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Determining Network Connections
To determine if neuron A influences neuron B we consider a randomly chosen
spike of B and find the distribution of time-to-previous-A and time-to-next-A.
These distributions are compared with the Kolmogorov-Smirnov test, which de-
termines whether the distributions are different at a given confidence level.

We applied our method to the Izhikevich model and attempted to determine the
S matrix. Above left we see a receiver operating characteristic (ROC) curve. The
area under the ROC curve is a measure of the accuracy of our method, this is
plotted as a function of simulation time in minutes above right.

In Vitro Electrical Stimulation
In an attempt to see if we could change the dynamics of a neural network, we
implemented a period of electrical stimulation and examined the connections
pre-stimulation and post-stimulation via the Kolmogrov-Smirnov test to see if
there was a difference in predicted connections. The pre-stimulation period was
broken into two periods of approximately equivalent spike counts so that we
could take note of the network’s state. This was not done post-stimulation due to
the restricted amount of data.

Determining Network Information Capacity
Following [3] we used Support Vector Machines (SVM) with Radial Basis Func-
tions to identify an input signal using only the network output. The input sig-
nals were randomly chosen binary patterns of a fixed length and were input

into a single neuron. After training the
SVM we attempt to classify a sequence of
input signals. The resulting sequence of
classified signals is considered to be a mes-
sage received through a noisy channel. To
quantify the capacity of the network we plot
the amount of information preserved by the
network versus the signal length.

Inducing Network Synchrony
We wanted to investigate network synchronization with an eventual goal of be-
ing able to desynchronize a synchronized network. Some literature suggests si-
nusoidal stimulation at certain frequencies can induce network synchronization.
We examine this through the Izhikevich model.

In order to determine quantitatively whether or not there was synchrony in the
network, we utilized the Hilbert transform to determine ρ where ρ is a measure
of network synchrony. 0 ≤ ρ ≤ 1 where ρ = 0 indicates no synchrony and ρ = 1
indicates a high level of synchrony.

Future Plans
We would like to continue our investigation of network dynamics in model as
well as in vitro. Once we have a broader understanding of these network dynam-
ics, we would like to explore aspects of pattern steering in neural networks.

References
[1] Eugene M. Izhikevich. “Polychronization: Computation With Spikes.” Neural Computation (2006) 18:245-282.

[2] S. Feldt, et al. “Functional clustering algorithm for the analysis of dynamic network data.” PHYSICAL REVIEW

E (2009) 79, 056104.

[3] Einat Kermany, et al. “Tradeoffs and Constraints on Neural Representation in Networks of Cortical Neurons.”

The Journal of Neuroscience, 14 July 2010, 30(28): 9588-9596.

Introduction
We have developed new methods for identifying dynamics and quantifying com-
plexity in biological neural networks. By combining these methods with on-
line stimulation we hope to study network behavior on different spatiotemporal
scales. We are currently validating our methods on a computation model.

Microelectrode Array (MEA)
Our study of in vitro neural networks is done on microelectrode arrays (MEAs),
cultured with either rat cortical or spinal cord neurons. MEAs consist of elec-
trodes which are able to record the spiking behavior of nearby plated neurons
by measuring or stimulating voltage in the extracellular environment that occurs
when a neuron spikes.

Mathematical Model
To validate our analysis on a known system we implemented the Izhikevich
model [1]. The Izhikevich model combines computational efficiency with the
ability to reproduce biologically accurate behavior. Each neuron is modeled as a
two dimensional ODE (vi, ui) which exhibits spiking.
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The n neurons are connected by an n x n matrix S which represents connectivity
strengths. The network is made stochastic by the term ωi which represents a
Gaussian random process. We have added β as an optional bursting effect.

Stochastic Network Bursting
Real neural networks can exhibit stochastic bursting, which presents a challenge
to statistical techniques that use correlations to determine network connections.
To replicate this we added the β term to the Izhikevich model (see above) where
φ is a compactly supported burst shape and αk and τk are random. Below we
compare bursts in a real network (left) and in our model (right).


