
Learning Deep Architectures
for AI

- Yoshua Bengio

Part I
- Vijay Chakilam

Chapter 0: Preliminaries

Neural Network Models
�  The basic idea behind the neural network approach

is to model the response as a nonlinear function of
various linear combinations of the predictors

hidden units

output units

input units

Types of Neurons

�  Linear

�  Binary threshold

�  Rectified Linear

�  Sigmoid

Perceptron
�  One of the earliest

algorithms for linear
classification
(Rosenblatt, 1958)

�  Based on finding a
separating hyperplane of
the data

Perceptron Architecture
�  Manually engineer features; mostly based on

common sense and hand-written programs.

�  Learn how to weight each of the features to get a
single scalar quantity.

�  If this quantity is above some threshold, decide
that the input vector is a positive example of the
target class.

Perceptron Algorithm
�  Add an extra component with value 1 to each input vector. The
“bias” weight on this component is minus the threshold. Now we
can have the threshold set to zero.

�  Pick training cases using any policy that ensures that every
training case will keep getting picked.
�  If the output unit is correct, leave its weights alone.
�  If the output unit incorrectly outputs a negative class, add the

input vector to the weight vector.
�  If the output unit incorrectly outputs a positive class, subtract

the input vector from the weight vector.

�  This is guaranteed to find a set of weights that gets the right
answer for all the training cases if any such set exists.

Perceptron Updates

wnew = wold + x

Perceptron Updates

wnew = wold − x

Perceptron Convergence
�  Theorem (Block, 1962, and Novikoff, 1962).

�  Let a sequence of examples

 be given. Suppose that for all , and further
 that there exists a unit-length vector such
 that for all examples in the sequence.

 Then the total number of mistakes that the algorithm
 makes on this sequence is at most

(x(1), y(1)), (x(2), y(2)),....(x(m), y(m))
|| x(i) || ≤ D i

u (|| u ||2=1)
y(i).(uT x(i)) ≥ γ

D γ()2

Chapter 1: Deep Architectures

Limitations of Perceptron

�  There is no value for W and
b such that the model
results in right target for
every example

 x1

 x2

 y

W, b

0,1

0,0 1,0

1,1

weight plane output =1 output =0

A graphical view of the XOR problem

Learning representations

0,0 1,0

2,1

x2

x1 u1

u2 h2

h1

y

W, b φ
V, c

W =
11
11
⎡

⎣
⎢

⎤

⎦
⎥, b =

0
−1
⎡

⎣
⎢

⎤

⎦
⎥, V =

1
−2
⎡

⎣
⎢

⎤

⎦
⎥ and c = 0

�  Theorem: A neural network with one hidden layer
can approximate any continuous function.

�  More formally, given a continuous function
where is a compact subset of ,

 such that

f :Cn ! Rm

Cn Rn

∀ε, ∃ fNN
ε : x→ Viφ(WT

i
i=1

K

∑ + bi)+ c

∀x ∈Cn, f (x)− f εNN (x) < ε

Universal Approximation

Universal Approximation
�  Cybenko 1989; Hornik et al., 1989 proved the

universal approximation properties for networks
with squashing activation function such as logistic
sigmoid.

�  Leshno et al., 1993 proved the UA properties for
Rectified Linear Unit activation functions.

Deep vs Shallow
�  Pascanu et al. (2013) compared deep rectifier

networks with their shallow counterparts.
�  For a deep model with inputs and hidden layers

of width , the maximal number of response regions
per parameter behaves as

�  For a shallow model with inputs and hidden
units, the maximal number of response regions per
parameter behaves as

n0 k
n

Ω
n
n0

⎢

⎣
⎢

⎥

⎦
⎥

k−1
nn0−2

k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

O kn0−1nn0−1()

n0 nk

Deep vs Shallow
�  Pascanu et al. (2013) showed that the deep model

can generate exponentially more regions per
parameter in terms of the number of hidden
layers, and at least order polynomially more
regions per parameter in terms of layer width n.

�  Montufar et al. (2014) came up with significantly
improved lower bound on the maximal linear
regions.

Chapter 2: Feed-forward Neural
Networks

Feed-forward neural networks
�  These are the commonest type of

neural network in practical
applications.

�  The first layer is the input and the
last layer is the output.

�  If there is more than one hidden
layer, we call them “deep” neural
networks.

�  They compute a series of
transformations that change the
similarities between cases.

�  The activities of the neurons in each
layer are a non-linear function of
the activities in the layer below.

hidden units

output units

input units

Backpropagation

�  First convert the discrepancy
between each output and its
target value into an error
derivative.

�  Then compute error derivatives in
each hidden layer from error
derivatives in the layer above.

�  Then use error derivatives w.r.t.
activities to get error derivatives
w.r.t. the incoming weights.

E = 1
2

(t j
j∈output
∑ − yj)

2

∂E
∂yj

= −(t j − yj)

∂E
∂yj

∂E
∂yi

Backpropagation

∂E
∂z j

=
dyj
dz j

∂E
∂yj

= yj (1− yj)
∂E
∂yj

yj
j

yi
i

z j

∂E
∂yi

=
dzj
dyi

∂E
∂z jj

∑ = wij
∂E
∂z jj

∑

∂E
∂wij

=
∂z j
∂wij

∂E
∂z j

= yi
∂E
∂z j

E = 1
2

(t j
j∈output
∑ − yj)

2

∂E
∂yj

= −(t j − yj)

References
�  Yoshua Bengio, Learning deep architecures for AI:

http://www.iro.umontreal.ca/~bengioy/papers/
ftml_book.pdf

�  Geoff Hinton, Neural networks for machine learning:
https://www.coursera.org/learn/neural-networks

�  Goodfellow et al., Deep Learning:
http://www.deeplearningbook.org/

�  Montufar et al., On the number of linear regions of
Deep Networks:
https://arxiv.org/pdf/1402.1869.pdf

References
�  Pascanu et al., On the number of response regions of

deep feed forward neural networks with piece-wise
linear activations:
https://arxiv.org/pdf/1312.6098.pdf

�  Perceptron weight update graphics:
https://www.cs.utah.edu/~piyush/teaching/8-9-
print.pdf

�  Proof of Theorem (Block, 1962, and Novikoff,
1962).
http://cs229.stanford.edu/notes/cs229-notes6.pdf

