Towards a mathematical foundation for machine learning

Tyrus Berry
George Mason University

Aug. 19, 2021

Supported by NSF-DMS 1854204 and 2006808

WHY A MATHEMATICAL FOUNDATION?

Learning $f \in \mathcal{C}^{s}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ from N data points

- Fixed data set \Rightarrow engineering problem
- Growing data set \Rightarrow Evolving model \Rightarrow Convergence
- Need to know that our algorithm has a limiting behavior
- Consider the infinite data limit to insure stability
- Ask if the limiting model is the truth
- Mathematical structures provide prior models for truth

VOLUME GROWS LIKE radius ${ }^{\text {dimension }}$

Learning $f \in \mathcal{C}^{s}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ from N data points \Rightarrow Error $\propto N^{-s / n}$
Many instances:

- Vapnik-Chervonenkis (VC) dimension [1]
- Rademacher complexity [2]
- Kolmogorov width [3]
- Interpolation error in approximation theory [3, 4, 5]
- Bias-variance tradeoff (density estimation/regression) [6, 1]
- Neural networks [7, 8] and sparse grids [9]

Key counterexample: Data $\left\{x_{i}\right\} \subset \mathbb{R}^{n}$ and feature $y_{i}=f\left(\left\|x_{i}\right\|\right)$.

Avoiding the curse

Learning $f \in \mathcal{C}^{s}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ from N data points \Rightarrow Error $\propto N^{-s / n}$
Coping mechanisms:

- Smooth it away: Assume f is very smooth, ie. $s \propto n$
- Independence: Assume $Y=f(X)$ is conditionally independent of X given $Z=g(X) \in \mathbb{R}^{m}$ with $m \ll n$.
- Redundancy: Assume $h(X)=0$ for some $h \in \mathcal{C}^{m+1}\left(\mathbb{R}^{n}, \mathbb{R}^{n-m}\right)$.

SLOW CHANGE REQUIRES FEW NEIGHBORS

All machine learning methods interpolate from neighbors:

- kNN and Local Linear Regression (x_{kNN} is k-th nearest neighbor of x):

$$
F(x) \approx \frac{1}{k} \sum_{\left\|x-x_{j}\right\| \leq\left\|x-x_{\text {kNN }}\right\|} F\left(x_{j}\right)+a^{\top}\left(x-x_{j}\right)
$$

- Kernel Regression (h is bump function, eg. $h(s)=\exp \left(-s^{2}\right)$):

$$
F(x) \approx \sum_{j} c_{j} h\left(\left(x-x_{j}\right)^{\top} A_{j}\left(x-x_{j}\right)\right)
$$

- Neural Network (h is typically a sigmoid, but can also be a bump):

$$
F(x) \approx \sum_{j} c_{j} h\left(a_{j}^{\top} x+b_{j}\right)=\sum_{j} c_{j} h\left(a_{j}^{\top}\left(x-\tilde{x}_{j}\right)\right)
$$

(where we write $b_{j}=-a_{j}^{\top} \tilde{x}_{j}$)

- Reservoir Computer: Fix a_{j}, b_{j}, regression to find c_{j}

NYStRÖM Vs. DEEP NET, $(r, \theta) \mapsto \sin (6 \theta)$

True Function (localized)

Diffusion Map (localized)

NYStRÖM VS. DEEP NET, $(r, \theta) \mapsto \sin (6 \theta)$

Nyström vs. Deep net, Extrapolation

Nyström vs. Deep net, Extrapolation

Independence

Learning $f \in \mathcal{C}^{s}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ from N data points \Rightarrow Error $\propto N^{-s / n}$

- Want to learn $Y=f(X)$ where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Assume there is a projection $\beta \in \mathbb{R}^{n \times m}$ such that

$$
Y \Perp X \mid \beta^{\top} X
$$

- Find β using Sliced Inverse Regression (SIR) [10, 11]
- Learn $Y=\tilde{f}\left(\beta^{\top} X\right)$ since $\tilde{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}, m \ll n$

INDEPENDENCE

Detect person in crosswalk

Lots of variability, most is irrelevant

Independence

More generally:

- Want to learn $P(Y \mid X)$
- Assume there is a map $\beta: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
Y \Perp X \mid \beta(X)
$$

- If we can find β...
- Learning $P(Y \mid \beta(X))$ may be feasible

INDEPENDENCE

CIFAR has many irrelevant modes

But they are combined nonlinearly with features

Redundancy

Unlike smoothness and independence, f is not involved

- Redundancy assumes that most of $X \in \mathbb{R}^{n}$ is repeats
- E.g. $x_{n}=a_{1} x_{1}+\cdots+a_{n-1} x_{n-1}$ is a linear redundancy
- More generally if $A X=0$ for some $A \in \mathbb{R}^{(n-m) \times n}$
- X appears n-dim'l (extrinsic) but is really m-dim'l (intrinsic)
- PCA finds $A^{\perp} X \in \mathbb{R}^{m}$ where $\left[A A^{\perp}\right.$] is a basis
- The reduction helps learn any f

Redundancy

- More generally assume $h(X)=0$ for some $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-m}$
- Sard's lemma: If $h \in \mathcal{C}^{m+1}\left(\mathbb{R}^{n}, \mathbb{R}^{n-m}\right)$ then regular values are dense in \mathbb{R}^{n-m}, so either 0 is regular or ϵ is regular
- Regular Value Theorem: The pre-image of a regular value under a smooth map is a manifold of dimension
dim(domain) - dim(range)
- Upshot: If $h(X)=0 \in \mathbb{R}^{n-m}$ are smooth redundancies then $X=h^{-1}(0)$ is a manifold of dimension m
- Manifold learning leverages this nonlinear structure

Finding Hidden Structure in Data

The sub-image geometry:

Roadmap

- What is manifold learning? \Rightarrow Estimate Laplacian, Δ
- How to find the Laplacian? \Rightarrow Graph Laplacian, L
- Convergence $\mathbf{L} \rightarrow \Delta$ and overcoming limitations
- Key result: Extension to non-compact manifolds
- New graph construction based on this extension

What is Manifold Learning?

- Geometric prior: Data on Riemannian manifold $\mathcal{M} \subset \mathbb{R}^{m}$
- Goal: Represent all the information about a manifold
- A smooth embedded manifold $\mathcal{M} \subset \mathbb{R}^{m}$ inherits:
- A metric tensor $g_{x}: T_{x} \mathcal{M} \times T_{x} \mathcal{M} \rightarrow \mathbb{R}$ (inner product)
- g completely determines the geometry of \mathcal{M}
- A volume form $d V(x)=\sqrt{\operatorname{det}\left(g_{x}\right)} d x^{1} \wedge \cdots \wedge d x^{d}$
- Laplace-Beltrami operator, Δ, is equivalent to g
- $\Delta f=\operatorname{div} \circ \nabla=\frac{1}{\sqrt{|g|}} \partial_{i} g^{i j} \sqrt{|g|} \partial_{j} f$
- $g(\nabla f, \nabla h)=\frac{1}{2}(f \Delta h+h \Delta f-\Delta(f h))$

What is Manifold Learning?

- Manifold learning \Leftrightarrow Estimating Laplace-Beltrami
- Hodge theorem:

Eigenfunctions $\Delta \varphi_{i}=\lambda_{i} \varphi_{i}$ orthonormal basis for $L^{2}(\mathcal{M}, g)$

- Smoothest functions: φ_{i} minimizes the functional

$$
\lambda_{i}=\min _{\substack{f \perp \varphi_{k} \\ k=1, \ldots, i-1}}\left\{\frac{\int_{\mathcal{M}}\|\nabla f\|^{2} d V}{\int_{\mathcal{M}}|f|^{2} d V}\right\}
$$

- Eigenfunctions of Δ are custom Fourier basis
- Smoothest orthonormal basis for $L^{2}(\mathcal{M}, g)$
- Can be used to define wavelet frame
- Define the Sobolev spaces on \mathcal{M}

Harmonic Analysis on Manifolds

Harmonic Analysis on Manifolds

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Assume data lies on (or at least near) a manifold
- Approximate manifold with graph \Rightarrow Connect nearby points

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Problem: Noise and outliers can lead to bridging

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- To prevent bridging we weight the edges
- Edges are given weights $K_{\delta}(x, y)=e^{-\frac{\|x-y\|^{2}}{4 \delta^{2}}}$

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Data set \Rightarrow weighted graph
- Edge Weights defined by a kernel function

$$
K_{\delta}\left(x_{i}, x_{j}\right)=e^{-\frac{\left\|i_{i}-x_{j}\right\|^{2}}{4 \delta^{2}}}
$$

- Bandwidth δ determines localization
- 'Adjacency' matrix: $\mathbf{K}_{i j}=K\left(x_{i}, x_{j}\right)$
- 'Degree' matrix: $\mathbf{D}_{i i}=\sum_{j} \mathbf{K}_{i j}$
- Normalized graph Laplacian: $\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1} \mathbf{K}$

Pointwise convergence

Theorem: (Belkin \& Niyogi, 2005, Singer, 2006)
For $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathcal{M} \subset \mathbb{R}^{m}$ uniformly sampled on a compact manifold and for $\vec{f}_{i}=f\left(x_{i}\right)$ where $f \in C^{3}(\mathcal{M})$

$$
\frac{1}{\delta^{2}}(\mathbf{L} \vec{f})_{i}=\Delta f\left(x_{i}\right)+\mathcal{O}\left(\delta^{2}, \frac{1}{N^{1 / 2} \delta^{1+d / 2}}\right)
$$

$\delta=$ bandwidth
$N=$ number of points

Restrictions that have been overcome to deal WITH REAL DATA:

- Arbitrary sampling (Coifman \& Lafon, 'Diffusion maps', 2006)
- Other kernel functions (Berry \& Sauer, 2015)
- Non-compact manifolds (Berry \& Harlim, 2015)
- Boundary (Coifman \& Lafon, 2006; R. Vaughn Thesis 2020)
- Spectral convergence (von Luxburg et al. 2008, Trillos et al. 2020, Berry \& Sauer 2019)

Restrictions that have been overcome to deal WITH REAL DATA:

- Arbitrary sampling (Coifman \& Lafon, 'Diffusion maps', ACHA 2006)
- Other kernel functions (Thesis 2013; Berry \& Sauer, ACHA 2015)
- Non-compact manifolds (Bery \& Harim, ACHA 2015)
- Boundary (Coifman \& Lafon, ACHA 2006; Berry \& Sauer, J. Comp. Stat. 2016)
- Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry \& Sauer, submitted)

Local Kernels

- A local kernel has exponential decay:

$$
K_{\delta}(x, x+\delta y)<c_{1} e^{-c_{2}\|y\|^{2}}
$$

- Theorem: Symmetric local kernels converge to Laplacians
- Every local kernel determines a geometry
- Every geometry accessible by a local kernel
- Explain success of 'kernel methods' in data science:
- KPCA: Kernel Principal Component Analysis
- KSVM: Kernel Support Vector Machines
- KDE: Kernel Density Estimation
- RKHS: Reproducing Kernel Hilbert Spaces
- Spectral Clustering (KPCA)

Restrictions that have been overcome to deal WITH REAL DATA:

- Arbitrary sampling (Coifman \& Lafon, 'Diffusion maps', ACHA 2006)
- Other kernel functions (Thesis 2013; Berry \& Sauer, ACHA 2015)
- Non-compact manifolds (Bery \& Harim, ACHA 2015)
- Boundary (Coifman \& Lafon, ACHA 2006; Berry \& Sauer, J. Comp. Stat. 2016)
- Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry \& Sauer, submitted)

TANGIBLE MANIFOLDS

- Compute ambient distance $\|x-y\|_{\mathbb{R}^{m}}$
- Need localization in $d_{\mathcal{I}}(x, y)=\inf _{\gamma}\left\{\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t\right\}$
- Assume ratio $R(x, y)=\frac{\|x-y\|_{\mathbb{R}} m}{d_{\mathcal{I}}(x, y)}$ bounded away from zero
- We will use the exponential map to change variables
- Assume injectivity radius $\operatorname{inj}(x)$ bounded away from zero

Definition: A manifold is uniformly tangible if there are lower bounds on $\operatorname{inj}(x)$ and $\inf _{y \in \mathcal{M}} R(x, y)$ independent of x

Consistency Part 1

- Matrix times vector converges to integral operator:

$$
(\mathbf{K} \vec{f})_{i}=\sum_{j=1}^{N} K_{\delta}\left(x_{i}, x_{j}\right) f\left(x_{j}\right) \xrightarrow{N \rightarrow \infty} \int_{\mathcal{M}} K_{\delta}\left(x_{i}, y\right) f(y) d V(y)
$$

- Assume kernel has fast decay: $K_{\delta}(x, y)<e^{-\|x-y\|^{2} / \delta^{2}}$
- Localize integral, requires $R\left(x_{i}, y\right)=\frac{\left\|x_{i}-y\right\|}{d_{(}\left(x_{i}, y\right)}>0$

$$
(\mathbf{K} \vec{f})_{i} \rightarrow \int_{\mathcal{M} \cap \exp _{x_{i}}\left(B_{\delta}(0)\right)} K_{\delta}\left(x_{i}, y\right) f(y) d V(y)+\mathcal{O}\left(\delta^{k}\right)
$$

- Change variables to the tangent space $y=\exp _{x_{i}}(s)$:

$$
(\mathbf{K} \vec{f})_{i} \rightarrow \int_{B_{\delta}(0)} K_{\delta}\left(x_{i}, \exp _{x_{i}}(s)\right) f\left(\exp _{x_{i}}(s)\right) d s+\mathcal{O}\left(\delta^{k}\right)
$$

- Requires injectivity radius $\operatorname{inj}\left(x_{i}\right)>\delta>0$

Consistency Part 2

- Taylor expansion in normal coordinates:

$$
f\left(\exp _{x}(s)\right)=f(x)+\nabla f(x) \cdot s+\frac{1}{2} s^{\top} H\left(f \circ \exp _{x}\right)(0) s
$$

- Symmetric kernel \Rightarrow Odd terms integrate to zero

$$
\begin{aligned}
(\mathbf{K} \vec{f})_{i} \rightarrow & \int_{\|s\|<\delta}\left(K(\|\boldsymbol{s}\|)+\mathcal{O}\left(\delta^{2} s_{i}^{4}\right) K^{\prime}(\|\boldsymbol{s}\|) /\|\boldsymbol{s}\|\right) \\
& \left.\left(f\left(x_{i}\right)+\delta \nabla f\left(x_{i}\right) \cdot s+\frac{\delta^{2}}{2} s^{\top} H\left(f \circ \exp _{x_{i}}\right)(0) s\right)\right) d s+\mathcal{O}\left(\delta^{4}\right) \\
= & f\left(x_{i}\right)+m \delta^{2}\left(f\left(x_{i}\right) \omega(x)+\Delta f\left(x_{i}\right)\right)+\mathcal{O}\left(\delta^{4}\right)
\end{aligned}
$$

- Normalize: $\mathbf{D}^{-1} \mathbf{K} \vec{f}=\frac{\mathbf{K} \vec{f}}{\mathbf{K} \overrightarrow{1}} \rightarrow \vec{f}+m \delta^{2} \overrightarrow{\Delta f}+\mathcal{O}\left(\delta^{4}\right)$
- Consistency: $\frac{1}{m \delta^{2}}\left(\mathbf{D}^{-1} \mathbf{K}-\mathbf{I}\right) \vec{f} \rightarrow \overrightarrow{\Delta f}+\mathcal{O}\left(\delta^{2}\right)$

Consistency is not enough!

- Extend to arbitrary sampling $x_{i} \sim q$ (Coifman \& Lafon)
- Variance: $\mathbb{E}\left[\left((L \vec{f})_{i}-\Delta f\left(x_{i}\right)\right)^{2}\right]=\mathcal{O}\left(\frac{q\left(x_{i}\right)^{3-4 d}}{N \delta^{2+d}}\right)$
- Negative exponent: $3-4 d<0$
- As density q approaches zero the variance blows up!
- Solution: Variable bandwidth

Variable Bandwidth Kernels

We introduced the variable bandwidth kernel:

$$
K_{\delta, \beta}(x, y)=K\left(\frac{\|x-y\|}{\delta \sqrt{q(x)^{\beta} q(y)^{\beta}}}\right)
$$

Theorem (Berry and Harlim, ACHA, 2015):

$$
\mathbf{L}_{\delta, \alpha, \beta} \vec{f}=\Delta f+c_{1} \nabla f \cdot \nabla \log q+\mathcal{O}\left(\delta^{2}, \frac{q^{-c_{2}}}{\sqrt{N} h^{1+d / 2}}\right)
$$

- Operator defined by: $c_{1}=2-2 \alpha+d \beta+2 \beta$
- Variance determined by: $c_{2}=1 / 2-2 \alpha+2 d \alpha+d \beta / 2+\beta$

Example: Variable Bandwidth Kernel

Gaussian data: Brownian motion in quadratic potential

Eigenfunctions (Hermite)

Error vs. Bandwidth

Summary of Manifold Learning

- Manifold learning \Leftrightarrow Estimating Laplace-Beltrami
- Can estimate Laplace-Beltrami with a graph Laplacian
- For a non-compact manifold:
- Manifold must be tangible
- Requires a variable bandwidth kernel
- Other contributions:
- Access any desired geometry (local kernels)
- Manifolds with boundary
- Spectral convergence

Beyond Manifold Learning

- Data never really lies on a manifold (due to noise)
- A manifold is a measure zero set
- Data is never sampled from a measure zero set
- Solution 1: Spectral robustness for bounded noise (Coifman and Lafon), but lose convergence
- Solution 2: Manifold + Noise, requires semi-geodesic coordinates, need new algorithms to regain convergence
- Solution 3: Generalize beyond manifolds
- Metric measure spaces
- Gromov-Hausdorff limits of manifolds

Continuous k-nearest neighbors (CkNN)

Building unweighted graphs from data (TDA)
CkNN Graph: Edge $\{x, y\}$ added if $\frac{\|x-y\|}{\sqrt{\left\|x-x_{k}\right\|\left\|y-y_{k}\right\|}}<\delta$

- $x_{k}=k$-th nearest neighbor of x
- Unnormalized graph Laplacian: $\mathbf{L}_{\mathrm{un}}=\mathbf{D}-\mathbf{K}$
- Corollary: $\mathrm{L}_{\mathrm{un}} \vec{f} \rightarrow \overrightarrow{\Delta_{\tilde{g}} f}$ where ($\tilde{g}=q^{2 / d} g, d \tilde{V}=q d V$)
- New result: Spectral convergence $\mathrm{L}_{\mathrm{un}} \rightarrow \Delta_{\tilde{g}}$
- Consistency of CkNN clustering:
- Conn. comp. of graph \Leftrightarrow Kernel of $L_{u n}$
- Conn. comp. of $\mathcal{M} \Leftrightarrow$ Kernel of $\Delta_{\tilde{g}}$ (Hodge theorem)

CKNN YIELDS IMPROVED GRAPH CONSTRUCTION

2D Gaussian with annulus removed:
Persistent vs. consistent homology

Small bandwidth
Large bandwidth
CkNN

Improved clustering using CkNN

Conformally Invariant Diffusion Maps (CIDM)

- Data samples $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathcal{M} \subset \mathbb{R}^{n}$ of volume $p_{\text {eq }} d V$
- Continuous k-Nearest Neighbors (CkNN) dissimilarity:

$$
d\left(x_{i}, x_{j}\right) \equiv \frac{\left\|x_{i}-x_{j}\right\|}{\sqrt{\left\|x_{i}-x_{k N N(i)}\right\|\left\|x_{j}-x_{k N N(j)}\right\|}}
$$

- Variable bandwidth kernel, $K_{i j}=\exp \left(\frac{-d\left(x_{i}, x_{j}\right)^{2}}{\delta^{2}}\right)$
- Degree matrix $D_{i i}=\sum_{j} K_{i j}$ (diagonal)
- Graph Laplacian, $L=\frac{D-K}{\delta^{d+2}}$
- Theorem: $L \vec{f}=\Delta_{\hat{g}} f+\mathcal{O}\left(\delta^{2}, N^{-1 / 2} \delta^{-1-d / 2}\right), \hat{g}=p_{\text {eq }}^{2 / d} g$
- Solve: $\left(I-D^{-1 / 2} K D^{-1 / 2}\right) \vec{v}=\lambda \vec{v}$, set $\vec{\varphi}=D^{-1 / 2} \vec{v}$

Harmonic Analysis on Manifolds/Data Sets

- Manifolds with boundary, (R. Vaughn)

$$
\vec{h}^{\top} L \vec{f} \rightarrow \int(\nabla h \cdot \nabla f) p_{\mathrm{eq}} d V
$$

Harmonic Analysis on Manifolds/Data Sets

- Manifolds with boundary, (R. Vaughn)

$$
\vec{h}^{\top} L \vec{f} \rightarrow\left\langle\left\langle\nabla_{\hat{g}} h, \nabla_{\hat{g}} f\right\rangle\right\rangle_{\hat{g}}=\int \hat{g}\left(\nabla_{\hat{g}} h, \nabla_{\hat{g}} f\right) d V_{\hat{g}}
$$

Code and papers available at:

http://math.gmu.edu/־berry/

Manifold Learning Papers Discussed

- B. and Giannakis, Spectral Exterior Calclulus.
- R. Vaughn Diffusion Maps for Manifolds with Boundary.
- B. and Sauer, Consistent Manifold Representation for Topological Data Analysis.
- Coifman and Lafon, Diffusion maps.
- B. and Harlim, Variable Bandwidth Diffusion Kernels.
- B. and Sauer, Local Kernels and Geometric Structure of Data.

References

[1] V. Vapnik, The nature of statistical learning theory. Springer (2000).
[2] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press (2018).
[3] A. Pinkus, N-widths in Approximation Theory. Vol. 7. Springer Science \& Business Media, (2012).
[4] R. A. DeVore and G. G. Lorentz. Constructive approximation. Vol. 303. Springer Science \& Business Media, (1993).
[5] R. A. DeVore, Nonlinear approximation. Acta numerica 7, 51-150 (1998).
[6] D. W. Scott and S. R. Sain. Multidimensional density estimation. Handbook of statistics 24, 229-261 (2005).
[7] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information theory 39, no. 3, 930-945 (1993).
[8] A. R. Barron, Approximation and estimation bounds for artificial neural networks. Machine learning 14, no. 1, 115-133 (1994).
[9] H. J. Bungartz and M. Griebel, Sparse grids. Acta numerica, 13, 147-269 (2004).
[10] K. Li, Sliced Inverse Regression for Dimension Reduction. Journal of the American Statistical Association, 86(414), (1991).
[11] Y. Li, L. Zhu, Asymptotics for Sliced Average Variance Estimation. The Annals of Statistics, 35(1), 41-69 (2007).

