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WHY A MATHEMATICAL FOUNDATION?

Learning f ∈ Cs(Rn,R) from N data points

I Fixed data set⇒ engineering problem

I Growing data set⇒ Evolving model⇒ Convergence

I Need to know that our algorithm has a limiting behavior

I Consider the infinite data limit to insure stability

I Ask if the limiting model is the truth

I Mathematical structures provide prior models for truth
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VOLUME GROWS LIKE radiusdimension

Learning f ∈ Cs(Rn,R) from N data points⇒ Error ∝ N−s/n

Many instances:
I Vapnik-Chervonenkis (VC) dimension [1]
I Rademacher complexity [2]
I Kolmogorov width [3]
I Interpolation error in approximation theory [3, 4, 5]
I Bias-variance tradeoff (density estimation/regression) [6, 1]
I Neural networks [7, 8] and sparse grids [9]

Key counterexample: Data {xi} ⊂ Rn and feature yi = f (||xi ||).
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AVOIDING THE CURSE

Learning f ∈ Cs(Rn,R) from N data points⇒ Error ∝ N−s/n

Coping mechanisms:

I Smooth it away: Assume f is very smooth, ie. s ∝ n

I Independence: Assume Y = f (X ) is conditionally
independent of X given Z = g(X ) ∈ Rm with m� n.

I Redundancy: Assume h(X ) = 0 for some
h ∈ Cm+1(Rn,Rn−m).
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SLOW CHANGE REQUIRES FEW NEIGHBORS

All machine learning methods interpolate from neighbors:
I kNN and Local Linear Regression (xkNN is k-th nearest neighbor of x):

F (x) ≈ 1
k

∑
||x−xj ||≤||x−xkNN||

F (xj) + a>(x − xj)

I Kernel Regression (h is bump function, eg. h(s) = exp(−s2)):

F (x) ≈
∑

j cjh((x − xj)
>Aj(x − xj))

I Neural Network (h is typically a sigmoid, but can also be a bump):

F (x) ≈
∑

j cjh(a>j x + bj) =
∑

j cjh(a>j (x − x̃j))

(where we write bj = −a>j x̃j )
I Reservoir Computer: Fix aj , bj , regression to find cj
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NYSTRÖM VS. DEEP NET, (r , θ) 7→ sin(6θ)
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NYSTRÖM VS. DEEP NET, EXTRAPOLATION
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INDEPENDENCE

Learning f ∈ Cs(Rn,R) from N data points⇒ Error ∝ N−s/n

I Want to learn Y = f (X ) where f : Rn → R

I Assume there is a projection β ∈ Rn×m such that

Y ⊥⊥ X |β>X

I Find β using Sliced Inverse Regression (SIR) [10, 11]

I Learn Y = f̃ (β>X ) since f̃ : Rm → R, m� n
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INDEPENDENCE

Detect person in crosswalk

Lots of variability, most is irrelevant
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INDEPENDENCE

More generally:

I Want to learn P(Y |X )

I Assume there is a map β : Rn → Rm such that

Y ⊥⊥ X |β(X )

I If we can find β...

I Learning P(Y |β(X )) may be feasible
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INDEPENDENCE

CIFAR has many irrelevant modes

But they are combined nonlinearly with features
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REDUNDANCY

Unlike smoothness and independence, f is not involved

I Redundancy assumes that most of X ∈ Rn is repeats

I E.g. xn = a1x1 + · · ·+ an−1xn−1 is a linear redundancy

I More generally if AX = 0 for some A ∈ R(n−m)×n

I X appears n-dim’l (extrinsic) but is really m-dim’l (intrinsic)

I PCA finds A⊥X ∈ Rm where [A A⊥] is a basis

I The reduction helps learn any f
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REDUNDANCY

I More generally assume h(X ) = 0 for some h : Rn → Rn−m

I Sard’s lemma: If h ∈ Cm+1(Rn,Rn−m) then regular values
are dense in Rn−m, so either 0 is regular or ε is regular

I Regular Value Theorem: The pre-image of a regular
value under a smooth map is a manifold of dimension

dim(domain)− dim(range)

I Upshot: If h(X ) = 0 ∈ Rn−m are smooth redundancies
then X = h−1(0) is a manifold of dimension m

I Manifold learning leverages this nonlinear structure
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FINDING HIDDEN STRUCTURE IN DATA
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ROADMAP

I What is manifold learning? ⇒ Estimate Laplacian, ∆

I How to find the Laplacian? ⇒ Graph Laplacian, L

I Convergence L→ ∆ and overcoming limitations

I Key result: Extension to non-compact manifolds

I New graph construction based on this extension
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WHAT IS MANIFOLD LEARNING?

I Geometric prior: Data on Riemannian manifoldM⊂ Rm

I Goal: Represent all the information about a manifold

I A smooth embedded manifoldM⊂ Rm inherits:

I A metric tensor gx : TxM× TxM→ R (inner product)

I g completely determines the geometry ofM
I A volume form dV (x) =

√
det(gx ) dx1 ∧ · · · ∧ dxd

I Laplace-Beltrami operator, ∆, is equivalent to g

I ∆f = div ◦ ∇ = 1√
|g|
∂ig ij

√
|g|∂j f

I g(∇f ,∇h) = 1
2 (f ∆h + h∆f −∆(fh))
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WHAT IS MANIFOLD LEARNING?

I Manifold learning⇔ Estimating Laplace-Beltrami

I Hodge theorem:
Eigenfunctions ∆ϕi = λiϕi orthonormal basis for L2(M,g)

I Smoothest functions: ϕi minimizes the functional

λi = min
f⊥ϕk

k=1,...,i−1

{∫
M ||∇f ||2 dV∫
M |f |2 dV

}

I Eigenfunctions of ∆ are custom Fourier basis
I Smoothest orthonormal basis for L2(M,g)
I Can be used to define wavelet frame
I Define the Sobolev spaces onM
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HARMONIC ANALYSIS ON MANIFOLDS
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HARMONIC ANALYSIS ON MANIFOLDS
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Assume data lies on (or at least near) a manifold

I Approximate manifold with graph⇒ Connect nearby points
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Problem: Noise and outliers can lead to bridging

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1



Curse of dimension Smoothness Independence Redundancy Manifold Learning Graph Constructions

SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I To prevent bridging we weight the edges

I Edges are given weights Kδ(x , y) = e−
||x−y||2

4δ2
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Data set⇒ weighted graph

I Edge Weights defined by a kernel function

Kδ(xi , xj) = e−
||xi−xj ||

2

4δ2

I Bandwidth δ determines localization

I ‘Adjacency’ matrix: Kij = K (xi , xj)

I ‘Degree’ matrix: Dii =
∑

j Kij

I Normalized graph Laplacian: L = I− D−1K
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POINTWISE CONVERGENCE

Theorem: (Belkin & Niyogi, 2005, Singer, 2006)
For {xi}Ni=1 ⊂M ⊂ Rm uniformly sampled on a compact
manifold and for ~fi = f (xi) where f ∈ C3(M)

1
δ2

(
L~f
)

i
= ∆f (xi) +O

(
δ2,

1
N1/2δ1+d/2

)

δ = bandwidth
N = number of points
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RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

I Arbitrary sampling (Coifman & Lafon, ‘Diffusion maps’, 2006)

I Other kernel functions (Berry & Sauer, 2015)

I Non-compact manifolds (Berry & Harlim, 2015)

I Boundary (Coifman & Lafon, 2006; R. Vaughn Thesis 2020)

I Spectral convergence (von Luxburg et al. 2008, Trillos et al. 2020, Berry & Sauer 2019)
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I Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)
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I Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)

I Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)
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LOCAL KERNELS

I A local kernel has exponential decay:

Kδ(x , x + δy) < c1e−c2||y ||2

I Theorem: Symmetric local kernels converge to Laplacians

I Every local kernel determines a geometry
I Every geometry accessible by a local kernel

I Explain success of ‘kernel methods’ in data science:

I KPCA: Kernel Principal Component Analysis
I KSVM: Kernel Support Vector Machines
I KDE: Kernel Density Estimation
I RKHS: Reproducing Kernel Hilbert Spaces
I Spectral Clustering (KPCA)
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TANGIBLE MANIFOLDS

I Compute ambient distance ||x − y ||Rm

I Need localization in dI(x , y) = infγ
{∫ 1

0 |γ
′(t)|dt

}
I Assume ratio R(x , y) =

||x−y ||Rm
dI(x ,y)

bounded away from zero

I We will use the exponential map to change variables

I Assume injectivity radius inj(x) bounded away from zero

Definition: A manifold is uniformly tangible if there are lower
bounds on inj(x) and infy∈MR(x , y) independent of x
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CONSISTENCY PART 1
I Matrix times vector converges to integral operator:(

K~f
)

i
=

N∑
j=1

Kδ(xi , xj)f (xj)
N→∞−−−−→

∫
M

Kδ(xi , y)f (y) dV (y)

I Assume kernel has fast decay: Kδ(x , y) < e−||x−y ||2/δ2

I Localize integral, requires R(xi , y) = ||xi−y ||
dI(xi ,y)

> 0(
K~f
)

i
→
∫
M∩expxi

(Bδ(0))
Kδ(xi , y)f (y) dV (y) +O(δk )

I Change variables to the tangent space y = expxi
(s):(

K~f
)

i
→
∫

Bδ(0)
Kδ(xi ,expxi

(s))f (expxi
(s)) ds +O(δk )

I Requires injectivity radius inj(xi) > δ > 0
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CONSISTENCY PART 2
I Taylor expansion in normal coordinates:

f (expx (s)) = f (x) +∇f (x) · s +
1
2

s>H(f ◦ expx )(0)s

I Symmetric kernel⇒ Odd terms integrate to zero(
K~f
)

i
→
∫
||s||<δ

(
K (||s||) +O(δ2s4

i )K ′(||s||)/||s||
)
·(

f (xi) + δ∇f (xi) · s +
δ2

2
s>H(f ◦ expxi

)(0)s)

)
ds +O(δ4)

= f (xi) + mδ2(f (xi)ω(x) + ∆f (xi)) +O(δ4)

I Normalize: D−1K~f = K~f
K~1
→ ~f + mδ2−→∆f +O(δ4)

I Consistency: 1
mδ2 (D−1K− I)~f →

−→
∆f +O(δ2)
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CONSISTENCY IS NOT ENOUGH!

I Extend to arbitrary sampling xi ∼ q (Coifman & Lafon)

I Variance: E[((L~f )i −∆f (xi))2] = O
(

q(xi )
3−4d

Nδ2+d

)
I Negative exponent: 3− 4d < 0

I As density q approaches zero the variance blows up!

I Solution: Variable bandwidth

Berry and Harlim (ACHA, 2015)
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VARIABLE BANDWIDTH KERNELS

We introduced the variable bandwidth kernel:

Kδ,β(x , y) = K

(
||x − y ||

δ
√

q(x)βq(y)β

)

Theorem (Berry and Harlim, ACHA, 2015):

Lδ,α,β~f = ∆f + c1∇f · ∇ log q +O
(
δ2,

q−c2

√
Nh1+d/2

)

I Operator defined by: c1 = 2− 2α + dβ + 2β

I Variance determined by: c2 = 1/2− 2α + 2dα + dβ/2 + β
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EXAMPLE: VARIABLE BANDWIDTH KERNEL

Gaussian data: Brownian motion in quadratic potential

Eigenfunctions (Hermite) Error vs. Bandwidth
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SUMMARY OF MANIFOLD LEARNING

I Manifold learning⇔ Estimating Laplace-Beltrami

I Can estimate Laplace-Beltrami with a graph Laplacian

I For a non-compact manifold:

I Manifold must be tangible

I Requires a variable bandwidth kernel

I Other contributions:

I Access any desired geometry (local kernels)

I Manifolds with boundary

I Spectral convergence
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BEYOND MANIFOLD LEARNING

I Data never really lies on a manifold (due to noise)

I A manifold is a measure zero set

I Data is never sampled from a measure zero set

I Solution 1: Spectral robustness for bounded noise
(Coifman and Lafon), but lose convergence

I Solution 2: Manifold + Noise, requires semi-geodesic
coordinates, need new algorithms to regain convergence

I Solution 3: Generalize beyond manifolds
I Metric measure spaces
I Gromov-Hausdorff limits of manifolds
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CONTINUOUS K-NEAREST NEIGHBORS (CKNN)
Building unweighted graphs from data (TDA)

CkNN Graph: Edge {x , y} added if ||x−y ||√
||x−xk || ||y−yk ||

< δ

I xk = k -th nearest neighbor of x

I Unnormalized graph Laplacian: Lun = D− K

I Corollary: Lun
~f →

−−→
∆g̃ f where (g̃ = q2/dg,dṼ = q dV )

I New result: Spectral convergence Lun → ∆g̃

I Consistency of CkNN clustering:

I Conn. comp. of graph⇔ Kernel of Lun

I Conn. comp. of M ⇔ Kernel of ∆g̃ (Hodge theorem)

(Berry & Harlim (ACHA, 2015); Berry & Sauer (in review)
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CKNN YIELDS IMPROVED GRAPH CONSTRUCTION

2D Gaussian with annulus removed:

Persistent vs. consistent homology

Small bandwidth Large bandwidth CkNN
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IMPROVED CLUSTERING USING CKNN
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CONFORMALLY INVARIANT DIFFUSION MAPS (CIDM)
I Data samples {xi}Ni=1 ⊂M ⊂ Rn of volume peq dV

I Continuous k-Nearest Neighbors (CkNN) dissimilarity:

d(xi , xj) ≡
||xi − xj ||√

||xi − xkNN(i)|| ||xj − xkNN(j)||

I Variable bandwidth kernel, Kij = exp
(
−d(xi ,xj )

2

δ2

)
I Degree matrix Dii =

∑
j Kij (diagonal)

I Graph Laplacian, L = D−K
δd+2

I Theorem: L~f = ∆ĝ f +O
(
δ2,N−1/2δ−1−d/2) , ĝ = p2/d

eq g

I Solve: (I − D−1/2KD−1/2)~v = λ~v , set ~ϕ = D−1/2~v
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

I Manifolds with boundary, (R. Vaughn)

~h>L~f →
∫

(∇h · ∇f ) peqdV
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HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

I Manifolds with boundary, (R. Vaughn)

~h>L~f →
〈〈
∇ĝh,∇ĝ f

〉〉
ĝ =

∫
ĝ(∇ĝh,∇ĝ f ) dVĝ



Curse of dimension Smoothness Independence Redundancy Manifold Learning Graph Constructions

Code and papers available at:

http://math.gmu.edu/˜berry/

Manifold Learning Papers Discussed

I B. and Giannakis, Spectral Exterior Calclulus.
I R. Vaughn Diffusion Maps for Manifolds with Boundary.
I B. and Sauer, Consistent Manifold Representation for Topological Data

Analysis.
I Coifman and Lafon, Diffusion maps.
I B. and Harlim, Variable Bandwidth Diffusion Kernels.
I B. and Sauer, Local Kernels and Geometric Structure of Data.
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