
BIASED OBS CORRECTING BIAS WITH TRAINING DATA WITHOUT TRAINING DATA RESULTS

Overcoming model and observation error in
data assimilation using manifold learning

Tyrus Berry
Dept. of Mathematical Sciences

George Mason University

Joint Math Meetings
January 17, 2019

Joint work with John Harlim, Franz Hamilton, and Tim Sauer



BIASED OBS CORRECTING BIAS WITH TRAINING DATA WITHOUT TRAINING DATA RESULTS

FILTERING OVERVIEW

I Consider the standard filtering problem,

xi = f (xi−1) + ωi−1

yi = h(xi) + ηi

I Filtering: Given y1, ..., yk estimate xk or P(xk | y1, ..., yk )

I Forecast: From P(xk | y1, ..., yk ) find prior P(xk+1 | y1, ..., yk )

I Assimilate: Combine prior with likelihood P(yk+1 | xk+1)

I Kalman-based Filtering:

I Forecast: Local Linear (EKF) or Ensemble (EnKF)

I Assimilate: Gaussian assumption + Bayesian posterior
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BIAS IN OBSERVATION MODELS

I Consider the standard filtering problem,

xi = f (xi−1) + ωi−1

yi = h(xi) + ηi

I Model error: Specify variables, unknown dynamics

I Observation error: Specify dynamics, unknown mapping

I Both unknown: Underdetermined
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BIAS IN OBSERVATION MODELS

I Consider the standard filtering problem,

xi = f (xi−1) + ωi−1

yi = h(xi) + ηi

I True observation function h(x) is unknown

I Assume we have a guess g(x) and

yi = h(xi) + ηi = g(xi) + bi + ηi

I Bias: bi ≡ h(xi)− g(xi)
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BIAS IN OBSERVATION MODELS

I Consider the standard filtering problem,

xi = f (xi−1) + ωi−1

yi = h(xi , ηi)

I True observation function h is unknown

I Assume we have a guess g and

yi = h(xi , ηi) = g(xi , ηi) + bi

I Stochastic Bias: bi ≡ h(xi , ηi)− g(xi , ηi)
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EXAMPLE 1: LORENZ-96
I 40-dimensions:

ẋj = xj−1(xj+1 − xj−2)− xj + 8

I Observe 20 variables, 7 are ‘cloudy’

h(xk ) =

{
xk ξi > 0.8
βkxk − 8 else

βk ∼ N (0.5,1/50).
ξi ∼ U(0,1)
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EXAMPLE 1: LORENZ-96

I The result is a bimodal distribution, “cloudy/clear”

I Obs Model Error = True Obs - g(True State)
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CORRECTING THE BIAS

I Our goal is to find p(bi | yi)

I We can then correct our observation function

ĥ(x f
i ) ≡ g(x f

i ) + b̂i

I Where b̂i = Ep(bi | yi )[bi ]

I Since b̂i random:

I Inflate the obs noise covariance

I Use R̂bi = Ep(bi | yi )[(bi − b̂i)(bi − b̂i)
>]
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CORRECTING THE BIAS

I Need to find p(bi | yi)

I From the forecast step we have a prior p(bi)

I Forecast x f
i ⇒ Bias estimate: yi − g(x f

i )

I Prior p(bi) = N (yi − g(x f
i ),P

y
i )

I Use Bayes’ p(bi | yi) = p(bi)p(yi |bi)

I Need the likelihood p(yi |bi)

I Use kernel estimation of conditional distributions
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LEARNING THE CONDITIONAL DISTRIBUTION

I Given training data (yi ,bi) our goal is to learn p(yi |bi)

I For a kernel K (α, β) = e−
||α−β||2

δ2 we define Hilbert spaces

Hy =

{
N∑

i=1

aiK (yi , ·) : ~a ∈ RN

}

Hb =

{
N∑

i=1

aiK (bi , ·) : ~a ∈ RN

}

I Eigenvectors φ` of Kij = K (yi , yj) are a basis for Hy .
I Similarly ϕk are a basis for Hb.
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LEARNING THE CONDITIONAL DISTRIBUTION

I We assume that p(y |b) can be approximated in Hy ⊗Hb

I Let Cyb
ij =

〈
φi , ϕj

〉
and Cbb

ij =
〈
ϕi , ϕj

〉
then define

Cy |b = Cyb
(

Cbb + λI
)−1

I We can then define a consistent estimator of p(y |b) by

p̂(y |b) =
N∑

i,j=1

Cy |b
i,j φi(y)ϕj(b)q̂(y)
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CORRECTING THE BIAS

I Below plots have yi ≈ −4

I Left is clear, right is cloudy

I Notice bimodal likelihood
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OVERVIEW

I Learning Phase: Given training data set (xi , yi)

I Compute the biases bi = yi − g(xi)

I Learn the conditional distribution p(y |b)

I Filtering: Forecast x f
i ⇒ Bias estimate: yi − g(x f

i )

I Prior p(b) = N (yi − g(x f
i ),P

y
i )

I Likelihood p(yi |b) from learning phase

I Apply Bayes: p(b | yi) = p(b)p(yi |b)

I Estimate bias b̂i and correct the observation
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OVERVIEW

Prior
Primary Filter−−−−−−−−−−−−−→ Posterior

p(xi) p(xi | yi)y x
Error Prior

Secondary Filter−−−−−−−−−−−−−→Error Posterior
p(b) p(b | yi)x x

Observation
RKHS+Training Data−−−−−−−−−−−−−−→ Likelihood

yi p(yi |b)
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LORENZ-96 RESULTS
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LORENZ-96 RESULTS

I Works well with small measurement noise

I Observations need to be precise, but not accurate
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BIAS IN OBSERVATION MODELS

I Consider the standard filtering problem,

xi = f (xi−1) + ωi−1

yi = h(xi) + ηi

I True observation function h(x) is unknown

I Guess g(x) and bias: bi ≡ h(xi)− g(xi)

I Previously: Given training data, {(xi , yi)}
I Now: Only have observations, {yi}.
I Idea: Iteratively estimate the bias
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ITERATIVE BIAS ESTIMATION

I Get the filter running with the bad obs g (inflate R)

b̂(0)
k = yk − g

(
x (0)

k

)
I Takens’ embedding to identify similar states:

zk = [yk , yk−1, . . . , yk−d ]

I Smooth the bias with local linear interpolation:

b(0)(xk ) =
∑

i

e−
||zk−zi ||

2

ε2 b̂(0)
i

I Update the observation function:

g(1) = g + b(0)
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ITERATIVE BIAS ESTIMATION

Filter
f

g(l)

y
k

Takensx
k

(l) ,    b
k

(l) = y
k
-g(x

k
(l))

b(l)(x
k
)g(l+1) = g+b(l)

^
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EXAMPLE 2: LORENZ-63

I 3-dimensional chaotic ODE

I True Obs:

h(~x) = h

 x1
x2
x3

 =

 sin(x1)
x2 − 6
cos(x3)


I Guess:

g(~x) = g

 x1
x2
x3

 =

 x1
x2
x3


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EXAMPLE 2: LORENZ-63

to update the state and covariance estimates with the observation yk. Q and R are generally unknown quantities that have to be
estimated, an area known as adaptive filtering.

In this article, we use the method of11 for the adaptive estimation of these noise covariance matrices. This is a key
component in our method since the R covariance will be inflated by the adaptive filter to represent the error between the true
observation function h and the observation function g(`) that we actually use in the filter. In other words, the adaptive filter is
combining the covariance of the observation model error and the instrument noise into the R covariance matrix. As we iterate
the algorithm (as ` increases) we find that g(`) more closely approximates the true observation function h and the adaptive filter
will find smaller values for R.

3 Assimilating Lorenz-63 with an incorrect observation model
In the results presented below, we assume noisy observations are available from a system of interest and we implement an
ensemble Kalman filter (EnKF) for state estimation. The EnKF approximates a nonlinear system by forming an ensemble, such
as through the unscented transformation (see for example25). Additionally, we use the method of11 for the adaptive estimation
of the filter noise covariance matrices Q and R. The correct observation function h that maps the state to observation space is
unknown, and in its place an incorrect function g is chosen for use by the EnKF. Throughout, we will compare our corrected
filter with the standard filter (essentially, the ` = 0 iteration) which assumes no correction.
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Figure 2. Results of filtering noisy Lorenz-63 (a) x1 (b) x2 and (c) x3 time series when true observation function, h, is
unknown and R = 2I3⇥3. Notice the large difference between the true observations h(~xk)+nk (blue circles) to the true state
variables (solid black curve). We compare the EnKF estimate using the wrong observation function, g, without observation
model error correction (solid gray lines) and the EnKF estimate with correction (solid red lines) shown. (d) Plot of RMSE vs.
iteration of the observation model error correction method, where ` = 0 corresponds to the standard EnKF without correction.
RMSE for x (solid black line), y (dashed black line) and z (dotted black line) shown. After a sufficient number of iterations, the
observation model error estimates converge as does the RMSE of the state estimate.
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PUTTING THE TWO METHODS TOGETHER

I Step 1: Iterative Estimation

I Using historical observations, offline

I Step 2: Conditional Estimation

I Use data from step 1 to train RKHS, online
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EXAMPLE 3: INTRACELLULAR FROM EXTRACELLULAR
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EXAMPLE 3: INTRACELLULAR FROM EXTRACELLULAR
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Fig 7. Results from assimilating the extracellular data to the
Fitzhugh-Nagumo model. Thin light traces indicate individual events and the thick
dark lines denote the mean waveforms averaged over individual events. Without bias
correction (Fig 7 a-b), the filter is unable to compensate for the error resulting in an
inaccurate estimate of the (a) intracellular potential and (b) recovery variable dynamics.
When we estimate the bias and correct the observation model error (Fig. 7c-d), we are
able to learn the mapping from intracellular to extracellular state, and thus get an
improved reconstruction of the intracellular potential and recovery dynamics, (c) and
(d) respectively.

capability to learn this neuronal bias from available data, improving our ability to 247

estimate intracellular neuronal state while reconciling severe model error resulting from 248

dynamical mismatch. 249

As with most techniques that attempt to empirically learn a function, the resulting 250

accuracy of the observation bias reconstruction is dependent on sufficient available data. 251

In the neuroscience application examined here, enough spiking events must be available 252

within the analyzed time series so that the extracellular-to-intracellular relationship can 253

be approximated using the nearest-neighbors algorithm. Additionally, the use of any 254

Kalman filter relies on Gaussian noise assumptions. For non-Gaussian noise processes, 255

more sophisticated data assimilation schemes may have to be considered. 256

The ability to reconcile observation model error and improve on intracellular state 257

estimation opens up several avenues for improved neuronal data analysis. As discussed 258

in [6], the assimilation of extracellular data to intracellular models results in the filter 259

using some of the model’s free parameters to compensate for the error. This can result 260

in parameter estimates that have little to no interpretability. We hypothesize that our 261

method for correcting observational bias will help improve the parameter estimation 262

PLOS 11/13
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EXAMPLE 4: MULTI-CLOUD “SATELLITE-LIKE” OBS

I Consider a 7-dim’l model for a column of atmosphere
I Baroclinic anomaly potential temperatures, θ1 and θ2

I Boundary layer anomaly potential temperature, θeb

I Vertically averaged water vapor content, q
I Cloud fractions: congestus fc , deep fd , and stratiform fs

I Extrapolate anomaly potential temperature at height z

T (z) = θ1 sin(
zπ
ZT

) + 2θ2 sin(
2zπ
ZT

), z ∈ [0,16]

Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection.
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EXAMPLE 4: MULTI-CLOUD “SATELLITE-LIKE” OBS

I Extrapolate anomaly potential temperature at height z

T (z) = θ1 sin(
zπ
ZT

) + 2θ2 sin(
2zπ
ZT

), z ∈ [0,16]

I Brightness temperature-like quantity at wavenumber-ν

hν(x , f ) = (1− fd − fs)
[
(1− fc)

(
θebTν(0) +

∫ zc

0
T (z)

∂Tν
∂z

(z)dz
)

+ fcT (zc)Tν(zc) +

∫ zd

zc

T (z)
∂Tν
∂z

(z)dz
]

(1)

+ (fd + fs)T (zd)Tν(zd) +

∫ ∞
zd

T (z)
∂Tν
∂z

(z)dz,

I Setting f = 0 is the clear sky model
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EXAMPLE 4: MULTI-CLOUD “SATELLITE-LIKE” OBS

I Weighting functions define RTM at different wavenumbers
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EXAMPLE 4: MULTI-CLOUD “SATELLITE-LIKE” OBS

I Biases at the 16 observed wavenumbers
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EXAMPLE 4: MULTI-CLOUD “SATELLITE-LIKE” OBS

I Multimodal likelihood functions
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EXAMPLE 4: “SATELLITE-LIKE” OBS (ITERATIVE)
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Figure 5. (a) True observations (red, dashed) incorporating cloud information are compared to the incorrect observation
function (black, solid) which sets all the cloud fractions to zero in the RTM. (b-h) True state (gray, thick curve) compared to the
result of filtering with the true observation function (black), the wrong observation function using only inflation of the
observation covariance matrix (red, dashed) and the wrong observation function with iterative observation model error
correction (blue, dashed).
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EXAMPLE 4: “SATELLITE-LIKE” OBS (RKHS)
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