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TYPES OF FORECASTING: DETERMINISTIC

v

Deterministic Forecasting, xx.1 = f(Xk)

v

Regression problem: Learn f from data

v

lterative Methods: X, = f"(xx) where f ~ f

v

Direct Methods: Xk, = fa(xx) where f, ~ f"
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DETERMINISTIC FORECASTING

» Local Linear Regression (x; near x):
f(x) = H(x)) + DF(x)(x — X))
» Kernel Regression (his bump function):

f(x) ~ Y gk(x, ) = gh(llx — xil|)
] j

» Neural Network (h is sigmoid):

) = Y gh(a x +b) = > h(al (x - %))
J J

(where we write b; = a/ %))

» Deep Network: Composition of Neural Networks
» Reservoir Computer: Fix a;, by, linear regression for ¢;
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TYPES OF FORECASTING: UQ

» Uncertainty Quantification, px.1 = ffopx = pxo f
» Still a regression problem
» Option 1: Combine with ensemble forecast

» Option 2: Represent £ = f* in a basis

1 N
Aj = (61, Léy) = (61,610 1) ~ 15 3 i(Xk) (X 1)
k=1
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TYPES OF FORECASTING: STOCHASTIC

v

Stochastic Forecasting, xx1 = f(xk, wk)

v

Not a regression problem

v

Don't just want f = E,[f(-,w)]

v

We want the operator px,1 = Lpx = [ pk o f(-,w) dr(w)

Note:

v

[ peotftwrdne) #pce [ o) drn(w)
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STOCHASTIC FORECASTING = OPERATOR ESTIMATION

» Represent £ = f* in a basis

;N
Aj = (61, Léy) = (1,050 1) ~ > i) b (Xk41)
k=1

» Error Sources: Bias, variance, and truncation
» Which basis?

» Respect the measure =- Eliminate bias
» Leverage smoothness = Minimize variance

» Capture global structure = Minimize truncation
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WHAT IS MANIFOLD LEARNING?

Projections and Frames
00000

» Manifold learning < Estimating Laplace-Beltrami

» Eigenfunctions Ay; = \;p; orthonormal basis for L2(M)

» Smoothest functions: ; minimizes the functional

VI|ZdV
Ve o {falvEe)
Kt M

» Eigenfunctions of A are custom Fourier basis

» Smoothest orthonormal basis for L2(M)
» Can be used to define wavelets

» Define the Hilbert/Sobolev spaces on M
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DIFFUSION MAPS: GRAPH LAPLACIAN — MANIFOLD LAPLACIAN

v

For data points {x;}¥, c M c R"

v

Define Jj = J(xi, x;) = exp (_Hx%m

» Define D; = Zj Jj (diagonal)

v

Right normalization: K = JD~"/2 and D; = ¥, Jj

v

Left normalization: K = DK

Graph Laplacian: L = (I - f()

v

Theorem: L7 = A, + O (2, N-1/25-1-9/2)

v
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

. . 2 . . . .
» Unit circle: A = % eigenfunctions are Fourier basis

» General manifold or data set = Custom Fourier basis
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

. . 2 . . . .
» Unit circle: A = 2 eigenfunctions are Fourier basis

» General manifold or data set = Custom Fourier basis
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» Stochastic evolution operator: M,p(x,t) = p(x,t+ 7)

Ep(~,t+7')[f] = <f7 ,D(X, t+ T)> = <f,MTp(X7 t)>

» Dual is the shift map: S;f(x(t)) = f(x(t + 7))

Ep(.t+n)[fl = E[(f(x(t + 7)), p(x, 1)] = E[(S-H(x(1)), p(X, 1)))]
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FORECASTING WITH THE SHIFT MAP

T 2 Gj¢pjPeq

A=E[(0),5¢1) peq]

> C(t+ 1) = AC(t).
Assuming ergodicity and mixing:

N
. 1
E[(), S¢1)peg] = NlinooN E i(X)ei1(Xit1)
i1

[m]

=
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CHOOSING A BASIS

v

Variance of % =4 ¢j(X)¢i(Xi+1) i o [ Vil ng

v

Minimizers of ||V,||p,, are a generalized Fourier basis

v

Let Ap,, = A+ Vpeq -V be the Laplacian weighted by peq

v

The eigenfunctions Ap, ¢; = Aj¢; minimize ||[Voj||p,, = A

v

How do we find ¢;? Manifold Learning: Diffusion Maps
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MANIFOLD LEARNING = CUSTOM ‘FOURIER’ BASIS

» Optimal basis: Minimum variance A; = E[{¢;, S¢/)q]

RN Ge
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SHIFT MAP = MARKOV MATRIX
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° Forecast Steps (A t=0.1)
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(Loading Video...)



lorenz63Forecast.mov
Media File (video/quicktime)
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RELATIONSHIP TO CLASSICAL METHODS

» For partial observations, use Takens’ reconstruction

» Local linear representations

» Based on nearest neighbor interpolation

» Kernel regression also interpolates from neighbors
(=~ linear for large data set near manifold)

» Diffusion forecast extends the map to distributions

» Partition state space = Markov matrix

» Also uses the shift map, just a different basis
» Diffusion forecast is optimal basis for estimation
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RELATIONSHIP TO RESERVOIR COMPUTERS

» Create a random (recurrent) network v, € RV

Vier1 = F(AVk + Bxy)

v

Continuously feed in the time series xx

Vk+1 = f(Af(A s f(AVk,T + BXK,T) + - ) + BXk)

= g(Xk> Xk—15 > Xk—7)

v

Predict: Xk4+1 = WVk = Wg(Xk7 ~-7ka7—)

v

Since Amax(A) < 1 network forgets distant past

v

Chooses a random diffeomorphism of a delay embedding

Uses a linear combination W of a random basis

v
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NEXT STEPS: FRAMES

» Frames for function space:
» Instead of using a basis for L2, use a wavelet frame W,
» Can we reduce variance with an optimal frame?

» Frames for differential forms:

» Stochastic evolution operator also acts on forms
» Spectral Exterior Calculus: {¢;d¢;} is a frame for 1-forms

» Plan: Represent the SEO on forms in this frame
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PROJECTIONS OF HIGH DIMENSIONAL DYNAMICS

» Consider the 40-dimensional Lorenz-96 system:
Xi = Xi_1Xjt1 — Xji—1Xji—2 — X; + 8
» Assume we only observe a projection of this system
y = h(xq, ..., Xa0)

» Evolution of y is not closed, sometimes modeled by SDEs
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ATTRACTOR RECONSTRUCTION

» Evolution of y = h(x) is not closed

» Adding some delays helps, but adding too many hurts

Mode:18

0.351

RMSE

= no delays
—L=1
L=4
—L=9
—L=19
—L=49
— — ~invariant measure
0.1 . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Lead Forecast (model unit time)

0.15p;

] = =
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NEXT STEPS: MORI-ZWANZIG FORMALISM

v

Evolution of y = h(x) is not closed

v

Delay-embedding, y; only yeilds partial reconstruction

v

Projections of dynamical systems can be closed as

Mori-Zwanzig formalism: jt}”/ =V+K+R

v

Diffusion Forecast includes: V (Markovian), R (stochastic)

v

Missing the memory term: K = ffoo K(s, yt, ¥s)ys ds
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Code and papers available at:

http://math.gmu.edu/"berry/

Building the basis

» B. and Sauer, Consistent Manifold Representation for Topological Data
Analysis.

» Coifman and Lafon, Diffusion maps.
» B. and Harlim, Variable Bandwidth Diffusion Kernels.
» B. and Sauer, Local Kernels and Geometric Structure of Data.

Diffusion forecast

» B., Giannakis, and Harlim, Nonparametric forecasting of
low-dimensional dynamical systems.

» B. and Harlim, Forecasting Turbulent Modes with Nonparametric
Diffusion Models.
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