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Boundary Value Problems on Embedded Manifolds

I Given points {xi}Ni=1 ⊂M ⊂ Rd

I Want to solve BVPs
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Boundary Value Problems on Embedded Manifolds

I Given points {xi}Ni=1 ⊂M ⊂ Rd

I Points come from a black-box:
I hard to mesh
I not uniformly distributed
I location of boundary unknown



Mesh-free: Tools of the trade

Neumann Problem: Given f ∈ H1(M)∗, g ∈ L2(∂M),{
−∆u + u = f inM
∇u · η = g on ∂M

η is the outward unit normal to ∂M

Good news: Stokes’ theorem still works onM

−
∫
M

v∆u dx =

∫
M
∇v · ∇u dx −

∫
∂M

v∇u · η ds
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Dirichlet Energy Volume Integral Boundary Integral



Key to Manifold Learning

I Given f :M→ R, want to estimate
∫
M f (x) dx

I Assume {xi}Ni=1 ⊂M ⊂ Rd are sampled from distribution p

lim
N→∞

1
N

N∑
i=1

f (xi ) = EX∼p[f (X )] =

∫
M

f (x)p(x) dx

I Step one is estimate the density p so we can compute:

1
N

N∑
i=1

f (xi )

p(xi )
=

∫
M

f (x) dx +O(N−1/2)



Key to Manifold Learning

I L2(M) inner product ⇒ diagonal matrix Dii = 1
Np(xi )

~g>D~f =
1
N

N∑
i=1

g(xi )f (xi )

p(xi )
= 〈f , g〉L2 +O(N−1/2)



Estimating the density

I Select a kernel function, eg. kε(x , y) = e−||x−y ||
2/ε2

I Define a kernel matrix Kij =
kε(xi ,xj )
m0εmN

(K ~f )i ≡
ε−m

m0N

N∑
j=1

kε(xi , xj)f (xj)

=
ε−m

m0

∫
M

kε(xi , y)f (y)p(y) dy +O(ε−mN−1/2)

= f (xi )p(xi ) +O(ε, ε−mN−1/2)

I Setting f ≡ 1 we have

pi =
N∑
j=1

Kij = p(xi ) +O(ε, ε−mN−1/2)



Density estimation on manifoldM⊂ Rd without boundary

E

[
N∑
j=1

Kij

]
=

1
m0εd

∫
y∈M

h

(
||x − y ||2

ε2

)
p(y) dV (y)

(decay of h) =
1

m0εd

∫
||x−y||<εα

h

(
||x − y ||2

ε2

)
p(y) dV (y)

(y = expx(εs)) =
1
m0

∫
||εs||<εα

h
(
||s||2 +O(ε2s4i )

)
p(expx(εs)) (1 +O(ε2s2i ))ds

(Taylor) =
1
m0

∫
||s||<εα−1

h
(
||s||2

)
(p(x) + ε∇p(x) · s) ds +O(ε2)

(symmetry) =
1
m0

∫
||s||<εα−1

h
(
||s||2

)
p(x) ds +O(ε2)

(α < 1) = p(x)
1
m0

∫
Rd

h
(
||s||2

)
ds +O(ε2)

= p(x) +O(ε2)



Density estimation on manifoldM⊂ Rd with boundary

Requires estimating the distance to boundary function
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Kernel integral operator

∫
M
∇u · ∇v dx +

∫
M

uv dx =

∫
M

fv dx +

∫
∂M

gv ds

Dirichlet Energy Volume Integral Boundary Integral

I Kernel, K ⇒ Density, pi ≈ p(xi ) ⇒ Volume, Dii = 1
Npi

I To get Dirichlet Energy and Boundary Integral we dig deeper
into kernel integral asymptotics



Diffusion Maps (w/o Boundary)

Proposition (Coifman, Lafon 2006 [2])
LetM be a compact Riemannian manifold without boundary and
let ε be sufficiently small. Then we have uniformly in the variable ε :

Kεf (x) ≡ ε−m
∫
M

kε(x , y)f (y) dy

= m0f (x) + ε2m2

(
f (x)ω(x)−∆f (x)

)
+O(ε3)

where m0 and m2 are constants depending on k and ω(x) is a
function depending on the curvature ofM.
(Uniformity in ε is crucial.)



New Result (w/ Boundary)

Theorem (R. Vaughn, [8])
For ε sufficiently small, let dist(x , ∂M) < ε. Then:

Kεf (x) = m∂
0 (x)f (x)+εm∂

1 (x)

(
〈∇f , ηx〉g −

m − 1
2

H(x)f (x)

)
+O(ε2)

where m∂
0 (x) and m∂

2 (x) are functions of the distance to the
boundary and H(x) is the mean curvature of the hypersurface
parallel to ∂M intersecting x .



Isolating the Laplacian

Kεf (x) = f (x) + εm1(∇f (x) · η + H(x)f (x))

+ ε2m2(ω(x)f (x)−∆f (x))

f (x)Kε1(x) = f (x) + εm1H(x)f (x) + ε2m2ω(x)f (x)

Subtract...

Lεf (x) ≡ Kεf (x)− f (x)Kε1(x)

= −εm1∇f (x) · η + ε2m2∆f (x)



The long-standing mystery...

1
m2ε2

Lεf (x) =
ε−m

m2ε2

∫
M

kε(x , y)f (y)− kε(x , y)f (x) dy

= ∆f (x)− c∇f (x) · η
ε

+O(ε)



Diffusion Maps Problems at the Boundary

Elements of proof:

I Localize Kεf to a Riemannian normal coordinate
neighborhood.
Normal coordinate charts shrink near the boundary.

I Expand Kε in Riemannian normal coordinates.
Can’t apply Taylor’s theorem without coordinates.

I Use radial symmetry of the domain to cancel all odd terms.
Even if we could, the coordinates would be nonsymmetric.

I Addressed by "symmetrizing" normal coordinates near the
boundary in [3, 4] and others.
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Diffusion Maps Solution at the Boundary

Solution: Use different coordinates near the boundary.

Semigeodesic coordinates

I Classical
I Less well-behaved
I Better for computations near hypersurfaces (∂M).
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Semigeodesic Coordinates



Properties of Semigeodesic Coordinates

I Components of metric tensor are orthogonal gij(0) = δij(0)
(Same as normal coordinates)

I Radial symmetry in all but one direction
(Different from normal coordinates)

I Christoffel symbols are nonzero at the origin
(Different from normal coordinates)

I The coordinate norm does not parameterize geodesic distance
(Different from normal coordinates)
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Semigeodesic Coordinates

Generalization for manifolds with boundary:

M = Mε ∪ Nε



Semigeodesic Expansion

I Volume measure in normal coordinates:

dVol =
√
| det g | ds1 · · · dsm

= 1− 1
6
Ric(s, s) +O(‖s‖3g )ds1 · · · dsm.

I Volume measure in semigeodesic coordinates:

dVol(u) = 1 + H(x)um +O(‖u‖2sem)
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Semigeodesic Expansion

I Distance comparison in normal coordinates
(Smolyanov et al. [5] 2007)

‖x − y‖2Rd = ‖s‖2g −
1
12
‖Π(s, s)‖2g +O(‖s‖5g )

I Norm comparison in semigeodesic coordinates (V, 2020)

‖x − y‖2Rd = ‖u‖2sem −
〈

Π∂Mbx
(u>, u>), u⊥

〉
g

+O(‖u‖4sem).



Semigeodesic Expansion

I Distance comparison in normal coordinates
(Smolyanov et al. [5] 2007)

‖x − y‖2Rd = ‖s‖2g −
1
12
‖Π(s, s)‖2g +O(‖s‖5g )

I Norm comparison in semigeodesic coordinates (V, 2020)

‖x − y‖2Rd = ‖u‖2sem −
〈

Π∂Mbx
(u>, u>), u⊥

〉
g

+O(‖u‖4sem).



Semigeodesic Expansion

Proposition (R. Vaughn, 2020)
For ε sufficiently small, let x be a point in Nε. Then:

1
εm

∫
y∈M

k(ε, x , y)f (y) dVol = m∂
0 (x)f (x)

+ εm∂
1 (x)

(
〈∇f , ηx〉g −

m − 1
2

H(x)f (x)

)
+O(ε2)

where m∂
0 (x) and m∂

2 (x) are functions of the distance to the
boundary and H(x) is the mean curvature of the hypersurface
parallel to ∂M intersecting x .
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Main Result

Theorem (R. Vaughn, [8])
Assume q is a uniform distribution for simplicity. Then for any
smooth function f and any smooth test function φ, we have:

Lε ≡
ε−m−2

m2

∫
M
φ · (Kεf − fKε1) dVol

= −
∫
M
〈∇φ,∇f 〉g dVol +O(ε).



Elements of Proof

I Mε grows as ε→ 0
I Nε shrinks as ε→ 0

The additional integral allows us to subdivideM into two regions
for every ε.
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Elements of Proof

Hence,

~φ>Lε~f ≈
∫
M
φLεf dVol = −

∫
M
〈∇φ,∇f 〉g dVol +O(ε)

I The kernel based estimator does not converge pointwise
I But it converges to the variational form of ∆ with Neumann

B.C. in the weak sense.
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Boundary Integrals

Use distance-to-boundary function to estimate boundary integrals:

Theorem (R. Vaughn, [8])
For f :M→ R, dM the intrinsic distance, and h with fast decay
we have,

1
ε

∫
x∈Nε

h

(
dM(x , ∂M)2

ε2

)
f (x) dVol = m0

∫
x∈∂M

f (x) dVol∂ +O(ε)

where m0 =
∫∞
0 h(u) du.



Mesh-free solver for BVPs on Embedded Manifolds

Weak-sense formulation:∫
M
∇u · ∇v dx +

∫
M

uv dx =

∫
M

fv dx +

∫
∂M

gv ds

Dirichlet Energy Volume Integral Boundary Integral



Consequences

Manifold Learning:

I Diffusion Maps returns Neumann eigenfunctions [2]

I Our result rigorously explains this empirical phenomenon

I Eigenproblem, ~v>Lε~v ≈
∫
M∇φ · ∇φ dx

I Natural boundary condition is Neumann
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Density Estimation, Volume Integrals [1]:

http://math.gmu.edu/˜tberry/

Dirichlet energy & boundary integrals [8]:

http://math.gmu.edu/˜rvaughn5/


