Optimal Bases and Frames for Data-Driven Forecasting

Tyrus Berry George Mason University

May 25, 2021

Joint work with John Harlim, PSU and Dimitris Giannakis, NYU Supported by NSF-DMS 1854204 and 1723175

Diffusion Forecast

Types of Forecasting: Deterministic

- ▶ Deterministic Forecasting, $x_{k+1} = f(x_k)$
- ▶ Regression problem: Learn f from data
- ▶ Iterative Methods: $x_{k+n} = \tilde{f}^n(x_k)$ where $\tilde{f} \approx f$
- ▶ Direct Methods: $x_{k+n} = \tilde{f}_n(x_k)$ where $\tilde{f}_n \approx f^n$

DIRECT VS. Iterative VS PROBABILISTIC

DETERMINISTIC FORECASTING

▶ Local Linear Regression (x_i near x):

$$f(x) \approx f(x_i) + Df(x_i)(x - x_i)$$

► Kernel Regression (*h* is bump function):

$$f(x) \approx \sum_{j} c_{j}k(x, x_{j}) = \sum_{j} c_{j}h(||x - x_{j}||)$$

► Neural Network (h is sigmoid):

$$f(x) pprox \sum_{j} c_{j} h(a_{j}^{\top} x + b_{j}) = \sum_{j} h(a_{j}^{\top} (x - \tilde{x}_{j}))$$

(where we write $b_i = a_i^{\top} \tilde{x}_i$)

- Deep Network: Composition of Neural Networks
- ▶ Reservoir Computer: Fix a_i, b_i, linear regression for c_i

Types of Forecasting: UQ

- ▶ Uncertainty Quantification, $p_{k+1} = f^* \circ p_k = p_k \circ f$
- Still a regression problem
- Option 1: Combine with ensemble forecast
- ▶ Option 2: Represent $\mathcal{L} = f^*$ in a basis

$$A_{ij} = \left\langle \phi_i, \mathcal{L}\phi_j \right\rangle = \left\langle \phi_i, \phi_j \circ f \right\rangle \approx \frac{1}{N} \sum_{k=1}^N \phi_i(x_k) \phi_j(x_{k+1})$$

Types of Forecasting: Stochastic

- ▶ Stochastic Forecasting, $x_{k+1} = f(x_k, \omega_k)$
- Not a regression problem
- ▶ Don't just want $\bar{f} = \mathbb{E}_{\omega}[f(\cdot, \omega)]$
- ▶ We want the operator $p_{k+1} = \mathcal{L}p_k = \int p_k \circ f(\cdot, \omega) d\pi(\omega)$
- Note:

$$\int p_k \circ f(\cdot, \omega) \, d\pi(\omega) \neq p_k \circ \int f(\cdot, \omega) \, d\pi(\omega)$$

STOCHASTIC FORECASTING = OPERATOR ESTIMATION

▶ Represent $\mathcal{L} = f^*$ in a basis

$$A_{ij} = \langle \phi_i, \mathcal{L}\phi_j \rangle = \langle \phi_i, \phi_j \circ f \rangle \approx \frac{1}{N} \sum_{k=1}^N \phi_i(x_k) \phi_j(x_{k+1})$$

- ► Error Sources: Bias, variance, and truncation
- ▶ Which basis?
 - ► Respect the measure ⇒ Eliminate bias
 - ► Leverage smoothness ⇒ Minimize variance
 - ► Capture global structure ⇒ Minimize truncation

WHAT IS MANIFOLD LEARNING?

- ► Manifold learning ⇔ Estimating Laplace-Beltrami
- ► Eigenfunctions $\Delta \varphi_i = \lambda_i \varphi_i$ orthonormal basis for $L^2(\mathcal{M})$

Diffusion Forecast

▶ Smoothest functions: φ_i minimizes the functional

$$\lambda_{i} = \min_{\substack{f \perp \varphi_{k} \\ k=1, \dots, i-1}} \left\{ \frac{\int_{\mathcal{M}} ||\nabla f||^{2} dV}{\int_{\mathcal{M}} |f|^{2} dV} \right\}$$

- ► Eigenfunctions of ∆ are custom Fourier basis
 - ▶ Smoothest orthonormal basis for $L^2(\mathcal{M})$
 - ► Can be used to define wavelets
 - ► Define the Hilbert/Sobolev spaces on M

DIFFUSION MAPS: GRAPH LAPLACIAN -> MANIFOLD LAPLACIAN

- ▶ For data points $\{x_i\}_{i=1}^N \subset \mathcal{M} \subset \mathbb{R}^n$
- ► Define $J_{ij} = J(x_i, x_j) = \exp\left(-\frac{||x_i x_j||^2}{\delta^2}\right)$
- ▶ Define $D_{ii} = \sum_{i} J_{ij}$ (diagonal)
- ▶ Right normalization: $K = JD^{-1/2}$ and $\hat{D}_{ii} = \sum_{i} \hat{J}_{ii}$
- ▶ Left normalization: $\hat{K} = \hat{D}^{-1}K$
- ► Graph Laplacian: $L = \frac{1}{\delta^2} (I \hat{K})$
- ► Theorem: $L\vec{f} = \Delta_{p_{eq}} + \mathcal{O}\left(\delta^2, N^{-1/2}\delta^{-1-d/2}\right)$

HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

- ▶ Unit circle: $\Delta = \frac{d^2}{d\theta^2}$ eigenfunctions are Fourier basis
- General manifold or data set ⇒ Custom Fourier basis

HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

- ▶ Unit circle: $\Delta = \frac{d^2}{d\theta^2}$ eigenfunctions are Fourier basis
- General manifold or data set ⇒ Custom Fourier basis

FORECASTING WITH THE SHIFT MAP

▶ Stochastic evolution operator: $\mathcal{M}_{\tau}p(x,t) = p(x,t+\tau)$

$$\mathbb{E}_{p(\cdot,t+\tau)}[f] = \langle f, p(x,t+\tau) \rangle = \langle f, \mathcal{M}_{\tau}p(x,t) \rangle$$

▶ Dual is the shift map: $S_{\tau}f(x(t)) = f(x(t+\tau))$

$$\mathbb{E}_{\rho(\cdot,t+\tau)}[f] = \mathbb{E}\left[\langle f(x(t+\tau)), \rho(x,t)\rangle\right] = \mathbb{E}\left[\langle S_{\tau}f(x(t)), \rho(x,t)\rangle\right]$$

FORECASTING WITH THE SHIFT MAP

$$p(x,t)$$
 $--\frac{ ext{Diffusion Forecast}}{ ext{Forecast}} - o ext{} p(x,t+ au)$ $ext{} ext{} ext$

Assuming ergodicity and mixing:

$$\mathbb{E}[\langle \varphi_j, S\varphi_l \rangle_{p_{\text{eq}}}] = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \varphi_j(x_i) \varphi_l(x_{i+1})$$

CHOOSING A BASIS

- ▶ Variance of $\frac{1}{N} \sum_{i=1}^{N} \varphi_i(x_i) \varphi_i(x_{i+1})$ is $\propto ||\nabla \varphi_i||_{p_{eq}}$
- ▶ Minimizers of $||\nabla \varphi_I||_{p_{eq}}$ are a generalized Fourier basis
- ▶ Let $\Delta_{p_{\text{eq}}} = \Delta + \frac{\nabla p_{\text{eq}}}{p_{\text{eq}}} \cdot \nabla$ be the Laplacian weighted by p_{eq}

Diffusion Forecast

0000000

- ► The eigenfunctions $\Delta_{p_{eq}}\varphi_i = \lambda_i\varphi_i$ minimize $||\nabla\varphi_i||_{p_{eq}} = \lambda_i$
- ▶ How do we find φ_i ? Manifold Learning: Diffusion Maps

Manifold Learning ⇒ Custom 'Fourier' basis

Optimal basis: Minimum variance $A_{li} \equiv \mathbb{E}[\langle \varphi_i, S\varphi_l \rangle_q]$

SHIFT MAP \Rightarrow MARKOV MATRIX

Forecasting Perspectives

(Loading Video...)

Diffusion Forecast

00000000

RELATIONSHIP TO CLASSICAL METHODS

- For partial observations, use Takens' reconstruction
- Local linear representations
 - Based on nearest neighbor interpolation
 - Kernel regression also interpolates from neighbors $(\approx$ linear for large data set near manifold)
 - Diffusion forecast extends the map to distributions
- ▶ Partition state space ⇒ Markov matrix
 - Also uses the shift map, just a different basis
 - Diffusion forecast is optimal basis for estimation

RELATIONSHIP TO RESERVOIR COMPUTERS

▶ Create a random (recurrent) network $v_k \in \mathbb{R}^N$

$$v_{k+1} = f(Av_k + Bx_k)$$

 \triangleright Continuously feed in the time series x_k

$$v_{k+1} = f(Af(A \cdots f(Av_{k-\tau} + Bx_{k-\tau}) + \cdots) + Bx_k)$$

= $g(x_k, x_{k-1}, ..., x_{k-\tau})$

- ▶ Predict: $x_{k+1} = Wv_k = Wa(x_k, ..., x_{k-\tau})$
- ▶ Since $\lambda_{max}(A)$ < 1 network forgets distant past
- Chooses a random diffeomorphism of a delay embedding
- ▶ Uses a linear combination W of a random basis

NEXT STEPS: FRAMES

- Frames for function space:
 - ▶ Instead of using a basis for L^2 , use a wavelet frame $\Psi_{\ell,i}$
 - Can we reduce variance with an optimal frame?
- Frames for differential forms:
 - Stochastic evolution operator also acts on forms
 - ▶ Spectral Exterior Calculus: $\{\phi_i d\phi_i\}$ is a frame for 1-forms
 - Plan: Represent the SEO on forms in this frame

PROJECTIONS OF HIGH DIMENSIONAL DYNAMICS

► Consider the 40-dimensional Lorenz-96 system:

$$\dot{x}_i = x_{i-1}x_{i+1} - x_{i-1}x_{i-2} - x_i + 8$$

Assume we only observe a projection of this system

$$y = h(x_1, ..., x_{40})$$

► Evolution of *y* is not closed, sometimes modeled by SDEs

ATTRACTOR RECONSTRUCTION

- ▶ Evolution of y = h(x) is not closed
- ► Adding some delays helps, but adding too many hurts

NEXT STEPS: MORI-ZWANZIG FORMALISM

- ▶ Evolution of y = h(x) is not closed
- ▶ Delay-embedding, \tilde{y}_t only yeilds partial reconstruction

Diffusion Forecast

Projections of dynamical systems can be closed as

Mori-Zwanzig formalism:
$$\frac{d}{dt}\tilde{y} = V + K + R$$

- ► Diffusion Forecast includes: V (Markovian), R (stochastic)
- ► Missing the memory term: $K = \int_{-\infty}^{t} K(s, \tilde{y}_t, \tilde{y}_s) \tilde{y}_s ds$

http://math.gmu.edu/~berry/

Building the basis

- ► B. and Sauer, Consistent Manifold Representation for Topological Data Analysis.
- ► Coifman and Lafon, Diffusion maps.
- ▶ B. and Harlim, Variable Bandwidth Diffusion Kernels.
- ▶ B. and Sauer, Local Kernels and Geometric Structure of Data.

- ► B., Giannakis, and Harlim, Nonparametric forecasting of low-dimensional dynamical systems.
- B. and Harlim, Forecasting Turbulent Modes with Nonparametric Diffusion Models.