\tilde{c}(t) \xrightarrow{A_{lj} = \mathbb{E}[\langle \varphi_j, S \varphi_l \rangle p_{eq}]} \tilde{c}(t + \tau) = A \tilde{c}(t). \]

- We estimate \(c_l(t) \approx \frac{1}{N} \sum_{i=1}^{N} \varphi_l(x_i) p(x_i, t) / p_{eq}(x_i) \)

- We estimate \(A_{lj} \) with \(\hat{A}_{lj} = \frac{1}{N} \sum_{i=1}^{N} \varphi_j(x_i) \varphi_l(x_{i+1}) \)

- \(\mathbb{E}[\hat{A}_{lj}] = A_{lj} \) with error \(\mathcal{O}(||\nabla \varphi_l|| p_{eq} \sqrt{\tau/N}) \)
CHOOSING A BASIS

- Need to minimize the error term $O(||\nabla \varphi_l||_{p_{eq}} \sqrt{\tau/N})$
- The minimizers of $||\nabla \varphi_l||_{p_{eq}}$ are a generalized Fourier basis
- Let $\Delta_{p_{eq}} = \Delta + \frac{\nabla p_{eq}}{p_{eq}} \cdot \nabla$ be the Laplacian weighted by p_{eq}
- The eigenfunctions $\Delta_{p_{eq}} \varphi_j = \lambda_j \varphi_j$ minimize $||\nabla \varphi_j||_{p_{eq}} = \lambda_j$
- How do we find φ_j? Manifold Learning: Diffusion Maps
DIFFUSION FORECAST

- Autonomous SDE: \(dx = a(x) \, dt + b(x) \, dW_t \)
- Density solves Fokker-Planck PDE: \(\frac{\partial}{\partial t} p = \mathcal{L}^* p \)
- Shift map: \(S(p)(x_i) = p(x_{i+1}) \) estimates: \(\mathbb{E}[S(p)] = e^{\tau \mathcal{L}} p \)
- Project onto custom Fourier basis (spectral method)

\[
\begin{align*}
 p(x, t) & \quad \text{Diffusion Forecast} \quad \rightarrow \quad p(x, t + \tau) = e^{\tau \mathcal{L}^*} p(x, t) \\
 \langle p, \varphi_j \rangle & \quad \rightarrow \quad \sum_j c_j \varphi_j q \\
 \bar{c}(t) & \quad A_{ij} = \mathbb{E}[\langle \varphi_j, S \varphi_i \rangle_q] \quad \rightarrow \quad \bar{c}(t + \tau) = A \bar{c}(t).
\end{align*}
\]
MANIFOLD LEARNING ⇒ CUSTOM ‘FOURIER’ BASIS

- **Optimal basis:** Minimum variance $A_{lj} \equiv \mathbb{E}[\langle \varphi_j, S\varphi_l \rangle_q]$
DIFFUSION FORECAST EXAMPLE
PROBLEM: CURSE OF DIMENSIONALITY

- Nonparametric methods \rightarrow Data required grows like a^{dim}
- Maybe we shouldn’t throw out the model...
- Use diffusion forecast to fix model error!
SEMI-PARAMETRIC MODELING

- **Data**
 - Image of a data pattern
- **Model**
 - Equations
 - Variables
 - Parameters
 - Data
- **Result**
 - Forecast
 - Filter
 - Control

Data becomes part of the model:
- Start with imperfect parametric model
- Fit training data with time-varying parameters
- Query data as part of running model

Compensate for model error:
- Truncated resolution and complexity
- Non-analytic expressions
- Non-stationarity/Inhomogeneity
SEMI-PARAMETRIC FORECAST MODEL

- Partially known model: \(\dot{x} = f(x, \theta) \)
- Unknown: \(d\theta = a(\theta) \, dt + b(\theta) \, dW_t \)
- Apply the Diffusion Forecast to \(p(\theta, t) \)
- Sample \(\theta^k(t) \sim p(\theta, t) \) and pair with ensemble \(x^k(t) \)

\[
(x^k(t), \theta^k(t)) \xrightarrow{\dot{x} = f(x, \theta)} (x^k(t + \tau), \theta^k(t + \tau))
\]

\[\uparrow \theta^k(t) \quad \uparrow \theta^k(t + \tau)\]

\[p(\theta, t) \quad \text{Diffusion Forecast} \quad \rightarrow \quad p(\theta, t + \tau)\]
EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM

\[\dot{x}_i = \theta x_{i-1} x_{i+1} - x_{i-1} x_{i-2} - x_i + 8 \]

Wrong Model \((\theta \equiv 1)\)

True Model

\(\theta\)

Time \((\Delta t = 0.1)\)
EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM

\[\dot{x}_i = \theta x_{i-1} x_{i+1} - x_{i-1} x_{i-2} - x_i + 8 \]
PROJECTIONS OF HIGH DIMENSIONAL DYNAMICS

- Consider the 40-dimensional Lorenz-96 system:
 \[
 \dot{x}_i = x_{i-1}x_{i+1} - x_{i-1}x_{i-2} - x_i + 8
 \]
- Assume we only observe a projection of this system
 \[
 y = h(x_1, ..., x_{40})
 \]
- Example: Spatial Fourier mode
 \[
 y = \hat{x}_\omega = \sum_{k=1}^{40} x_i e^{-k\omega}
 \]
- Evolution of y is not closed, sometimes modeled by SDEs
ATTRACTOR RECONSTRUCTION

- Evolution of $y = h(x)$ is not closed (missing information)

- Idea: Use delay-embedding to recover the missing info

- Problem 1: Delay embeddings are biased towards stable directions

 $$\tilde{y}_t \equiv (y_t, y_{t-\tau}, \ldots, y_{t-L\tau}) = (h(x_t), h(F_{-\tau}(x_t), \ldots, h(F_{-L\tau}(x_t)))$$

- Problem 2: Curse-of-dimensionality prevents learning the full attractor

- Adding some delays helps, but adding too many hurts
ATTRACTION RECONSTRUCTION

- Evolution of $y = h(x)$ is not closed
- Adding some delays helps, but adding too many hurts

![Graph showing the evolution of error with different delays](image)

- **Mode:** 18
- **Lead Forecast (model unit time):** RMSE
- **Delays:**
 - No delays
 - $L=1$
 - $L=4$
 - $L=9$
 - $L=19$
 - $L=49$
- **Invariant measure**
NEXT STEPS: MORI-ZWANZIG FORMALISM

- Evolution of $y = h(x)$ is not closed
- Delay-embedding, \tilde{y}_t only yields partial reconstruction
- Projections of dynamical systems can be closed as

 Mori-Zwanzig formalism:
 \[
 \frac{d}{dt} \tilde{y} = V + K + R
 \]

- Diffusion Forecast includes: V (Markovian), R (stochastic)
- Missing the memory term:
 \[
 K = \int_{-\infty}^{t} K(s, \tilde{y}_t, \tilde{y}_s) \tilde{y}_s \, ds
 \]
For more information: http://math.gmu.edu/~berry/

Building the basis

- Coifman and Lafon, *Diffusion maps.*
- B. and Harlim, *Variable Bandwidth Diffusion Kernels.*
- B. and Sauer, *Local Kernels and Geometric Structure of Data.*

Nonparametric forecast

- B., Giannakis, and Harlim, *Nonparametric forecasting of low-dimensional dynamical systems.*
- B. and Harlim, *Forecasting Turbulent Modes with Nonparametric Diffusion Models.*

Semiparametric forecast

- B. and Harlim, *Semiparametric forecasting and filtering: correcting low-dimensional model error in parametric models.*