

Towards a mathematical foundation for machine learning

Tyrus Berry George Mason University

Aug. 19, 2021

Supported by NSF-DMS 1854204 and 2006808

Curse of dimensionSmoothnessIndependenceRedundancyManifold LearningGraph Constructions•ooooooooooooooooooooooo

WHY A MATHEMATICAL FOUNDATION?

Learning $f \in C^{s}(\mathbb{R}^{n}, \mathbb{R})$ from *N* data points

- ► Fixed data set ⇒ engineering problem
- Growing data set \Rightarrow Evolving model \Rightarrow Convergence
- Need to know that our algorithm has a limiting behavior
- Consider the infinite data limit to insure stability
- Ask if the limiting model is the truth
- Mathematical structures provide prior models for truth

VOLUME GROWS LIKE radius

Independence

Learning $f \in \mathcal{C}^{s}(\mathbb{R}^{n},\mathbb{R})$ from *N* data points \Rightarrow Error $\propto N^{-s/n}$

Redundancy

Manifold Learning

Many instances:

Smoothness

Curse of dimension

0.00

- Vapnik-Chervonenkis (VC) dimension [1]
- Rademacher complexity [2]
- Kolmogorov width [3]
- Interpolation error in approximation theory [3, 4, 5]
- ► Bias-variance tradeoff (density estimation/regression) [6, 1]
- Neural networks [7, 8] and sparse grids [9]

Key counterexample: Data $\{x_i\} \subset \mathbb{R}^n$ and feature $y_i = f(||x_i||)$.

Graph Constructions

AVOIDING THE CURSE

Learning $f \in C^{s}(\mathbb{R}^{n},\mathbb{R})$ from *N* data points \Rightarrow Error $\propto N^{-s/n}$

Coping mechanisms:

- Smooth it away: Assume *f* is very smooth, ie. $s \propto n$
- Independence: Assume Y = f(X) is conditionally independent of X given Z = g(X) ∈ ℝ^m with m ≪ n.

► **Redundancy:** Assume h(X) = 0 for some $h \in C^{m+1}(\mathbb{R}^n, \mathbb{R}^{n-m})$.

SLOW CHANGE REQUIRES FEW NEIGHBORS

All machine learning methods interpolate from neighbors:

▶ **kNN and Local Linear Regression** (*x*_{kNN} is k-th nearest neighbor of *x*):

$$F(x) pprox rac{1}{k} \sum_{||x-x_j|| \leq ||x-x_{\mathsf{kNN}}||} F(x_j) + a^{\top}(x-x_j)$$

► Kernel Regression (*h* is bump function, eg. $h(s) = \exp(-s^2)$):

$$F(x) \approx \sum_{j} c_{j} h((x - x_{j})^{\top} A_{j}(x - x_{j}))$$

▶ **Neural Network** (*h* is typically a sigmoid, but can also be a bump):

$$F(x) \approx \sum_{j} c_{j} h(a_{j}^{\top} x + b_{j}) = \sum_{j} c_{j} h(a_{j}^{\top} (x - \tilde{x}_{j}))$$

(where we write $b_j = -a_j^{ op} \tilde{x}_j$)

Reservoir Computer: Fix a_j, b_j, regression to find c_j

NYSTRÖM VS. DEEP NET, $(r, \theta) \mapsto sin(6\theta)$

NYSTRÖM VS. DEEP NET, $(r, \theta) \mapsto \sin(6\theta)$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

NYSTRÖM VS. DEEP NET, EXTRAPOLATION

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Curse of dimension Smoothness Independence Redundancy Manifold Learning Graph Constructions

NYSTRÖM VS. DEEP NET, EXTRAPOLATION

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INDEPENDENCE

Learning $f \in \mathcal{C}^{s}(\mathbb{R}^{n},\mathbb{R})$ from *N* data points \Rightarrow Error $\propto N^{-s/n}$

- Want to learn Y = f(X) where $f : \mathbb{R}^n \to \mathbb{R}$
- Assume there is a projection $\beta \in \mathbb{R}^{n \times m}$ such that

 $\boldsymbol{Y} \perp\!\!\!\perp \boldsymbol{X} \,|\, \boldsymbol{\beta}^\top \boldsymbol{X}$

- Find β using Sliced Inverse Regression (SIR) [10, 11]
- Learn $Y = \tilde{f}(\beta^{\top}X)$ since $\tilde{f} : \mathbb{R}^m \to \mathbb{R}, \ m \ll n$

Curse of dimension
ooSmoothnessIndependence
ooRedundancy
ooManifold Learning
ooGraph Constructions
oo

INDEPENDENCE

Detect person in crosswalk

Lots of variability, most is irrelevant

INDEPENDENCE

More generally:

- Want to learn P(Y | X)
- Assume there is a map $\beta : \mathbb{R}^n \to \mathbb{R}^m$ such that

 $Y \perp \!\!\!\perp X \mid \beta(X)$

- If we can find β ...
- Learning $P(Y | \beta(X))$ may be feasible

INDEPENDENCE

CIFAR has many irrelevant modes

airplane	and the		× *	1	2	-4-		-
automobile	-		à 🗠	No.	-		1-0	*
bird		2		-	1		2	V
cat				1	E.	Å.	the second	1
deer	1 50	<u> </u>	7	Y	Ý	1	THE REAL	
dog	P. 1.	-				C?	A	No.
frog					the second	5		50
horse	- An and	1772		1 TAB	-	2	63	Y
ship	-	diction -	- M.		y	12	1	
truck		1				1		and

But they are combined nonlinearly with features

REDUNDANCY

Unlike smoothness and independence, f is not involved

- Redundancy assumes that most of $X \in \mathbb{R}^n$ is repeats
- ► E.g. $x_n = a_1 x_1 + \cdots + a_{n-1} x_{n-1}$ is a linear redundancy
- More generally if AX = 0 for some $A \in \mathbb{R}^{(n-m) \times n}$
- ► X appears *n*-dim'l (extrinsic) but is really *m*-dim'l (intrinsic)
- ▶ PCA finds $A^{\perp}X \in \mathbb{R}^m$ where $[A A^{\perp}]$ is a basis
- ► The reduction helps learn any f

REDUNDANCY

- More generally assume h(X) = 0 for some $h : \mathbb{R}^n \to \mathbb{R}^{n-m}$
- Sard's lemma: If h ∈ C^{m+1}(ℝⁿ, ℝ^{n-m}) then regular values are dense in ℝ^{n-m}, so either 0 is regular or ε is regular
- Regular Value Theorem: The pre-image of a regular value under a smooth map is a manifold of dimension

dim(domain) - dim(range)

- ► Upshot: If h(X) = 0 ∈ ℝ^{n-m} are smooth redundancies then X = h⁻¹(0) is a manifold of dimension m
- Manifold learning leverages this nonlinear structure

Curse of dimension Smoothness Independence occorrections

FINDING HIDDEN STRUCTURE IN DATA

ROADMAP

- What is manifold learning? \Rightarrow Estimate Laplacian, Δ
- ► How to find the Laplacian? ⇒ Graph Laplacian, L
- \blacktriangleright Convergence $\textbf{L} \rightarrow \Delta$ and overcoming limitations
- ► Key result: Extension to non-compact manifolds
- New graph construction based on this extension

WHAT IS MANIFOLD LEARNING?

- Geometric prior: Data on Riemannian manifold $\mathcal{M} \subset \mathbb{R}^m$
- Goal: Represent all the information about a manifold
- A smooth embedded manifold $\mathcal{M} \subset \mathbb{R}^m$ inherits:
 - A metric tensor $g_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}$ (inner product)
 - ► g completely determines the geometry of M
 - A volume form $dV(x) = \sqrt{\det(g_x)} dx^1 \wedge \cdots \wedge dx^d$
- Laplace-Beltrami operator, Δ , is equivalent to g

•
$$\Delta f = \operatorname{div} \circ \nabla = \frac{1}{\sqrt{|g|}} \partial_j g^{ij} \sqrt{|g|} \partial_j f$$

• $g(\nabla f, \nabla h) = \frac{1}{2}(f\Delta h + h\Delta f - \Delta(fh))$

WHAT IS MANIFOLD LEARNING?

- ► Manifold learning ⇔ Estimating Laplace-Beltrami
- ► Hodge theorem:

Eigenfunctions $\Delta \varphi_i = \lambda_i \varphi_i$ orthonormal basis for $L^2(\mathcal{M}, g)$

Smoothest functions: φ_i minimizes the functional

$$\lambda_{i} = \min_{\substack{f \perp \varphi_{k} \\ k=1,\dots,i-1}} \left\{ \frac{\int_{\mathcal{M}} ||\nabla f||^{2} \, dV}{\int_{\mathcal{M}} |f|^{2} \, dV} \right\}$$

- ► Eigenfunctions of △ are custom Fourier basis
 - ► Smoothest orthonormal basis for L²(M, g)
 - Can be used to define wavelet frame
 - \blacktriangleright Define the Sobolev spaces on ${\cal M}$

Curse of dimensionSmoothnessIndependenceRedundancyManifold LearningGraph Constructions0000000000000000000000000000

HARMONIC ANALYSIS ON MANIFOLDS

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Curse of dimensionSmoothnessIndependenceRedundancyManifold LearningGraph Constructions0000000000000000000000000000

HARMONIC ANALYSIS ON MANIFOLDS

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Assume data lies on (or at least near) a manifold
- ► Approximate manifold with graph ⇒ Connect nearby points

SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

Problem: Noise and outliers can lead to bridging

SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

- To prevent bridging we weight the edges
- Edges are given weights $K_{\delta}(x, y) = e^{-\frac{||x-y||^2}{4\delta^2}}$

SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Data set \Rightarrow weighted graph
- Edge Weights defined by a kernel function

$$\mathcal{K}_{\delta}(\pmb{x}_i,\pmb{x}_j)=\pmb{e}^{-rac{||\pmb{x}_i-\pmb{x}_j||^2}{4\delta^2}}$$

- Bandwidth δ determines localization
- 'Adjacency' matrix: $\mathbf{K}_{ij} = K(x_i, x_j)$
- 'Degree' matrix: $\mathbf{D}_{ii} = \sum_{j} \mathbf{K}_{ij}$
- ► Normalized graph Laplacian: L = I D⁻¹K

POINTWISE CONVERGENCE

Theorem: (Belkin & Niyogi, 2005, Singer, 2006) For $\{x_i\}_{i=1}^N \subset \mathcal{M} \subset \mathbb{R}^m$ uniformly sampled on a compact manifold and for $\vec{f}_i = f(x_i)$ where $f \in C^3(\mathcal{M})$

$$\frac{1}{\delta^2} \left(\mathbf{L} \vec{f} \right)_i = \Delta f(x_i) + \mathcal{O} \left(\delta^2, \frac{1}{N^{1/2} \delta^{1+d/2}} \right)$$

 $\delta =$ bandwidth N = number of points Curse of dimension Smoothness Independence COMPACTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

- Arbitrary sampling (Coifman & Lafon, 'Diffusion maps', 2006)
- ► Other kernel functions (Berry & Sauer, 2015)
- ► Non-compact manifolds (Berry & Harlim, 2015)
- Boundary (Coifman & Lafon, 2006; R. Vaughn Thesis 2020)
- Spectral convergence (von Luxburg et al. 2008, Trillos et al. 2020, Berry & Sauer 2019)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Curse of dimension Smoothness Independence COMPACTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

- ► Arbitrary sampling (Coifman & Lafon, 'Diffusion maps', ACHA 2006)
- ► Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)
- ► Non-compact manifolds (Berry & Harlim, ACHA 2015)
- Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)
- ► Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LOCAL KERNELS

► A *local kernel* has exponential decay:

$$\mathcal{K}_{\delta}(x, x + \delta y) < c_1 e^{-c_2 ||y||^2}$$

- Theorem: Symmetric local kernels converge to Laplacians
 - Every local kernel determines a geometry
 - Every geometry accessible by a local kernel
- Explain success of 'kernel methods' in data science:
 - KPCA: Kernel Principal Component Analysis
 - KSVM: Kernel Support Vector Machines
 - KDE: Kernel Density Estimation
 - RKHS: Reproducing Kernel Hilbert Spaces
 - Spectral Clustering (KPCA)

Curse of dimension Smoothness Independence COMPACTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

- Arbitrary sampling (Coifman & Lafon, 'Diffusion maps', ACHA 2006)
- ► Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)
- ► Non-compact manifolds (Berry & Harlim, ACHA 2015)
- Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)
- ► Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TANGIBLE MANIFOLDS

- Compute ambient distance $||x y||_{\mathbb{R}^m}$
- Need localization in $d_{\mathcal{I}}(x, y) = \inf_{\gamma} \left\{ \int_{0}^{1} |\gamma'(t)| dt \right\}$
- ► Assume ratio $R(x, y) = \frac{||x-y||_{\mathbb{R}^m}}{d_{\mathcal{I}}(x, y)}$ bounded away from zero
- We will use the exponential map to change variables
- Assume injectivity radius inj(x) bounded away from zero

Definition: A manifold is uniformly tangible if there are lower bounds on inj(x) and $inf_{y \in M} R(x, y)$ independent of x

CONSISTENCY PART 1

Matrix times vector converges to integral operator:

$$\left(\mathbf{K}\vec{f}\right)_{i} = \sum_{j=1}^{N} \mathcal{K}_{\delta}(x_{i}, x_{j})f(x_{j}) \xrightarrow{N \to \infty} \int_{\mathcal{M}} \mathcal{K}_{\delta}(x_{i}, y)f(y) \, dV(y)$$

- ► Assume kernel has fast decay: $K_{\delta}(x, y) < e^{-||x-y||^2/\delta^2}$
- ► Localize integral, requires $R(x_i, y) = \frac{||x_i y||}{d_l(x_i, y)} > 0$

$$\left(\mathbf{K}\vec{f}\right)_{i} \rightarrow \int_{\mathcal{M}\cap \exp_{x_{i}}(B_{\delta}(0))} K_{\delta}(x_{i}, y) f(y) \, dV(y) + \mathcal{O}(\delta^{k})$$

• Change variables to the tangent space $y = \exp_{x_i}(s)$:

$$\left(\mathbf{K}\vec{f}\right)_{i} \rightarrow \int_{B_{\delta}(0)} K_{\delta}(x_{i}, \exp_{x_{i}}(s)) f(\exp_{x_{i}}(s)) ds + \mathcal{O}(\delta^{k})$$

► Requires injectivity radius $inj(x_i) > \delta > 0$

CONSISTENCY PART 2

Taylor expansion in normal coordinates:

$$f(\exp_x(s)) = f(x) + \nabla f(x) \cdot s + \frac{1}{2} s^{\top} H(f \circ \exp_x)(0)s$$

► Symmetric kernel ⇒ Odd terms integrate to zero

$$\begin{split} \left(\mathbf{K}\vec{f}\right)_{i} &\to \int_{||\boldsymbol{s}|| < \delta} \left(K\left(||\boldsymbol{s}||\right) + \mathcal{O}(\delta^{2}\boldsymbol{s}_{i}^{4})K'(||\boldsymbol{s}||)/||\boldsymbol{s}||\right) \cdot \\ & \left(f(\boldsymbol{x}_{i}) + \delta\nabla f(\boldsymbol{x}_{i}) \cdot \boldsymbol{s} + \frac{\delta^{2}}{2}\boldsymbol{s}^{\top}\boldsymbol{H}(\boldsymbol{f} \circ \exp_{\boldsymbol{x}_{i}})(\boldsymbol{0})\boldsymbol{s}\right)\right) \, d\boldsymbol{s} + \mathcal{O}(\delta^{4}) \\ &= f(\boldsymbol{x}_{i}) + m\delta^{2}(f(\boldsymbol{x}_{i})\omega(\boldsymbol{x}) + \Delta f(\boldsymbol{x}_{i})) + \mathcal{O}(\delta^{4}) \end{split}$$

-

Sac

- Normalize: $\mathbf{D}^{-1}\mathbf{K}\vec{f} = \frac{\mathbf{K}\vec{f}}{\mathbf{K}\vec{1}} \rightarrow \vec{f} + m\delta^2 \overrightarrow{\Delta f} + \mathcal{O}(\delta^4)$
- ► Consistency: $\frac{1}{m\delta^2} (\mathbf{D}^{-1}\mathbf{K} \mathbf{I})\vec{f} \rightarrow \overrightarrow{\Delta f} + \mathcal{O}(\delta^2)$

CONSISTENCY IS NOT ENOUGH!

• Extend to arbitrary sampling $x_i \sim q$ (Coifman & Lafon)

► Variance:
$$\mathbb{E}[((L\vec{f})_i - \Delta f(x_i))^2] = \mathcal{O}\left(\frac{q(x_i)^{3-4d}}{N\delta^{2+d}}\right)$$

- ► Negative exponent: 3 4d < 0</p>
- As density q approaches zero the variance blows up!

Solution: Variable bandwidth

Berry and Harlim (ACHA, 2015)

VARIABLE BANDWIDTH KERNELS

Independence

Smoothness

Curse of dimension

We introduced the variable bandwidth kernel:

$$\mathcal{K}_{\delta,eta}(\pmb{x},\pmb{y}) = \mathcal{K}\left(rac{||\pmb{x}-\pmb{y}||}{\delta\sqrt{\pmb{q}(\pmb{x})^eta}\pmb{q}(\pmb{y})^eta}
ight)$$

Redundancy

Manifold Learning

Theorem (Berry and Harlim, ACHA, 2015):

$$\mathbf{L}_{\delta,\alpha,\beta}\vec{f} = \Delta f + c_1 \nabla f \cdot \nabla \log q + \mathcal{O}\left(\delta^2, \frac{q^{-c_2}}{\sqrt{N}h^{1+d/2}}\right)$$

- Operator defined by: $c_1 = 2 2\alpha + d\beta + 2\beta$
- ► Variance determined by: $c_2 = 1/2 2\alpha + 2d\alpha + d\beta/2 + \beta$

Graph Constructions

EXAMPLE: VARIABLE BANDWIDTH KERNEL

Gaussian data: Brownian motion in quadratic potential

SUMMARY OF MANIFOLD LEARNING

- ► Manifold learning ⇔ Estimating Laplace-Beltrami
- ► Can estimate Laplace-Beltrami with a graph Laplacian
- ► For a non-compact manifold:
 - Manifold must be tangible
 - Requires a variable bandwidth kernel
- Other contributions:
 - Access any desired geometry (local kernels)

- Manifolds with boundary
- Spectral convergence

BEYOND MANIFOLD LEARNING

- Data never really lies on a manifold (due to noise)
- A manifold is a measure zero set
- Data is never sampled from a measure zero set
- Solution 1: Spectral robustness for bounded noise (Coifman and Lafon), but lose convergence
- Solution 2: Manifold + Noise, requires semi-geodesic coordinates, need new algorithms to regain convergence
- Solution 3: Generalize beyond manifolds
 - Metric measure spaces
 - Gromov-Hausdorff limits of manifolds

CONTINUOUS K-NEAREST NEIGHBORS (CKNN)

Redundancy

Manifold Learning

Building unweighted graphs from data (TDA)

Independence

CkNN Graph: Edge
$$\{x, y\}$$
 added if $\frac{||x-y||}{\sqrt{||x-x_k||} ||y-y_k||} < \delta$

• $x_k = k$ -th nearest neighbor of x

Curse of dimension

Smoothness

- Unnormalized graph Laplacian: $L_{un} = D K$
- Corollary: $\mathbf{L}_{\mathrm{un}}\vec{f} \to \overrightarrow{\Delta_{\tilde{g}}}\vec{f}$ where $(\tilde{g} = q^{2/d}g, d\tilde{V} = q \, dV)$
- ▶ New result: Spectral convergence $L_{un} \rightarrow \Delta_{\tilde{g}}$
- Consistency of CkNN clustering:
 - Conn. comp. of graph \Leftrightarrow Kernel of L_{un}
 - Conn. comp. of $\mathcal{M} \Leftrightarrow$ Kernel of $\Delta_{\tilde{g}}$ (Hodge theorem)

(Berry & Harlim (ACHA, 2015); Berry & Sauer (in review)

Graph Constructions

Curse of dimension
ooSmoothness
ooIndependence
ooRedundancy
ooManifold Learning
ooGraph Constructions
ooOut

CKNN YIELDS IMPROVED GRAPH CONSTRUCTION

2D Gaussian with annulus removed:

Persistent vs. consistent homology

CkNN

Sac

I = 1 + 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I =

Small bandwidth

Large bandwidth

Curse of dimension Sn

Smoothness Inc

Independence Redundancy

Manifold Learning

Graph Constructions

IMPROVED CLUSTERING USING CKNN

CONFORMALLY INVARIANT DIFFUSION MAPS (CIDM)

Redundancy

Manifold Learning

Graph Constructions

- ► Data samples $\{x_i\}_{i=1}^N \subset \mathcal{M} \subset \mathbb{R}^n$ of volume $p_{eq} dV$
- Continuous k-Nearest Neighbors (CkNN) dissimilarity:

$$d(x_i, x_j) \equiv \frac{||x_i - x_j||}{\sqrt{||x_i - x_{kNN(i)}|| ||x_j - x_{kNN(j)}||}}$$

- ► Variable bandwidth kernel, $K_{ij} = \exp\left(\frac{-d(x_i, x_j)^2}{\delta^2}\right)$
- Degree matrix $D_{ii} = \sum_j K_{ij}$ (diagonal)

Independence

• Graph Laplacian, $L = \frac{D-K}{\delta^{d+2}}$

Curse of dimension

Smoothness

- ► Theorem: $L\vec{f} = \Delta_{\hat{g}}f + \mathcal{O}\left(\delta^2, N^{-1/2}\delta^{-1-d/2}\right), \ \hat{g} = p_{\text{eq}}^{2/d}g$
- ► Solve: $(I D^{-1/2} K D^{-1/2}) \vec{v} = \lambda \vec{v}$, set $\vec{\varphi} = D^{-1/2} \vec{v}$

 Curse of dimension
 Smoothness
 Independence
 Redundancy
 Manifold Learning
 Graph Constructions

 000
 000
 000
 000
 000
 000
 000
 000

HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

Manifolds with boundary, (R. Vaughn)

$$\vec{h}^{\top} L \vec{f} \rightarrow \int (\nabla h \cdot \nabla f) p_{\rm eq} dV$$

HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

Redundancy

Manifolds with boundary, (R. Vaughn)

Independence

Curse of dimension

Smoothness

$$ec{h}^{ op}Lec{f} o ig\langle ig
abla_{\hat{g}}h,
abla_{\hat{g}}fig
angle_{\hat{g}} = \int \hat{g}(
abla_{\hat{g}}h,
abla_{\hat{g}}f) \, dV_{\hat{g}}$$

Manifold Learning

Graph Constructions

Code and papers available at:

http://math.gmu.edu/~berry/

Manifold Learning Papers Discussed

- ► B. and Giannakis, Spectral Exterior Calclulus.
- ► R. Vaughn Diffusion Maps for Manifolds with Boundary.
- ► B. and Sauer, Consistent Manifold Representation for Topological Data Analysis.

- Coifman and Lafon, *Diffusion maps.*
- ▶ B. and Harlim, Variable Bandwidth Diffusion Kernels.
- ▶ B. and Sauer, *Local Kernels and Geometric Structure of Data.*

References

[1]	V. Vapnik, The nature of statistical learning theory. Springer (2000).					
[2]	M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press (2018).					
[3]	A. Pinkus, N-widths in Approximation Theory. Vol. 7. Springer Science & Business Media, (2012).					
[4]	R. A. DeVore and G. G. Lorentz. Constructive approximation. Vol. 303. Springer Science & Business Media, (1993).					
[5]	R. A. DeVore, Nonlinear approximation. Acta numerica 7, 51-150 (1998).					
[6]	D. W. Scott and S. R. Sain. Multidimensional density estimation. Handbook of statistics 24, 229-261 (2005).					
[7]	A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information theory 39, no. 3, 930-945 (1993).					
[8]	A. R. Barron, Approximation and estimation bounds for artificial neural networks. Machine learning 14, no. 1, 115-133 (1994).					
[9]	H. J. Bungartz and M. Griebel, Sparse grids. Acta numerica, 13, 147-269 (2004).					
[10]	K. Li, Sliced Inverse Regression for Dimension Reduction. Journal of the American Statistical Association, 86(414), (1991).					
[11]	Y. Li, L. Zhu, Asymptotics for Sliced Average Variance Estimation. The Annals of Statistics, 35(1), 41-69 (2007).					