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TYPES OF FORECASTING: DETERMINISTIC

I Deterministic Forecasting, xk+1 = F (xk )

I Regression problem: Learn F from data

I Iterative Methods: xk+n = F̃ n(xk ) where F̃ ≈ F

I Direct Methods: xk+n = F̃n(xk ) where F̃n ≈ F n
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DIRECT VS. Iterative VS PROBABILISTIC
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REGRESSION COMPARISON

I Local Linear Regression (xj near x):

F (x) ≈ F (xj) + DF (xj)(x − xj)

I Kernel Regression (h is bump function):

F (x) ≈
∑

j cjh(||x − xj ||Aj )

I Neural Network (h is sigmoid):

F (x) ≈
∑

j cjh(a>j (x − x̃j))

(where we write bj = a>j x̃j )
I Deep Network: Composition of Neural Networks
I Reservoir Computer: Fix aj ,bj , linear regression for cj
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NYSTRÖM VS. DEEP NET, (r , θ) 7→ sin(6θ)
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TYPES OF FORECASTING: UQ

I Deterministic Forecasting, xk+1 = F (xk ), x0 ∼ p0

I Uncertainty Quantification, pk+1 = F(pk ) = pk ◦ F

I Can be considered a regression problem

I Option 1: Learn F , then apply UQ (MC, PC, etc.)

I Option 2: Learn F directly in a basis

Aij =
〈
φi ,Fφj

〉
=
〈
φi , φj ◦ F

〉
≈ 1

N

N∑
k=1

φi(xk )φj(xk+1)
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TYPES OF FORECASTING: STOCHASTIC

I Stochastic Forecasting, xk+1 = F (xk , ωk )

I Not a regression problem

I Don’t just want F̄ (·) = Eω[F (·, ω)]

I We want the forward operator

pk+1 = F(pk ) =

∫
pk ◦ F (·, ω) dπ(ω)

I Note:
∫

pk ◦ F (·, ω) dπ(ω) 6= pk ◦
∫

F (·, ω) dπ(ω)
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STOCHASTIC FORECASTING = OPERATOR ESTIMATION

I Represent F in a basis

Aij =
〈
φi ,Fφj

〉
=
〈
φi , φj ◦ F

〉
≈ 1

N

N∑
k=1

φi(xk )φj(xk+1)

I Error Sources: Bias, variance, and truncation

I Which basis?

I Respect the measure⇒ Eliminate bias

I Leverage smoothness⇒ Minimize variance

I Capture global structure⇒ Minimize truncation
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WHAT IS MANIFOLD LEARNING?

I Manifold learning⇔ Estimating Laplace-Beltrami

I Eigenfunctions ∆ϕi = λiϕi orthonormal basis for L2(M)

I Smoothest functions: ϕi minimizes the functional

λi = min
f⊥ϕk

k=1,...,i−1

{∫
M ||∇f ||2 dV∫
M |f |2 dV

}

I Eigenfunctions of ∆ are custom Fourier basis
I Smoothest orthonormal basis for L2(M)
I Can be used to define wavelets
I Define the Hilbert/Sobolev spaces onM
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CONFORMALLY INVARIANT DIFFUSION MAPS (CIDM)
I Data samples {xi}Ni=1 ⊂M ⊂ Rn of volume peq dV

I Continuous k-Nearest Neighbors (CkNN) dissimilarity:

d(xi , xj) ≡
||xi − xj ||√

||xi − xkNN(i)|| ||xj − xkNN(j)||

I Variable bandwidth kernel, Kij = exp
(
−d(xi ,xj )

2

δ2

)
I Degree matrix Dii =

∑
j Kij (diagonal)

I Graph Laplacian, L = D−K
δd+2

I Theorem: L~f = ∆ĝ f +O
(
δ2,N−1/2δ−1−d/2) , ĝ = p2/d

eq g

I Solve: (I − D−1/2KD−1/2)~v = λ~v , set ~ϕ = D−1/2~v
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

I Manifolds with boundary, (R. Vaughn)

~h>L~f →
∫

(∇h · ∇f ) peqdV
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

I Manifolds with boundary, (R. Vaughn)

~h>L~f →
〈〈
∇ĝh,∇ĝ f

〉〉
ĝ =

∫
ĝ(∇ĝh,∇ĝ f ) dVĝ
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FORECASTING THE FOKKER-PLANK PDE

I Dynamical system: dx = a(x) dt + b(x) dWt

I Uncertain initial state x(0) with density p(x ,0)

I Density solves Fokker-Planck PDE, pt = L∗p where

L∗p = −∇ ◦ (pa) +
1
2

∑
i,j

∂2

∂xi∂xj

(
p
∑

k

bikbjk

)

I Semigroup solution, p(x , t) = etL∗p(x ,0)
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THE SHIFT MAP

I Given data samples xi = x(ti) with τ = ti+1 − ti

I Define the shift map of a function by Sf (xi) = f (xi+1)

I Using the Itô lemma we can show:

Sf (xi) = f (xi+1) = eτLf (xi) +

∫ ti+1

ti
∇f>b dWs +

∫ ti+1

ti
Bf ds

I Notice: E[S(f )] = eτLf

I Need to minimize the stochastic integrand ∇f>b
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FORECASTING WITH THE SHIFT MAP

p(x , t) Diffusion Forecast−−−−−−−−−−−→ p(x , t + τ)y〈p,ϕj〉
x∑

j cjϕj peq

~c(t)
Alj≡E[〈ϕj ,Sϕl 〉peq ]−−−−−−−−−−−−−−−−−→ ~c(t + τ) = A~c(t).

I Estimate Alj with Âlj = 1
N
∑N

i=1 ϕj(xi)ϕl(xi+1)

I E[Âlj ] = Alj with error O(||∇ϕl ||peq

√
τ/N)
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CHOOSING A BASIS

I Need to minimize the error term O(||∇ϕl ||peq

√
τ/N)

I The eigenfunctions ∆ĝϕj = λjϕj minimize ||∇ϕj ||peq = λj

I Find ϕj with Manifold Learning: CIDM
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MANIFOLD LEARNING ⇒ CUSTOM ‘FOURIER’ BASIS

I Optimal basis: Minimum variance Alj ≡ E[〈ϕj ,Sϕl〉peq ]
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SHIFT MAP ⇒ MARKOV MATRIX
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DIFFUSION FORECAST EXAMPLE

(Loading Video...)


lorenz63Forecast.mov
Media File (video/quicktime)
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RELATIONSHIP TO CLASSICAL METHODS

I For partial observations, use Takens’ reconstruction

I Local linear representations
I Nearest neighbor interpolation
I Diffusion forecast extends the map to distributions

I Partition state space⇒ Markov matrix
I Also uses the shift map, just a different basis
I Diffusion forecast is optimal basis for estimation
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RELATIONSHIP TO RESERVOIR COMPUTERS

I Create a random (recurrent) network vk ∈ RN

vk+1 = f (Avk + Bxk )

I Continuously feed in the time series xk

vk+1 = f (Af (Avk−1 + Bxk−1) + Bxk ) = · · ·
= f (Af (A · · · f (Avk−τ + Bxk−τ ) + · · · ) + Bxk )

= g(xk , xk−1, ..., xk−τ )

I Predict: xk+1 = Wvk = Wg(xk , ..., xk−τ )

I Since λmax(A) < 1 network forgets distant past

I Effectively a random diffeomorphism of a delay embedding

I Effectively uses a linear combination W of random basis!
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PROBLEM: CURSE OF DIMENSIONALITY

I Nonparametric methods→ Data required grows like adim
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PROJECTIONS OF HIGH DIMENSIONAL DYNAMICS

I Consider the 40-dimensional Lorenz-96 system:

ẋi = xi−1xi+1 − xi−1xi−2 − xi + 8

I Assume we only observe a projection of this system

y = h(x1, ..., x40)

I Example: Spatial Fourier mode y = x̂ω =
∑40

k=1 xie−kω

I Evolution of y is not closed, sometimes modeled by SDEs
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ATTRACTOR RECONSTRUCTION

I Evolution of y = h(x) is not closed (missing information)

I Idea: Use delay-embedding to recover the missing info

I Problem 1: Delay embeddings are biased towards stable
directions

ỹt ≡ (yt , yt−τ , ..., yt−Lτ ) = (h(xt ),h(F−τ (xt ), ...,h(F−Lτ (xt ))

I Problem 2: Curse-of-dimensionality prevents learning the
full attractor

I Adding some delays helps, but adding too many hurts
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ATTRACTOR RECONSTRUCTION
I Evolution of y = h(x) is not closed

I Adding some delays helps, but adding too many hurts
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NEXT STEPS: MORI-ZWANZIG FORMALISM

I Evolution of y = h(x) is not closed

I Delay-embedding, ỹt only yeilds partial reconstruction

I Projections of dynamical systems can be closed as

Mori-Zwanzig formalism:
d
dt

ỹ = V + K + R

I Diffusion Forecast includes: V (Markovian), R (stochastic)

I Missing the memory term: K =
∫ t
−∞ K (s, ỹt , ỹs)ỹs ds
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SYNTHETIC SENSOR

Consider a synthetic sensor given by a generic sigmoid,

hs(~x , ~z) = arctan
(

(~α(~z)>~x) + (~β(~z)>~x) + (~x)s

)
with input ~x , sensor parameters ~z, and crosstalk:

α(~z) = ~α0 + (~z)1~α1 + (~z)2~α2 ~β(~z) = ~β0 + (~z)1~β1 + (~z)2~β2
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SYNTHETIC SENSOR

Each plot is a response curve for a synthetic sensor:
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RESPONSE CURVE REPRESENTATION

A response curve could be represented by:
I A list of responses at each input grid point (vectorize)
I Coefficients in a basis (sparse grids used here)
I The true parameters ~z (unknown)
I A data-driven ‘sensor space’ (copy of ~z)
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RESPONSE CURVE REPRESENTATION

A response curve could be represented by:
I A list of responses at each input grid point (vectorize)
I Coefficients in a basis (sparse grids used here)
I The true parameters ~z (unknown)
I A data-driven ‘sensor space’ (copy of ~z)
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SENSOR SPACE

True parameters, ~z
⇒ Response curve, h(~x , ~z)
⇒ Sparse grid coefficients, h(~x , ~z) =

∑
i,j ci,j(~z)φi,j(~x)

⇒ Sensor space, P(~c(~z))

~z ⇒ ⇒ ⇒
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SENSOR SPACE

Projecting 200 response curves, each dot represents a sensor

Response curves evolve over time, color represents time
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ADVANTAGE OF SENSOR SPACE

I Learn sensor space from a training set of sensors,
sampled over time if possible

I Quick calibration: A few tests can determine location in
sensor space

I Active calibration: Update sensor space location, eg. using
Kalman filter
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DIFFUSION MAP/FORECAST APPLICATION

I Represent sensor as a distribution on sensor space
I Diffusion map provides the basis functions
I Diffusion forecast can predict sensor drift
I No model required, purely data driven



Forecasting Perspectives Manifold Learning Diffusion Forecast Projections Sensor Applications

FILTER MODEL

I Observation Function (sparse grid interpolation):

~yk = h(~xk , ~zk ) + ~νk ~νk ∼ N (0,R).

I Sensor evolution (data-driven forecast):

~zk+1 = g(~zk ) + ~ηk ~ηk ∼ N (0,T ).

I State evolution (minimal continuity assumption):

~xk+1 = ~xk + ~ωk ~ωk ∼ N (0,Q).

I Kalman Filter:(
x̂k+1
ẑk+1

)
=

(
αx̂k

g(ẑk )

)
+ Kk (~yk+1 − h(αx̂k ,g(ẑk )))
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FILTER EXAMPLE
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FILTER EXAMPLE

Recovering the location in sensor space:
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FUTURE DIRECTIONS: SENSOR-ARRAY CALIBRATION

I Collection of sensor {yi(t) = hi(t)(x(t), zi(t))}Ni=1

I x is very high-dimensional, sensors only partially observe

I Build cross-sensor forecast models:

ŷi(t) = fij(~yI(i,j)(t)) + ηij(t)

I Choose predictors, I(i , j) via cross-validation

I Use ŷi − yi to auto-calibrate and detect sensor failure
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Code and papers available at:

http://math.gmu.edu/˜berry/

Building the basis

I B. and Sauer, Consistent Manifold Representation for Topological Data
Analysis.

I Coifman and Lafon, Diffusion maps.
I B. and Harlim, Variable Bandwidth Diffusion Kernels.
I B. and Sauer, Local Kernels and Geometric Structure of Data.

Diffusion forecast

I B., Giannakis, and Harlim, Nonparametric forecasting of
low-dimensional dynamical systems.

I B. and Harlim, Forecasting Turbulent Modes with Nonparametric
Diffusion Models.
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