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MOTIVATING EXAMPLE: NEMATIC LIQUID CRYSTAL

Video provided by Rob Cressman, Krasnow Institute, GMU
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FINDING HIDDEN STRUCTURE IN DATA
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OUTLINE

Lessons:

I Dimensionality: Intrinsic vs. Extrinsic

I Nonlinearity: Fourier Basis

I Non-uniformity: Respect the density

Challenges:

I Curse-of-dimensionality (intrinsic)

I Extrapolation
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INTRINSIC VS. EXTRINSIC DIMENSION

100 points on a Circle
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INTRINSIC VS. EXTRINSIC DIMENSION
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INTRINSIC VS. EXTRINSIC DIMENSION

0

-1-1

0.2

00

0.4

0.6

11

I Intrinsic Dimension = 1

θi = 2π
i

100

I Extrinsic Dimension = 3

(xi , yi , zi) = (cos(θi), sin(θi),0)



DIMENSIONALITY HIDDEN STRUCTURE MANIFOLD LEARNING FOURIER BASIS NONUNIFORMITY CLUSTERS CHALLENGES

INTRINSIC VS. EXTRINSIC DIMENSION
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INTRINSIC VS. EXTRINSIC DIMENSION

I Intrinsic Dimension = 1

θi = 2π
i

100

I Extrinsic Dimension = 2 + n

xi = cos(θi)

yi = sin(θi)

z1
i = a1xi + b1yi

...
zn

i = anxi + bnyi

=




1 0
0 1
a1 a2
...

...
an bn




[
cos(θi)
sin(θi)

]
= A

[
cos(θi)
sin(θi)

]

A is a (n + 2)× 2 matrix
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SOLUTION: LINEAR ALGEBRA!
I Hidden Data, [θ1, θ2, θ3, ..., θN ]

I Ideal Representation, xi = cos(θi), yi = sin(θi)

X =

[
x1 x2 x3 · · · xN
y1 y2 y3 · · · yN

]

I Given Data: Y = AX

Y =




x1 x2 x3 · · · xN
y1 y2 y3 · · · yN

a1x1 + b1y1 a1x2 + b1y2 a1x3 + b1y3 · · · a1xN + b1yN
a2x1 + b2y1 a2x2 + b2y2 a2x3 + b2y3 · · · a2xN + b2yN

...
...

...
...

anx1 + bny1 anx2 + bny2 anx3 + bny3 · · · anxN + bnyN




I Rows of Y are linearly dependent!
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SOLUTION: LINEAR ALGEBRA!

I Given data Y = AX where both A and X are unknown

I Linear dependence means the rows, Yi , are redundant:

~c>Y = c1Y1 + c2Y2 + · · ·+ cnYn = ~0

I There exists ~c = (c1, ..., cn) 6= 0 such that ~c>Y = ~0

I ~c>Y = ~0 if and only if ~c>YY>~c = ~0>~0 = 0

I So ~c is eigenvector of YY> with eigenvalue zero
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PRINCIPAL COMPONENT ANALYSIS (PCA)

I Compute the eigenvectors/values of YY> = UΛU>

I Sort the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

I Eigenvalue ≈ 0 represent linear redundancies

I Principal Components: Eigenvectors ui with largest λi

I Choose ~u1, ~u2, ..., ~up corresponding to λ1, ..., λp

I Form the projection matrix P = [~u1 ~u2 · · · ~up]

I Remove redundancies: X̃ = PY
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PRINCIPAL COMPONENT ANALYSIS (PCA)

Y ⇒ X̃ = PY
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PRINCIPAL COMPONENT ANALYSIS (PCA)

I Matrix times intrinsic data⇒ extrinsic redundancy

I These linear redundancies are easy to remove

I PCA projects the data to remove redundancy

I Does this really happen?
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DOES THIS REALLY HAPPEN?

Consider 11× 11 subimages from a pattern:
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DOES THIS REALLY HAPPEN?
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DOES THIS REALLY HAPPEN?
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DOES THIS REALLY HAPPEN?
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DOES THIS REALLY HAPPEN?
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PRINCIPAL COMPONENT ANALYSIS (PCA)

I Linear redundancies are easy to remove

c1Y1 + c2Y2 + · · · cnYn = ~0

I PCA projects the data to remove redundancy

I What about nonlinear redundancies?

F (Y1,Y2, ...,Yn) = ~0

I Example, Circle: Y1 = cos(θ),Y2 = sin(θ)

F (Y1,Y2) = Y 2
1 + Y 2

2 − 1 = ~0
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PRINCIPAL COMPONENT ANALYSIS (PCA)
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MANIFOLD LEARNING

A manifoldM is a topological space that is locally Euclidean.
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MANIFOLD LEARNING

Around each point x ∈M we have an open neighborhood
Ux ⊂M and a homeomorphism Hx : Ux → Rm

x2

x1

b u
b

[
x1(u)
x2(u)

]
Hx∂

∂x2

∂
∂x1

b
x

Ux ⊂ M H−1
x R2

f f̃
R
⟲
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MANIFOLD LEARNING

I When does a nonlinear redundancy define a manifold?

M = {~y |F (y1, y2, ..., yn) = ~a} ⊂ Rn

I Need to be able to solve for the last n −m variables:

~a = F (y1, ..., ym, ym+1, ..., yn)

= F (y1, ..., ym,G1(y1, ..., ym),G2(y1, ..., ym), ...,Gn−m(y1, ..., ym))

I Implicit Function Theorem: If the Jacobian matrix DF (~y)
is full rank then the functions G1, ...Gn−m exist near ~y

I Sard’s Theorem: If F is smooth, then for almost every ~a,
the Jacobian DF (~y) is full rank for all ~y ∈M
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MANIFOLD LEARNING

I When does a nonlinear redundancy define a manifold?

M = {~y |F (y1, y2, ..., yn) = ~a} ⊂ Rn

I Need to be able to solve for the last n −m variables:

~a = F (y1, ..., ym, ym+1, ..., yn)

= F (y1, ..., ym,G1(y1, ..., ym),G2(y1, ..., ym), ...,Gn−m(y1, ..., ym))

I Implicit Function Theorem: If the Jacobian matrix DF (~y)
is full rank then the functions G1, ...Gn−m exist near ~y

I Sard’s Theorem: If F is smooth, then for almost every ~a,
the Jacobian DF (~y) is full rank for all ~y ∈M



DIMENSIONALITY HIDDEN STRUCTURE MANIFOLD LEARNING FOURIER BASIS NONUNIFORMITY CLUSTERS CHALLENGES

MANIFOLD LEARNING
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MANIFOLD LEARNING

I When does a nonlinear redundancy define a manifold?
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MANIFOLD ⇒ GRAPH

I Represent the nonlinear structure with a graph

I Locally Euclidean⇒ Connect nearby points
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MANIFOLD ⇒ GRAPH

I Problem: Noise and outliers can lead to bridging
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MANIFOLD ⇒ GRAPH

I To prevent bridging, edges weighted: Kδ(x , y) = e−
||x−y||2

4δ2

I Theorem: Graph encodes all nonlinear information
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WHAT IS MANIFOLD LEARNING?

I Manifold learning⇔ Estimating Laplace Operator

I Euclidean space:

I Eigenfunctions of ∆ are ei~ω·~x

I Basis for Fourier transform

I Unit circle:

I Eigenfunctions of ∆ are eikθ

I Basis for Fourier series

I Theorem: Eigenfunctions of ∆ give the smoothest basis
for square integrable functions on any manifold.
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FINDING THE LAPLACIAN FROM DATA

I We have converted our data set to a weighted graph

I Vertices⇒ Data points {x1, x2, ..., xN}

I Edges⇒ Pairs of nearest neighbors

I Edge Weights⇒ K (xi , xj) = e−
||xi−xj ||

2

4ε

I Represented as matrix Kij = K (xi , xj)
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DIFFUSION MAPS: THE KEY RESULT

1. Start with the matrix Kij = e−
||xi−xj ||

2

4ε

2. Find the row sums Pi =
∑N

j=1 Kij

3. Normalize the matrix K̂ij =
Kij

Pi Pj

4. Find the row sums again P̂i =
∑N

j=1 K̂ij

5. Markov Normalization K̃ij =
K̂ij

P̂i

6. Form the Laplacian matrix ∆̃ = I−K̃
ε

Theorem: As N →∞ and ε→ 0 we have ∆̃→ ∆
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DIFFUSION MAPS CONSTRUCTION

K Density P K̂ Bias P̂ ∆̃
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DIFFUSION MAPS CONSTRUCTION

I ∆̃ approximates the
Laplacian ∆

I ∆̃ encodes the
geometry of the data

I Eigenvectors of ∆̃
approximate
eigenfunctions of ∆
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FOURIER BASIS ON MANIFOLDS

I Fourier functions sin(kθ) are eigenfunctions of d2

dθ2

I Eigenvectors of matrix ∆̃ approximate eigenfunctions of ∆

I What is so great about these functions?

I Smoothest possible functions onM
I ϕ0 = constant

I ϕ1 contains a single oscillation

I ϕj is smoothest function orthogonal to previous
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FOURIER BASIS ON MANIFOLDS
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FOURIER BASIS ON MANIFOLDS
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FORECASTING WITHOUT A MODEL

p(x , t)
Nonparametric Forecast−−−−−−−−−−−−→ p(x , t + τ)

y〈p,ϕj〉
x

∑
j cjϕj peq

~c(t)
Alj≡E[〈ϕj ,Sϕl 〉peq ]−−−−−−−−−−−−−−−−−→ ~c(t + τ) = A~c(t).

I ~c(t) are the generalized Fourier coefficients of p
I Nonlinear dynamics become linear (matrix A) in this basis
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MANIFOLD LEARNING ⇒ CUSTOM ‘FOURIER’ BASIS

I Optimal basis: Minimum variance Alj ≡ E[〈ϕj ,Sϕl〉q]
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EXAMPLE: FORECASTING WITHOUT A MODEL

No Model Perfect Model
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EXAMPLE: FORECASTING EL NINO
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NONUNIFORM DENSITY: FIXED BALLS

Black outlines indicate true clusters:

(a) (b)

(a) Dense regions bridged before connecting sparse region

(b) Graph connecting all points with distance less than ε

||x − y || < ε
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NONUNIFORM DENSITY: NEAREST NEIGHBORS (NN)

(c) (d)

(c) Connect each point to its nearest neighbor (NN)

(d) Connect each point to its two nearest neighbors (2NN)
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NONUNIFORM DENSITY: CKNN

(e) (f)

(e) Distance to 10-th nearest neighbor

(f) Continuous k-Nearest Neighbors (CkNN)

||x − y ||√
||x − kNN(x)|| · ||y − kNN(y)||

< δ
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NONUNIFORM DENSITY: MORE DATA?

(g)

(g) Five times more data, 4 nearest neighbors works

Does nearest neighbors always work given sufficient data?
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NONUNIFORM DENSITY: CONCLUSION

(h)

(h) Real data has sparse tails: More data = bigger gaps!

Theorem: NN fails even with infinite data. CkNN succeeds.
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IMPROVED CLUSTERING USING CKNN
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IMAGE SEGMENTATION

Original Image: Break into subimages

A Manifold Learning Approach to Image Segmentation
Marilyn Y. Vazquez, Tyrus Berry, and Tim Sauer

George Mason University, Fairfax, VA, U.S.A.

OVERVIEW

• The goal of our research is to do texture segmentation using what we call the
“Cut-Cluster-Classify” algorithm on the patch space

• We start by using a density estimator as a way to determine a threshold
value, i.e. the cutting step, that will make the clustering step easier

• The clustering step is done using a very efficient and accurate algorithm
formulated by T. Berry and T. Sauer in [1]

• Finally, the classification step is done using a very simple but efficient
classification algorithm

Sample material images where texture segmentation becomes important. Source: NIST

CLUSTERING ALGORITHM

The CkNN algorithm is presented in [1]. The advantages of this algorithm is that
it preserves the topology of the manifold represented by non-uniformly sampled
cloud data. For example, the 0-level homology identifies the connected
components, which other algorithms are not able to preserve (shown below).

1. Find the k nearest neighbor xk for each point x in the dataset
2. Connect the points x, y if d(x, y) < �

p
d(x, xk)d(y, yk)

3. Chose the � that is the most persistent

(a) (b) (c)

The results of (a) kNN, (b) ✏-balls, and (c) CkNN in the same data with 3 components, two of

which were densely sampled and one was sparsely sampled. Source: [1]

TEXTURE SEGMENTATION

Patch Space
• Since texture is a local feature depending on more than a single pixel, we

decided to look at m ⇥ m patches instead of one pixel at the time
• The plan is to first look at a collection of random patches R and cluster them.

Then, we will go back to the rest of the data and classify it according to how
close it is to the found clusters

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(a) Original image. (b)-(c) patches from polkadot region. (d)-(e) patches from line region. (f)-(i)

patches in the border region.

TEXTURE SEGMENTATION

Density Based Clustering
Since density based clustering suffers from the curse of dimensionality, for large
m a projection of the patches to `  m2 dimensions may be necessary. For
simplicity, suppose n is the number of clusters in your data, Sm,` is the collection
of all patches which have been projected down to ` dimensions, and si 2 Sm,`.
Let q : R` ! R be the local density. Then, we follow these steps:

1. Select random collection R ✓ Sm,` of N patches
2. Select quasi-random ⇢ 2 (0, 1)

3. For j = d⇢Ne, let � be the jth smallest density. Grab R� = {si 2 R|q(si) � �}.
Removing low density patches, or outliers, creates a larger separation
between clusters

4. Cluster R� and calculate the proportion of data in the smallest cluster �n,�

5. If �n,� < tolerance, go to step 2. Else, go to classification step. (i.e. this is a
meaningful clustering)

kNN Classifier

To classify, put back the outliers and for each patch identify the k nearest
neighbors in R`. Give the patch the cluster number that happens most frequently
in those k nearest neighbors identified.

(a) (b)

(c) (d)

(a) R` viewed from its 2 principal components and clustered, and (b) the patches plotted in these

coordinates. (c) Sm,` viewed from its 2 principal components and classified, and (d) the patches

plotted in these coordinates.

TEXTURE SEGMENTATION

Voting
Suppose the pixel x` is found 10 times in Cj and 2 times in Cj+1 and 0 times in the
other n � 2 clusters. Then x` would be assigned to the jth cluster.

RESULTS

Scanning Electron Microscope (SEM) images and our results:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a)-(c) Original images and (d)-(f) the results. (g)-(i) Original images and (j)-(l) the results. Original

image credits: Mark R. Stoudt and Steve P. Mates.
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IMAGE SEGMENTATION

Clustering shown projected to two principal components

all points

with low
density
points
removed

Images produced by Marilyn Vazquez.
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IMAGE SEGMENTATION

Results - synthetic images

Images produced by Marilyn Vazquez.
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IMAGE SEGMENTATION: REAL IMAGES

Images produced by Marilyn Vazquez.
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IMAGE SEGMENTATION: REAL IMAGES

A Manifold Learning Approach to Image Segmentation
Marilyn Y. Vazquez, Tyrus Berry, and Tim Sauer

George Mason University, Fairfax, VA, U.S.A.

OVERVIEW

• The goal of our research is to do texture segmentation using what we call the
“Cut-Cluster-Classify” algorithm on the patch space

• We start by using a density estimator as a way to determine a threshold
value, i.e. the cutting step, that will make the clustering step easier

• The clustering step is done using a very efficient and accurate algorithm
formulated by T. Berry and T. Sauer in [1]

• Finally, the classification step is done using a very simple but efficient
classification algorithm

Sample material images where texture segmentation becomes important. Source: NIST

CLUSTERING ALGORITHM

The CkNN algorithm is presented in [1]. The advantages of this algorithm is that
it preserves the topology of the manifold represented by non-uniformly sampled
cloud data. For example, the 0-level homology identifies the connected
components, which other algorithms are not able to preserve (shown below).

1. Find the k nearest neighbor xk for each point x in the dataset
2. Connect the points x, y if d(x, y) < �

p
d(x, xk)d(y, yk)

3. Chose the � that is the most persistent

(a) (b) (c)

The results of (a) kNN, (b) ✏-balls, and (c) CkNN in the same data with 3 components, two of

which were densely sampled and one was sparsely sampled. Source: [1]

TEXTURE SEGMENTATION

Patch Space
• Since texture is a local feature depending on more than a single pixel, we

decided to look at m ⇥ m patches instead of one pixel at the time
• The plan is to first look at a collection of random patches R and cluster them.

Then, we will go back to the rest of the data and classify it according to how
close it is to the found clusters

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(a) Original image. (b)-(c) patches from polkadot region. (d)-(e) patches from line region. (f)-(i)

patches in the border region.

TEXTURE SEGMENTATION

Density Based Clustering
Since density based clustering suffers from the curse of dimensionality, for large
m a projection of the patches to `  m2 dimensions may be necessary. For
simplicity, suppose n is the number of clusters in your data, Sm,` is the collection
of all patches which have been projected down to ` dimensions, and si 2 Sm,`.
Let q : R` ! R be the local density. Then, we follow these steps:

1. Select random collection R ✓ Sm,` of N patches
2. Select quasi-random ⇢ 2 (0, 1)

3. For j = d⇢Ne, let � be the jth smallest density. Grab R� = {si 2 R|q(si) � �}.
Removing low density patches, or outliers, creates a larger separation
between clusters

4. Cluster R� and calculate the proportion of data in the smallest cluster �n,�

5. If �n,� < tolerance, go to step 2. Else, go to classification step. (i.e. this is a
meaningful clustering)

kNN Classifier

To classify, put back the outliers and for each patch identify the k nearest
neighbors in R`. Give the patch the cluster number that happens most frequently
in those k nearest neighbors identified.

(a) (b)

(c) (d)

(a) R` viewed from its 2 principal components and clustered, and (b) the patches plotted in these

coordinates. (c) Sm,` viewed from its 2 principal components and classified, and (d) the patches

plotted in these coordinates.

TEXTURE SEGMENTATION

Voting
Suppose the pixel x` is found 10 times in Cj and 2 times in Cj+1 and 0 times in the
other n � 2 clusters. Then x` would be assigned to the jth cluster.

RESULTS

Scanning Electron Microscope (SEM) images and our results:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a)-(c) Original images and (d)-(f) the results. (g)-(i) Original images and (j)-(l) the results. Original

image credits: Mark R. Stoudt and Steve P. Mates.
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CURSE-OF-(INTRINSIC)-DIMENSIONALITY

I Try to cut into independent components

I Otherwise math/stat says it is impossible

I Need more/better assumptions and/or questions

I Better assumptions: Smoothness

I Better questions: Feature of interest (supervised)
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EXTRAPOLATION

I Given only part of a structure recover the whole
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EXTRAPOLATION

I Given only part of a structure recover the whole

?

I Need to exploit symmetry
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