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AVOIDING THE CURSE OF DIMENSIONALITY

Learning f ∈ Cs(Rn,R) from N data points⇒ Error ∝ N−s/n

Coping mechanisms:

I Smooth it away: Assume f is very smooth, ie. s ∝ n

I Independence: Assume Y = f (X ) is conditionally
independent of X given Z = g(X ) ∈ Rm with m� n.

I Redundancy: Assume h(X ) = 0 for some
h ∈ Cm+1(Rn,Rn−m).

I ⇒ Data lies on/near a manifoldM⊂ Rn
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FINDING HIDDEN STRUCTURE IN DATA
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WHAT IS MANIFOLD LEARNING?

I Geometric prior: Data on Riemannian manifoldM⊂ Rm

I Goal: Represent all the information about a manifold

I A smooth embedded manifoldM⊂ Rm inherits:

I A metric tensor gx : TxM× TxM→ R (inner product)

I g completely determines the geometry ofM
I A volume form dV (x) =

√
det(gx ) dx1 ∧ · · · ∧ dxd

I Laplace-Beltrami operator, ∆, is equivalent to g

I ∆f = div ◦ ∇ = 1√
|g|
∂ig ij

√
|g|∂j f

I g(∇f ,∇h) = 1
2 (f ∆h + h∆f −∆(fh))
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WHAT IS MANIFOLD LEARNING?

I Manifold learning⇔ Estimating Laplace-Beltrami

I Hodge theorem:
Eigenfunctions ∆ϕi = λiϕi orthonormal basis for L2(M,g)

I Smoothest functions: ϕi minimizes the functional

λi = min
f⊥ϕk

k=1,...,i−1

{∫
M ||∇f ||2 dV∫
M |f |2 dV

}

I Eigenfunctions of ∆ are custom Fourier basis
I Smoothest orthonormal basis for L2(M,g)
I Can be used to define wavelet frame
I Define the Sobolev spaces onM
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HARMONIC ANALYSIS ON MANIFOLDS
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HARMONIC ANALYSIS ON MANIFOLDS
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Assume data lies on (or at least near) a manifold

I Approximate manifold with graph⇒ Connect nearby points
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Problem: Noise and outliers can lead to bridging
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I To prevent bridging we weight the edges

I Edges are given weights Kδ(x , y) = e−
||x−y||2

4δ2
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Data set⇒ weighted graph

I Edge Weights defined by a kernel function

Kδ(xi , xj) = e−
||xi−xj ||

2

4δ2

I Bandwidth δ determines localization

I ‘Adjacency’ matrix: Kij = K (xi , xj)

I ‘Degree’ matrix: Dii =
∑

j Kij

I Normalized graph Laplacian: L = I− D−1K
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POINTWISE CONVERGENCE

Theorem: (Belkin & Niyogi, 2005, Singer, 2006)
For {xi}Ni=1 ⊂M ⊂ Rm uniformly sampled on a compact
manifold and for ~fi = f (xi) where f ∈ C3(M)

1
δ2

(
L~f
)

i
= ∆f (xi) +O

(
δ2,

1
N1/2δ1+d/2

)

δ = bandwidth
N = number of points
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DISCRETE ANALOGS OF CONTINUOUS OBJECTS

Continuous Discrete

L2(M,q) RN

Functions, f :M→ R Vectors, ~fi = f (xi)

‘Basis’, δx Basis, ~ei = δxi

Laplace-Beltrami, ∆ Normalized Graph Laplacian, L

Eigenfunctions, ∆ϕj = λjϕj Eigenvectors, L~ϕj = λj ~ϕj

Inner product, 〈f ,h〉L2 Dot Product, 1
N
~f · ~h

1
N
~f · ~h =

1
N

N∑
i=1

f (xi)h(xi)→N→∞

∫
M

f (x)h(x) dV (x)
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RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

I Arbitrary sampling (Coifman & Lafon, ‘Diffusion maps’, 2006)

I Other kernel functions (Berry & Sauer, 2015)

I Non-compact manifolds (Berry & Harlim, 2015)

I Boundary (R. Vaughn Thesis 2020)

~h>L~f →
∫
∇h · ∇f dV

I Spectral convergence (von Luxburg et al. 2008, Trillos et al. 2020, Berry & Sauer 2019)
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CONFORMALLY INVARIANT DIFFUSION MAPS (CIDM)
I Data samples {xi}Ni=1 ⊂M ⊂ Rn of volume peq dV

I Continuous k-Nearest Neighbors (CkNN) dissimilarity:

d(xi , xj) ≡
||xi − xj ||√

||xi − xkNN(i)|| ||xj − xkNN(j)||

I Variable bandwidth kernel, Kij = exp
(
−d(xi ,xj )

2

δ2

)
I Degree matrix Dii =

∑
j Kij (diagonal)

I Graph Laplacian, L = D−K
δd+2

I Theorem: L~f = ∆ĝ f +O
(
δ2,N−1/2δ−1−d/2) , ĝ = p2/d

eq g

I Solve: (I − D−1/2KD−1/2)~v = λ~v , set ~ϕ = D−1/2~v
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BEYOND MANIFOLD LEARNING

I Data never really lies on a manifold (due to noise)

I A manifold is a measure zero set

I Data is never sampled from a measure zero set

I Solution 1: Spectral robustness for bounded noise
(Coifman and Lafon), but lose convergence

I Solution 2: Manifold + Noise, requires semi-geodesic
coordinates, need new algorithms to regain convergence

I Solution 3: Generalize beyond manifolds
I Metric measure spaces
I Gromov-Hausdorff limits of manifolds
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TYPES OF FORECASTING: DETERMINISTIC

I Deterministic Forecasting, xk+1 = F (xk )

I Regression problem: Learn F from data

I Iterative Methods: xk+n = F̃ n(xk ) where F̃ ≈ F

I Direct Methods: xk+n = F̃n(xk ) where F̃n ≈ F n
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DIRECT VS. Iterative VS PROBABILISTIC
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TYPES OF FORECASTING: UQ

I Deterministic Forecasting, xk+1 = F (xk ), x0 ∼ p0

I Uncertainty Quantification, pk+1 = F(pk ) = pk ◦ F

I Can be considered a regression problem

I Option 1: Learn F , then apply UQ (MC, PC, etc.)

I Option 2: Learn F directly in a basis

Aij =
〈
φi ,Fφj

〉
=
〈
φi , φj ◦ F

〉
≈ 1

N

N∑
k=1

φi(xk )φj(xk+1)
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TYPES OF FORECASTING: STOCHASTIC

I Stochastic Forecasting, xk+1 = F (xk , ωk )

I Not a regression problem

I Don’t just want F̄ (·) = Eω[F (·, ω)]

I We want the forward operator

pk+1 = F(pk ) =

∫
pk ◦ F (·, ω) dπ(ω)

I Note:
∫

pk ◦ F (·, ω) dπ(ω) 6= pk ◦
∫

F (·, ω) dπ(ω)
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STOCHASTIC FORECASTING = OPERATOR ESTIMATION

I Represent F in a basis

Aij =
〈
φi ,Fφj

〉
=
〈
φi , φj ◦ F

〉
≈ 1

N

N∑
k=1

φi(xk )φj(xk+1)

I Error Sources: Bias, variance, and truncation

I Which basis?

I Respect the measure⇒ Eliminate bias

I Leverage smoothness⇒ Minimize variance

I Capture global structure⇒ Minimize truncation
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FORECASTING THE FOKKER-PLANK PDE

I Dynamical system: dx = a(x) dt + b(x) dWt

I Uncertain initial state x(0) with density p(x ,0)

I Density solves Fokker-Planck PDE, pt = L∗p where

L∗p = −∇ ◦ (pa) +
1
2

∑
i,j

∂2

∂xi∂xj

(
p
∑

k

bikbjk

)

I Semigroup solution, p(x , t) = etL∗p(x ,0)
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THE SHIFT MAP (STOCHASTIC KOOPMAN)

I Given data samples xi = x(ti) with τ = ti+1 − ti

I Define the shift map of a function by Sf (xi) = f (xi+1)

I Using the Itô lemma we can show:

Sf (xi) = f (xi+1) = eτLf (xi) +

∫ ti+1

ti
∇f>b dWs +

∫ ti+1

ti
Bf ds

I Notice: E[S(f )] = eτLf

I Need to minimize the stochastic integrand ∇f>b
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REPRESENTING THE SHIFT MAP

I Choose a basis {ϕj} orthonormal with respect to 〈·, ·〉peq

I The coefficients cl(t) = 〈p(x , t), ϕl〉 have evolution:

cl(t + τ) = 〈p(x , t + τ), ϕl〉

=
〈

eτL
∗
p(x , t), ϕl

〉
=
〈
p(x , t),eτLϕl

〉
=
∑

j

cj(t)
〈
ϕj ,eτLϕl

〉
peq

=
∑

j

Aljcj(t)

I So ~c(t + τ) = A~c(t)
I Where Alj =

〈
ϕj ,eτLϕl

〉
peq
≈ 1

N
∑N

i=1 ϕj(xi)ϕl(xi+1)
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FORECASTING WITH THE SHIFT MAP

p(x , t) Diffusion Forecast−−−−−−−−−−−→ p(x , t + τ)y〈p,ϕj〉
x∑

j cjϕj peq

~c(t)
Alj≡E[〈ϕj ,Sϕl 〉peq ]−−−−−−−−−−−−−−−−−→ ~c(t + τ) = A~c(t).

I Estimate Alj with Âlj = 1
N
∑N

i=1 ϕj(xi)ϕl(xi+1)

I E[Âlj ] = Alj with error O(||∇ϕl ||peq

√
τ/N)
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CHOOSING A BASIS

I Need to minimize the error term O(||∇ϕl ||peq

√
τ/N)

I The eigenfunctions ∆ĝϕj = λjϕj minimize ||∇ϕj ||peq = λj

I Find ϕj with Manifold Learning: CIDM
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MANIFOLD LEARNING ⇒ CUSTOM ‘FOURIER’ BASIS

I Optimal basis: Minimum variance Alj ≡ E[〈ϕj ,Sϕl〉peq ]
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SHIFT MAP ⇒ MARKOV MATRIX
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DIFFUSION FORECAST EXAMPLE

(Loading Video...)


lorenz63Forecast.mov
Media File (video/quicktime)
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ATTRACTOR RECONSTRUCTION
I Evolution of y = h(x) is not closed

I Adding some delays helps, but adding too many hurts
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RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

I Arbitrary sampling (Coifman & Lafon, ‘Diffusion maps’, ACHA 2006)

I Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)

I Non-compact manifolds (Berry & Harlim, ACHA 2015)

I Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)

I Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)
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LOCAL KERNELS

I A local kernel has exponential decay:

Kδ(x , x + δy) < c1e−c2||y ||2

I Theorem: Symmetric local kernels converge to Laplacians

I Every local kernel determines a geometry
I Every geometry accessible by a local kernel

I Explain success of ‘kernel methods’ in data science:

I KPCA: Kernel Principal Component Analysis
I KSVM: Kernel Support Vector Machines
I KDE: Kernel Density Estimation
I RKHS: Reproducing Kernel Hilbert Spaces
I Spectral Clustering (KPCA)
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RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

I Arbitrary sampling (Coifman & Lafon, ‘Diffusion maps’, ACHA 2006)

I Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)

I Non-compact manifolds (Berry & Harlim, ACHA 2015)

I Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)

I Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)
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TANGIBLE MANIFOLDS

I Compute ambient distance ||x − y ||Rm

I Need localization in dI(x , y) = infγ
{∫ 1

0 |γ
′(t)|dt

}
I Assume ratio R(x , y) =

||x−y ||Rm
dI(x ,y)

bounded away from zero

I We will use the exponential map to change variables

I Assume injectivity radius inj(x) bounded away from zero

Definition: A manifold is uniformly tangible if there are lower
bounds on inj(x) and infy∈MR(x , y) independent of x



Manifold Learning Overview Forecasting Perspectives Manifold Learning Theory Graph Constructions

CONSISTENCY PART 1
I Matrix times vector converges to integral operator:(

K~f
)

i
=

N∑
j=1

Kδ(xi , xj)f (xj)
N→∞−−−−→

∫
M

Kδ(xi , y)f (y) dV (y)

I Assume kernel has fast decay: Kδ(x , y) < e−||x−y ||2/δ2

I Localize integral, requires R(xi , y) = ||xi−y ||
dI(xi ,y)

> 0(
K~f
)

i
→
∫
M∩expxi

(Bδ(0))
Kδ(xi , y)f (y) dV (y) +O(δk )

I Change variables to the tangent space y = expxi
(s):(

K~f
)

i
→
∫

Bδ(0)
Kδ(xi ,expxi

(s))f (expxi
(s)) ds +O(δk )

I Requires injectivity radius inj(xi) > δ > 0
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CONSISTENCY PART 2
I Taylor expansion in normal coordinates:

f (expx (s)) = f (x) +∇f (x) · s +
1
2

s>H(f ◦ expx )(0)s

I Symmetric kernel⇒ Odd terms integrate to zero(
K~f
)

i
→
∫
||s||<δ

(
K (||s||) +O(δ2s4

i )K ′(||s||)/||s||
)
·(

f (xi) + δ∇f (xi) · s +
δ2

2
s>H(f ◦ expxi

)(0)s)

)
ds +O(δ4)

= f (xi) + mδ2(f (xi)ω(x) + ∆f (xi)) +O(δ4)

I Normalize: D−1K~f = K~f
K~1
→ ~f + mδ2−→∆f +O(δ4)

I Consistency: 1
mδ2 (D−1K− I)~f →

−→
∆f +O(δ2)
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CONSISTENCY IS NOT ENOUGH!

I Extend to arbitrary sampling xi ∼ q (Coifman & Lafon)

I Variance: E[((L~f )i −∆f (xi))2] = O
(

q(xi )
3−4d

Nδ2+d

)
I Negative exponent: 3− 4d < 0

I As density q approaches zero the variance blows up!

I Solution: Variable bandwidth

Berry and Harlim (ACHA, 2015)
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VARIABLE BANDWIDTH KERNELS

We introduced the variable bandwidth kernel:

Kδ,β(x , y) = K

(
||x − y ||

δ
√

q(x)βq(y)β

)

Theorem (Berry and Harlim, ACHA, 2015):

Lδ,α,β~f = ∆f + c1∇f · ∇ log q +O
(
δ2,

q−c2

√
Nh1+d/2

)

I Operator defined by: c1 = 2− 2α + dβ + 2β

I Variance determined by: c2 = 1/2− 2α + 2dα + dβ/2 + β
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EXAMPLE: VARIABLE BANDWIDTH KERNEL

Gaussian data: Brownian motion in quadratic potential

Eigenfunctions (Hermite) Error vs. Bandwidth
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SUMMARY OF MANIFOLD LEARNING

I Manifold learning⇔ Estimating Laplace-Beltrami

I Can estimate Laplace-Beltrami with a graph Laplacian

I For a non-compact manifold:

I Manifold must be tangible

I Requires a variable bandwidth kernel

I Other contributions:

I Access any desired geometry (local kernels)

I Manifolds with boundary

I Spectral convergence
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CONTINUOUS K-NEAREST NEIGHBORS (CKNN)
Building unweighted graphs from data (TDA)

CkNN Graph: Edge {x , y} added if ||x−y ||√
||x−xk || ||y−yk ||

< δ

I xk = k -th nearest neighbor of x

I Unnormalized graph Laplacian: Lun = D− K

I Corollary: Lun
~f →

−−→
∆g̃ f where (g̃ = q2/dg,dṼ = q dV )

I New result: Spectral convergence Lun → ∆g̃

I Consistency of CkNN clustering:

I Conn. comp. of graph⇔ Kernel of Lun

I Conn. comp. of M ⇔ Kernel of ∆g̃ (Hodge theorem)

(Berry & Harlim (ACHA, 2015); Berry & Sauer (in review)
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CKNN YIELDS IMPROVED GRAPH CONSTRUCTION

2D Gaussian with annulus removed:

Persistent vs. consistent homology

Small bandwidth Large bandwidth CkNN
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IMPROVED CLUSTERING USING CKNN
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Code and papers available at:

http://math.gmu.edu/˜berry/

Manifold Learning Papers Discussed

I B. and Giannakis, Spectral Exterior Calclulus.
I R. Vaughn Diffusion Maps for Manifolds with Boundary.
I B. and Sauer, Consistent Manifold Representation for Topological Data

Analysis.
I Coifman and Lafon, Diffusion maps.
I B. and Harlim, Variable Bandwidth Diffusion Kernels.
I B. and Sauer, Local Kernels and Geometric Structure of Data.
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