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Chapter 0: Preliminaries 



Neural Network Models 
�  The basic idea behind the neural network approach 

is to model the response as a nonlinear function of  
various linear combinations of  the predictors 

hidden units 

output units 

input units 



Types of  Neurons 

�  Linear 

�  Binary threshold 

�  Rectified Linear 

�  Sigmoid 



Perceptron 
�  One of  the earliest 

algorithms for linear 
classification 
(Rosenblatt,  1958) 

�  Based on finding a 
separating hyperplane of  
the data 



Perceptron Architecture                                     
�  Manually engineer features; mostly based on 

common sense and hand-written programs. 

�  Learn how to weight each of  the features to get a 
single scalar quantity. 

�  If  this quantity is above some threshold, decide 
that the input vector is a positive example of  the 
target class. 



Perceptron Algorithm 
�  Add an extra component with value 1 to each input vector. The 
“bias” weight on this component is minus the threshold. Now we 
can have the threshold set to zero. 

�  Pick training cases using any policy that ensures that every 
training case will keep getting picked. 
�  If  the output unit is correct, leave its weights alone. 
�  If  the output unit incorrectly outputs a negative class, add the 

input vector to the weight vector. 
�  If  the output unit incorrectly outputs a positive class, subtract 

the input vector from the weight  vector. 

�  This is guaranteed to find a set of  weights that gets the right 
answer for all the training cases if  any such set exists. 



Perceptron Updates 

wnew  = wold + x 



Perceptron Updates 

wnew  = wold − x 



Perceptron Convergence 
�  Theorem (Block, 1962, and Novikoff, 1962). 

�  Let a sequence of  examples  

    be given. Suppose that              for all  , and further 
    that there exists a unit-length vector                   such 
    that                       for all examples in the sequence. 

    Then the total number of  mistakes that the algorithm  
    makes on this sequence is at most  

(x(1), y(1) ), (x(2), y(2) ),....(x(m), y(m) )
|| x(i) ||  ≤ D i

u (|| u ||2=1)
y(i).(uT x(i) ) ≥  γ

D γ( )2
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Limitations of  Perceptron 

�  There is no value for W and 
b such that the model 
results in right target for 
every example 
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A graphical view of  the XOR problem 



Learning representations 
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�  Theorem: A neural network with one hidden layer 
can approximate any continuous function. 

�  More formally, given a continuous function        
where     is a compact subset of      , 

    such that 

 

     

f :Cn ! Rm

Cn Rn

∀ε,  ∃ fNN
ε : x→ Viφ(WT

i
i=1

K

∑ + bi )+ c

∀x ∈Cn,  f (x)− f εNN (x) < ε

Universal Approximation 



Universal Approximation 
�  Cybenko 1989; Hornik et al., 1989 proved the 

universal approximation properties for networks 
with squashing activation function such as logistic 
sigmoid. 

�  Leshno et al., 1993 proved the UA properties for 
Rectified Linear Unit activation functions. 



Deep vs Shallow 
�  Pascanu et al. (2013) compared deep rectifier 

networks with their shallow counterparts. 
�  For a deep model with      inputs and    hidden layers 

of  width   , the maximal number of  response regions 
per parameter behaves as 

�  For a shallow model with     inputs and     hidden 
units, the maximal number of  response regions per 
parameter behaves as 
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Deep vs Shallow 
�  Pascanu et al. (2013) showed that the deep model 

can generate exponentially more regions per 
parameter in terms of  the number of  hidden 
layers, and at least order polynomially more 
regions per parameter in terms of  layer width n. 

�  Montufar et al. (2014) came up with significantly 
improved lower bound on the maximal linear 
regions. 



Chapter 2: Feed-forward Neural 
Networks 



Feed-forward neural networks 
�  These are the commonest type of  

neural network in practical 
applications. 

�  The first layer is the input and the 
last layer is the output. 

�  If  there is more than one hidden 
layer, we call them “deep” neural 
networks.  

�  They compute a series of  
transformations that change the 
similarities between cases. 

�  The activities of  the neurons in each 
layer are a non-linear function of  
the activities in the layer below. 

 

hidden units 

output units 

input units 



Backpropagation 

�  First convert the discrepancy 
between each output and its 
target value into an error 
derivative. 

�  Then compute error derivatives in 
each hidden layer from error 
derivatives in the layer above. 

�  Then use error derivatives w.r.t. 
activities to get error derivatives 
w.r.t. the incoming weights. 
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Backpropagation 
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