Reinforcement Learning

Intfroduction
- Vijay Chakilam

Multi-Armed Bandits

A learning problem where one is faced repeatedly
with a choice among k different options or actions.

« Each choice results in a random numerical reward
that depends on the optfion/action chosen.

* The objective is to maximize the expected total
reward over some fime period.

« Examples:

o Digital Advertising
o Personalization - A/B Testing

Multi-Armed Bandits

The original form of k-armed
bandit problem is named by
analogy to a slot machine.

Rewards are the payoffs for
hitting the jackpot.

Win rate of levers is unknown.

Discover best bandit by
playing and collecting data.

ﬁt‘“s - w’ﬂls,

Balance explore (collecting
data) + exploit (playing best-
so-far lever)

Action-Value Methods

* Value of an action is the expected or mean reward
given that that action is selected.

g«(a) = E[R; | At=aq]

« Sample average method:

o A natural way to estimate the true value of an action is the mean reward
when that action is selected.

sum of rewards when a taken prior to¢ Zz;i R;-1p,—0

Qi(a) =

number of times a taken prior to ¢ Zf;% 14,=a

Exploit vs. Explore: Action selection rules

« Exploifing:
o At any fime step, always select the action whose estimated value is
greatest.

o Greedy actions.

Ay = argmax Q¢(a).

a

« Exploring:
o Instead, select one of the other actions, to improve the estimates of the
non-greedy actions.

Exploit vs. Explore: Action selection rules

« Epsilon greedy rule:
o Choose asmall number as a probability of exploration
o Pseudo code:
p =random()
if p < epsilon:
pull random arm
else:
pull current-best arm

« Eventually, we'll discover which arm is the true best,
since this allows us to update every arm’s estimate.

10-armed testbed

3
2
(I*(3)
1
Reward =~ S0l |)
distribution
(I*(2)
-1
2
-3

Exploit vs. Explore: Action selection rules

15 _
B 0 (greedy)
£ = ree
Average greedy
reward
0.5
0 1 | | 1
0 250 500 750 1000
Steps

100% _

80% | o e

e=0.1 h
o, 60% _|
@ ° =001
Optimal
action 40% |
€ =0 (greedy)
20%
0% I 1 I I 1
0 250 500 750 1000

Steps

Exploit vs. Explore: Action selection rules

« Opftimistic Initial Value:

« Suppose we know the true mean of each bandit is
<< 10.

» Pick a high ceiling as an estimate.

* |f a banditisn’t explored enough, its sample mean
will remain high, causing the algorithm to explore it
more.

« Even though the initial sample is very high, as the
bandit is explored, all collected data will cause the
estimate to go down.

« All means will eventually settle into their frue values.

Exploit vs. Explore: Action selection rules

100% -

80% —

% 60%
Optimal

action 40% -

20% —

optimistic, greedy
Ql - 5, E= 0

realistic, e-greedy
0,=0,€=0.1

0%

Exploit vs. Explore: Action selection rules

logt
Nt (CL)

« Upper Confidence Bound: A; = argmax |Q:(a) + ¢

« Similar to the opftimistic inifial value, be greedy w.r.i
the UCB estimate.

o If M(a) is small, the upper bound is high and if it is
large, the UCB is low.

 Since log t grows more slowly than Ni(a) , enough
samples would have been collected by the fime
the upper bounds eventually shrink.

« Converges to purely greedy.

Exploit vs. Explore: Action selection rules

15} UCB c=2

E-greedy € =0.1

Average
reward

05+

0 250 500 750 1000

Steps

Action-Value Methods: Incremental

Implementation

« Consider the estimate of an action’s value after itfs
i selection o, FrtRat ot R

n

n—1
« Manipulate o devise incremental formula:
Qn+1 = %ZRZ
=1

n—1
(Rn+ZRi>

= 1 n—1

=1
= T_L(Rn+(n_1)Qn)
1

= E(Rn'i'nQn_Qn)
= Qn+%|:Rn_Qn:|,

SHES

— 3=

Action-Value Methods: Nonstationary problem

« Exponential/Recency-weighted average method.

Qn—i—l

Qn + |:Rn — Qn]

aR, + (1 —a)Qn,

aR,+(1—a)[aRp-1+ (1 —a)Qn_1]

aR, + (1 —a)aR,—1+ (1 —0)*Qn_1

aR, + (1 —a)aR,_1+ (1 — a)?aR,_5 +
o+ (1—a)"taR + (1 —a)"Q

(1-a)"Q1+ > a(l—a)" " R;.
=1

Action-Value Methods: Convergence Criterion

Q will converge for Y @ =0 and) ai(e) <.
n=1 n=1

The first condition is required to guarantee that the
steps are large enough to eventually overcome any
Initial conditions or random fluctuations.

The second condition guarantees that eventually
the steps become small enough to assure
convergence.

Q doesn’'t converge for a constant step-size
parameter.

Reinforcement Learning

» Elements of a Reinforcement Learning problem

:[Agent1
)
state reward action

St Rt At

7

LA A

AN

Environment J¢

\.

Elements of a Reinforcement
Learning problem

« Agent interacts with Environment.

« State is a specific configuration of the environment
the agent is sensing (may not be the enftire
environment)

« Actions are what agents can do that affect its
state.

« Actions result in next states along with possible
rewards.

« Rewards tell how good the actions were.

Reinforcement Learning: Examples

 Tic-Tac-Toe

g N
s 2B
_, _\0 @)
g |
S
et f
n f
PY f

/

I
X xl IX
OolxIx — olx|x
o @) o »)
o :

\

I

I.

,/x

o x

“o| |o

0!lx

0!x

0|x x

o|x/0 0fx|x

0/ x|

‘H

00| x

O(*|0

Reinforcement Learning: Examples

« Recycle Robot

« At each time step, the robot decides whether it should

o actively search for a can,
o remain stationary and wait for someone to bring it a can, or
o go back to home base to recharge its battery.

« The agent makes its decisions solely as a function of the
energy level of the battery.

« The state space is the energy level of the battery = {high, low}

« A(high) = {search, wait}
« Aflow) = {search, wait, recharge}

Reinforcement Learning: Examples

Transition Probabilities Transition Graph
s s’ a p(s'|s,a) | r(s,a,s)
high high search o’ T'search
high low search 1l -« T'search
low high search 1-p -3
low low search B T'search
high high wait 1 Twait
high low wait 0 Twait
low high wait 0 Twait
low low wait 1 Twait
low high recharge |1 0 o T o Fos 1, Twait
low low recharge | 0 0.

Reinforcement Learning: Examples

« Cart Pole
* |Inverted Pendulum
« Unstable system

» Episode starts with pole
vertical, falls soon.

« Agent: move to keep
the pole within certain
angle.

« Continuous state

space.

Markov Property

« A state signal that succeeds in retaining all relevant
information is said to be Markowv.

« Consider how a general environment might
respond at fime t+1 to the action faken at tfime f:

PI'{St+1 — S,a Rt+1 =T I SO) AO) Rl) R St—la At—la Rta Sta At}

« |f the state signal has Markov property, the response
at t+1 depends only on the state and action
representations at time f:

p(s',r|s,a) = Pr{St+1 =8\ Ryy1=r1|8=5A = a}

Markov Property

From the conditional joint distribution of the state
and reward at time 1+1, other dynamics of the
system such as the expected rewards for state-
action pairs and the state transition probabilities
can be calculated as:

T(Sv CL) = lE[}zt+1 | StzsaAt:a'] — ZT Zp(s',ﬂs,a)

reR s'e8
p(s'|s,a) = Pr{Sey1=5"| St=s,At=a} = Zp(s',ﬂs, a)
reR

Y orexTp(s, 7|8, a)
p(s'[s,a)

r(s,a,8) =E|Ri11 | Si=s,A1=0a,Si41 = 5] =

Markov Decision Process

« A Markov Decision Process is defined by:
Set of all states

Set of all actions

Set of all rewards

State transition probabilities

Discount factor (gamma)

 The idea of a discount factor is to ‘discount’ the
value of a reward that is obtained in the future.

« The goalis to maximize total future reward and the
further in the future the reward is, the harder it is to
predict.

o O O O O

k
Y Rt k1.

NE

Gt = Riy1+YRiya + 7’ Rz + -+ =

>
I

0

Pohcy

« Policy is a mapping from from each state and
action to the probability of taking an action in @
state.

« Policy is what defines what actions to do in what
states.

« Technically, not part of the MDP itself, but along
with the value function, forms the solution to the
problem.

« Examples:

o Epsilon greedy
o UCB

Value Functions

Two possible states
fromA:BorC

50% chance of ending
up Iin either.

Value of state A:
o V(A)=0.5*1+0.5*0=0.5

Value Functions

Only one possible state
from A: B

 Value of state A:
o V(A)=1.0*1=1.0 1.0

 Values tells us the future

goodness of a state.

Value Functions
 The value of a state under a policy is defined as:

(0. @)
k
> Y Rikn
k=0

vr(s) = EfGy | Si=s] =E, Si=s

 This is called the state-value function.

« Similarly, we define action-value function as the
value of taking an action in a state under a policy.

(0. @)
k
> Y Ripk
k=0

Gr(8,a) = Eq]Gy | Sp=s,As = a] = Eg Si=s,Ar=a

Bellman Equation

* A fundamental property of value functions is that
they satisty certain recursive relationships.

St=8]

o0
= Ex|Riy1+7y Z YRy i ky2
i k=0

=) m(als))) »(s',r]s,a)

a s’ r

vr(s) =]E'ir[_Gt | St=s]

o0

= E, Z’Yth+k+1
| k=0

St:8]

T+ YEx

o0
k
Z V" Ry k42
k=0

= Zw(a|s)2p(s’,r|s,a) [T—l-’va(é")], Vs €3

a s',r

Si41= 8']]

Optimal policy; Optimal Value
* Value functions define a partial ordering over
policies.

* There is always at least one policy that is befter than
or equal to all other policies.

V4(8) = max vr(8)
q*(s, CI,) = m?X %r(sa a’)'

 We can also write the optimal action-value function
In ferms of the optimal state-value function as:

q+(s,a) = E[Re11 + y0i(St41) | Se=s, Ar=a]

V(s) vs. Q(s, a)

* Finding values given a fixed policy is called
predicfion problem.

* Finding the optimal policy is called as a control
problem.

 The action-value function is better suited for the
control problem, since it tells us what the best
action is given a state.

« The state-value function requires to perform all the
actions to determine the best action.

Solving the MDPs

» Solving the prediction problem
o Evaluating the values under a given policy

« Solving the control problem
while not converged:
evaluate values under current policy
improve policy by taking argmax over the action-values

Some methods:

Dynamic Programming
Monte Carlo methods
Temporal Difference methods
Approximation methods

O O O O

Dynamic Programming

« We need o loop through all the states on every
iferation.

« Impractical for large and infinite state space
problems.

« Calculating the joint distribution of future state and
rewards could become infeasible.

 Doesn't learn from experience.

Monte Carlo Methods

« Unlike Dynamic Programming, Monte Carlo
methods learn from experience.

« Expected values can be approximated by sample
means. N

V() =E[Gt) | S(t)=5]1= L ¥ G,,

i=1
 Requires many episodes of experience.
« MC methods can leave many states unexplored.

Temporal Difference Methods

« Estimate returns based on the current value
function.

* |nstead of calculating the sample mean, TD uses
the current reward and the next state value.

« Enables online learning.

Approximation Methods

« DP, MC and TD methods are studied in the context
of tabular methods.

 The value functions are stored as dictionaries.
« Can’t scale to large and infinite state spaces.

« Use function approximation methods to
approximate the values functions instead.

Summary

* Three most important distinguishing characteristics

of Reinforcement Learning:

o Being closed-loop (system’s actions influence its later inputs)
o Not having direct instructions as to what action to take
o The consequences of actions play out over extended time periods.

* A very important challenge that arise in
reinforcement learning and not in other kinds of

learning is the trade off between exploration and
exploitation.

References

 Richard Sutton and Andrew Barto, Reinforcement

Learning: An Introduction
http://incompleteideas.net/sutton/book/the-book-2nd.hitml

Andrew Barto, Reinforcement Learning and ifs

relationship with Supervised Learning
http://www-anw.cs.umass.edu/pubs/2004/barto d 04.pdf

Andrej Karpathy, Deep Reinforcement Learning
http://karpathy.github.io/2016/05/31/rl/

Deep Learning Courses
https://deeplearningcourses.com/

