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Overview
Nonlinear dimensionality reduction has been successfully applied to very high dimen-
sional observations such as images [5]. However, these methods are typically designed
for data that have no dynamics. Dynamical data, meaning data with a time ordering, is a
unique problem with different goals than generic dimensionality reduction. Whereas the
goal of generic dimensionality reduction is typically to minimize the reconstruction error,
such a representation may not contain dynamically interesting information.

DMDC Algorithm
Diffusion-Mapped Delay Coordinates (DMDC) is a new data-driven algorithm for time
series analysis based on a novel theory of attractor reconstruction. The approach of
DMDC can be broken down into two steps, reconstruction and reduction. In the re-
construction step, we show that the classical technique of time-delay embeddings, with
appropriate weights, effectively approximates the Lyapunov metric in the most stable
Lyapunov direction. Our reconstruction technique necessitates embedding into a high
dimensional ambient space, given by the delay coordinates. Thus a second step, reduc-
tion, is required to achieve a manageable embedding. However, the reduction step must
be carefully designed to preserve the structure reconstructed via the delay coordinates.

Original Video Frames

SVD Reconstruction

Time-delay Reconstruction

In the example above we show how time-delays help capture the important dynamical
information from a noisy video of a black pixel moving in a circle. Below we illustrate
the shortcomings of SVD with a video which combines large variance stripes with a
low variance defect. While the SVD always picks out the high variance stripes, DMDC
separates these features based on time-scale. On the left is a frame from the video,
the plots compare SVD (green) with DMDC (blue) when the stripes are moving slower
(middle) and when the defect is moving slower (right).
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The theory of time-delay coordinates as introduced by Takens [3] shows that by ap-
pending delayed values of a generic observation of a dynamical system, one achieves
a diffeomorphic copy of the attractor in some Euclidean space. The fact that the em-
bedding is given by a diffeomorphism of the attractor shows that the time-delay em-
bedding is topology-preserving, however crucially it introduces a new geometry to the
data set. Assume a multivariate observation of dimension r, given by a smooth non-
linear h ∈ C∞(M,Rr). For κ, τ > 0 define the κ-weighted delay coordinate map
H :M→ Rr(s+1) by

H(x) = [h(x), e−κh(F−τ (x)), e−2κh(F−2τ (x)), . . . , e−sκh(F−sτ (x))]T .

Reconstruction of Attractor Geometry
LetM be an n-dimensional smooth compact Riemannian manifold which is the attractor
of a system denoted ẋ = f (x), with invariant measure µ for the induced flow Ft. To
accommodate discrete observations of the dynamics we will consider the flow Fτ for a
fixed time step τ > 0. According to Oseledets [4], there exist real numbers σ1 < . . . < σk,
with k ≤ n, such that for µ-almost every x there is a splitting TxM =

⊕k
i=1Ei(x), where

dimEi = di, and where d1 + . . . + dk = n. For ε > 0, the ε-Lyapunov metric 〈u, v〉ε is
defined by

〈ui, vi〉ε =
∑
j∈Z

e−2(σij+ε|j|)〈DFjτ (x)ui, DFjτ (x)vi〉TxM

for ui, vi ∈ Ei(x). The Lyapunov metric is intrinsic to the dynamics because, when
measured in the Lyapunov metric, the dynamics satisfy uniform bounds and moreover
all the Lyapunov spaces are orthogonal.

Theorem: LetM be a compact manifold, u, v ∈ TxM and let û = DH(u) and v̂ = DH(v)
be the images under the time-delay embeddingH given above. Let ui = πi(u) be the projection
onto the ith Oseledets space, and assume u1 and v1 are nonzero. Let 0 < κ < −σ1. Then for a
prevalent choice of h and for all i 6= 1,

lim
s→∞

〈ûi, v̂i〉
||û|| ||v̂||

= 0 and lim
s→∞

〈û, v̂〉 − 〈û1, v̂1〉
||û|| ||v̂||

= 0.

In the example below we illustrate the effect on the geometry of the torus by time-delay
embedding via Arnold’s cat map, a discrete time map on the torus S1 × S1 given by

aj+1 = 2aj + bj mod 1 and bj+1 = aj + bj mod 1.

We choose a point (a0, b0) ∈ [0, 1]2 randomly and apply the cat map for N iterations,
producing the points {(aj, bj)}Nj=0. To test Theorem , we then embed the torus into R3

and observe the dynamics via the weighted delay coordinates given above.

Fig. 4. The top row shows the first nontrivial eigenfunctions of the Laplace-Beltrami operator
in the (a, b)-plane, calculated from DMDC, for a time-delay embedding of the cat map with s = 2048
delays and � = 1.2, 0.8, 0.4, 0.01 from left to right. When � = 1, Theorem 2.1 does not apply, and
the projection to the stable direction fails. When 0 < � < �⇥1 ⇥ 0.962, the projection reconstructs
the stable Oseledets direction. The bottom row shows DMDC applied to the time series in reverse
order for the same values of �. The entire range of � ⇤ [.01, 1.2] for the top and bottom rows is
visualized in the videos fig4vida.mov and fig4vidb.mov, respectively

3. Di�usion maps for delay coordinates. In the previous section we found
that an appropriately-weighted time-delay embedding can reconstruct the intrinsic
geometry of a smooth attractor from a generic observable. In cases where the observ-
able is high-dimensional, such as a video, we will want to pair the delay embedding
with a dimensionality reduction technique that preserves the geometry as faithfully as
possible. In this section we show that a nonlinear technique known as a di�usion map
will give, in a specific sense, the best preservation of the delay geometry. Moreover, we
will show that the di�usion map has a natural dynamical interpretation when applied
to time series.

For a finite set of points on a manifold embedded in a high-dimensional Euclidean
space, a di�usion map is a nonlinear map to a lower-dimensional space. In rough anal-
ogy to the principal components from a singular value decomposition, the components
of a di�usion map [8, 9] are eigenvectors of a transition matrix for a random walk on
the data set. Under appropriate normalizations, the transition matrix is a discrete
approximation to the Laplace-Beltrami operator [19], which is by definition the di-
vergence of the gradient on the manifold inherited from the embedding. Thus the
components of the di�usion map will be approximations to eigenfunctions of this op-
erator, and we will see that the di�usion map minimizes an energy functional that
measures the distortion of the manifold’s geometry.

We have seen that a time-delay embedding introduces a natural geometry on a dy-
namical system and we wish to preserve this geometry in the new (lower-dimensional)
coordinates. Unfortunately, the sampling density in the embedding space also influ-
ences the geometry. The power of the di�usion maps technique is the ability to control
the influence of the sampling density on the geometry in the new coordinates. We will
see that for a certain normalization a di�usion map can match the invariant measure
of a dynamical system.

In general there are many techniques for dimensionality reduction (see [20] for an
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In the above images we show the first nontrivial eigenfunction of the Laplace-Beltrami
operator in the (a, b)-plane, with s = 2048 delays and κ = 1.2, 0.8, 0.4, 0.01 from left to right.

Reduction via Diffusion Map
The weighted time-delay embedding introduces a natural geometry on a dynamical sys-
tem and we wish to preserve this geometry while finding lower-dimensional coordinates.
Diffusion Maps is a data-driven technique for dimensionality reduction which preserves
geometric features. The components of the diffusion map approximate the eigenfunc-
tions of the Laplace-Beltrami operator, and thus give a nonlinear map Ψα,t : Ω → RL
which, at the data point xi, is given by

Ψα,t(xi) = [λt1ψ1(xi), ..., λ
t
LψL(xi)]

T

In [1] we show that for a time series:

• A diffusion map can match the invariant measure.
• The diffusion map minimizes the distortion of the attractor geometry.
• The coordinates of the diffusion map have a natural time-series interpretation.
• The eigenvalue of a diffusion map coordinate determines the time-scale.
• The α and t parameters control the measure and scale of the map respectively.
• In the limit of large data and t→ 0 the geometry is recovered.

Time-Scale Separation
Since diffusion maps can only approximate operators L, which are Laplacians up to
a conformal transformation, we now assume that we can write the full evolution as a
non-autonomous perturbation of L so that

∂ϕ

∂t
= −L(ϕ) + F(x, t).

In this case we show in [1] that the l-th diffusion map mode satisfies

ψ̂l(t) = ae−γlt + b

∫ t

0
e−γl(t−s)F̂(s)ds.

Thus, the eigenvalue γl will determine the amount of history from the non-autonomous
term F̂ is integrated into the mode ψ̂l. Thus, for F̂ sufficiently regular the time scale of
ψ̂l will be determined by γl.

In the above example we show the reconstruction of dynamics on a torus from noisy
observations using various values of κ. All plots show the x, y-plane dynamics in blue.
The noisy observations are shown in red in the leftmost plot. In the middle and right plot,
the reconstructed dynamics for κ = 1, 0.02 are shown in red and the projection onto the
slow manifold is shown in green.

In the above example we apply DMDC to video of a meandering spiral wave generated
by the Barkley model,

ut = ∆u +
1

ρ
u(1− u)

(
u− v + b

a

)
vt = u− v

In the top row we show frames from the video. In the middle row we show the spatial
modes generated by applying SVD to the weighted attractor reconstruction. In the last
row we show the spatial modes generated by DMDC. In [1] we show that DMDC isolates
a long period oscillation in the meandering that the SVD analysis ignores.
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