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TYPES OF FORECASTING: DETERMINISTIC

I Deterministic Forecasting, xk+1 = f (xk )

I Regression problem: Learn f from data

I Iterative Methods: xk+n = f̃ n(xk ) where f̃ ≈ f

I Direct Methods: xk+n = f̃n(xk ) where f̃n ≈ f n
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DIRECT VS. Iterative VS PROBABILISTIC
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DETERMINISTIC FORECASTING

I Local Linear Regression (xj near x):

f (x) ≈ f (xj) + Df (xj)(x − xj)

I Kernel Regression (h is bump function):

f (x) ≈
∑

j

cjk(x , xj) =
∑

j

cjh(||x − xj ||)

I Neural Network (h is sigmoid):

f (x) ≈
∑

j

cjh(a>j x + bj) =
∑

j

h(a>j (x − x̃j))

(where we write bj = a>j x̃j )
I Deep Network: Composition of Neural Networks
I Reservoir Computer: Fix aj ,bj , linear regression for cj
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TYPES OF FORECASTING: UQ

I Uncertainty Quantification, pk+1 = f ∗ ◦ pk = pk ◦ f

I Still a regression problem

I Option 1: Combine with ensemble forecast

I Option 2: Represent L = f ∗ in a basis

Aij =
〈
φi ,Lφj

〉
=
〈
φi , φj ◦ f

〉
≈ 1

N

N∑
k=1

φi(xk )φj(xk+1)
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TYPES OF FORECASTING: STOCHASTIC

I Stochastic Forecasting, xk+1 = f (xk , ωk )

I Not a regression problem

I Don’t just want f̄ = Eω[f (·, ω)]

I We want the operator pk+1 = Lpk =
∫

pk ◦ f (·, ω) dπ(ω)

I Note: ∫
pk ◦ f (·, ω) dπ(ω) 6= pk ◦

∫
f (·, ω) dπ(ω)
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STOCHASTIC FORECASTING = OPERATOR ESTIMATION

I Represent L = f ∗ in a basis

Aij =
〈
φi ,Lφj

〉
=
〈
φi , φj ◦ f

〉
≈ 1

N

N∑
k=1

φi(xk )φj(xk+1)

I Error Sources: Bias, variance, and truncation

I Which basis?

I Respect the measure⇒ Eliminate bias

I Leverage smoothness⇒ Minimize variance

I Capture global structure⇒ Minimize truncation
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WHAT IS MANIFOLD LEARNING?

I Manifold learning⇔ Estimating Laplace-Beltrami

I Eigenfunctions ∆ϕi = λiϕi orthonormal basis for L2(M)

I Smoothest functions: ϕi minimizes the functional

λi = min
f⊥ϕk

k=1,...,i−1

{∫
M ||∇f ||2 dV∫
M |f |2 dV

}

I Eigenfunctions of ∆ are custom Fourier basis
I Smoothest orthonormal basis for L2(M)
I Can be used to define wavelets
I Define the Hilbert/Sobolev spaces onM
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DIFFUSION MAPS: GRAPH LAPLACIAN → MANIFOLD LAPLACIAN

I For data points {xi}Ni=1 ⊂M ⊂ Rn

I Define Jij = J(xi , xj) = exp
(
− ||xi−xj ||2

δ2

)
I Define Dii =

∑
j Jij (diagonal)

I Right normalization: K = JD−1/2 and D̂ii =
∑

j Ĵij

I Left normalization: K̂ = D̂−1K

I Graph Laplacian: L = 1
δ2

(
I − K̂

)
I Theorem: L~f = ∆peq +O

(
δ2,N−1/2δ−1−d/2)
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

I Unit circle: ∆ = d2

dθ2 eigenfunctions are Fourier basis

I General manifold or data set⇒ Custom Fourier basis
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

I Unit circle: ∆ = d2

dθ2 eigenfunctions are Fourier basis

I General manifold or data set⇒ Custom Fourier basis
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FORECASTING WITH THE SHIFT MAP

I Stochastic evolution operator: Mτp(x , t) = p(x , t + τ)

Ep(·,t+τ)[f ] = 〈f ,p(x , t + τ)〉 = 〈f ,Mτp(x , t)〉

I Dual is the shift map: Sτ f (x(t)) = f (x(t + τ))

Ep(·,t+τ)[f ] = E [〈f (x(t + τ)),p(x , t)〉] = E [〈Sτ f (x(t)),p(x , t))〉]
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FORECASTING WITH THE SHIFT MAP

p(x , t) Diffusion Forecast−−−−−−−−−−−→ p(x , t + τ)y〈p,ϕj〉
x∑

j cjϕj peq

~c(t)
Alj≡E[〈ϕj ,Sϕl 〉peq ]−−−−−−−−−−−−−−−−−→ ~c(t + τ) = A~c(t).

Assuming ergodicity and mixing:

E[〈ϕj ,Sϕl〉peq ] = lim
N→∞

1
N

N∑
i=1

ϕj(xi)ϕl(xi+1)
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CHOOSING A BASIS

I Variance of 1
N
∑N

i=1 ϕj(xi)ϕl(xi+1) is ∝ ||∇ϕl ||peq

I Minimizers of ||∇ϕl ||peq are a generalized Fourier basis

I Let ∆peq = ∆ +
∇peq
peq
· ∇ be the Laplacian weighted by peq

I The eigenfunctions ∆peqϕj = λjϕj minimize ||∇ϕj ||peq = λj

I How do we find ϕj? Manifold Learning: Diffusion Maps
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MANIFOLD LEARNING ⇒ CUSTOM ‘FOURIER’ BASIS

I Optimal basis: Minimum variance Alj ≡ E[〈ϕj ,Sϕl〉q]
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SHIFT MAP ⇒ MARKOV MATRIX
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DIFFUSION FORECAST EXAMPLE

(Loading Video...)


lorenz63Forecast.mov
Media File (video/quicktime)
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RELATIONSHIP TO CLASSICAL METHODS

I For partial observations, use Takens’ reconstruction

I Local linear representations
I Based on nearest neighbor interpolation
I Kernel regression also interpolates from neighbors

(≈ linear for large data set near manifold)
I Diffusion forecast extends the map to distributions

I Partition state space⇒ Markov matrix
I Also uses the shift map, just a different basis
I Diffusion forecast is optimal basis for estimation
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RELATIONSHIP TO RESERVOIR COMPUTERS

I Create a random (recurrent) network vk ∈ RN

vk+1 = f (Avk + Bxk )

I Continuously feed in the time series xk

vk+1 = f (Af (A · · · f (Avk−τ + Bxk−τ ) + · · · ) + Bxk )

= g(xk , xk−1, ..., xk−τ )

I Predict: xk+1 = Wvk = Wg(xk , ..., xk−τ )

I Since λmax(A) < 1 network forgets distant past

I Chooses a random diffeomorphism of a delay embedding

I Uses a linear combination W of a random basis
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NEXT STEPS: FRAMES

I Frames for function space:

I Instead of using a basis for L2, use a wavelet frame Ψ`,j

I Can we reduce variance with an optimal frame?

I Frames for differential forms:

I Stochastic evolution operator also acts on forms

I Spectral Exterior Calculus: {φidφj} is a frame for 1-forms

I Plan: Represent the SEO on forms in this frame



Forecasting Perspectives Manifold Learning Diffusion Forecast Projections and Frames

PROJECTIONS OF HIGH DIMENSIONAL DYNAMICS

I Consider the 40-dimensional Lorenz-96 system:

ẋi = xi−1xi+1 − xi−1xi−2 − xi + 8

I Assume we only observe a projection of this system

y = h(x1, ..., x40)

I Evolution of y is not closed, sometimes modeled by SDEs
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ATTRACTOR RECONSTRUCTION
I Evolution of y = h(x) is not closed

I Adding some delays helps, but adding too many hurts
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NEXT STEPS: MORI-ZWANZIG FORMALISM

I Evolution of y = h(x) is not closed

I Delay-embedding, ỹt only yeilds partial reconstruction

I Projections of dynamical systems can be closed as

Mori-Zwanzig formalism:
d
dt

ỹ = V + K + R

I Diffusion Forecast includes: V (Markovian), R (stochastic)

I Missing the memory term: K =
∫ t
−∞ K (s, ỹt , ỹs)ỹs ds
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Code and papers available at:

http://math.gmu.edu/˜berry/

Building the basis

I B. and Sauer, Consistent Manifold Representation for Topological Data
Analysis.

I Coifman and Lafon, Diffusion maps.
I B. and Harlim, Variable Bandwidth Diffusion Kernels.
I B. and Sauer, Local Kernels and Geometric Structure of Data.

Diffusion forecast

I B., Giannakis, and Harlim, Nonparametric forecasting of
low-dimensional dynamical systems.

I B. and Harlim, Forecasting Turbulent Modes with Nonparametric
Diffusion Models.
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