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Multi-Armed Bandits	

•  A learning problem where one is faced repeatedly 
with a choice among k different options or actions. 

•  Each choice results in a random numerical reward 
that depends on the option/action chosen. 

•  The objective is to maximize the expected total 
reward over some time period. 

•  Examples: 
o  Digital Advertising 
o  Personalization - A/B Testing 



Multi-Armed Bandits	
•  The original form of k-armed 

bandit problem is named by 
analogy to a slot machine. 

•  Rewards are the payoffs for 
hitting the jackpot. 

•  Win rate of levers is unknown.  

•  Discover best bandit by 
playing and collecting data. 

•  Balance explore (collecting 
data) + exploit (playing best-
so-far lever) 



Action-Value Methods	

•  Value of an action is the expected or mean reward 
given that that action is selected. 

•  Sample average method: 
o  A natural way to estimate the true value of an action is the mean reward 

when that action is selected. 



Exploit vs. Explore: Action selection rules	

•  Exploiting: 
o  At any time step, always select the action whose estimated value is 

greatest. 
o  Greedy actions. 

 

•  Exploring:  
o  Instead, select one of the other actions, to improve the estimates of the 

non-greedy actions. 



Exploit vs. Explore: Action selection rules	

•  Epsilon greedy rule: 
o  Choose a small number as a probability of exploration 
o  Pseudo code: 

p = random() 
if p < epsilon: 

pull random arm 
else: 

pull current-best arm 

•  Eventually, we’ll discover which arm is the true best, 
since this allows us to update every arm’s estimate. 



10-armed testbed	



Exploit vs. Explore: Action selection rules	



Exploit vs. Explore: Action selection rules	
•  Optimistic Initial Value: 
•  Suppose we know the true mean of each bandit is 

<< 10. 
•  Pick a high ceiling as an estimate. 
•  If a bandit isn’t explored enough, its sample mean 

will remain high, causing the algorithm to explore it 
more. 

•  Even though the initial sample is very high, as the 
bandit is explored, all collected data will cause the 
estimate to go down. 

•  All means will eventually settle into their true values. 



Exploit vs. Explore: Action selection rules	



Exploit vs. Explore: Action selection rules	
•  Upper Confidence Bound: 

•  Similar to the optimistic initial value, be greedy w.r.t 
the UCB estimate. 

•  If          is small, the upper bound is high and if it is 
large, the UCB is low.  

•  Since log t grows more slowly than         , enough 
samples would have been collected by the time 
the upper bounds eventually shrink. 

•  Converges to purely greedy. 



Exploit vs. Explore: Action selection rules	



Action-Value Methods: Incremental 

Implementation	
•  Consider the estimate of an action’s value after its 

ith selection 

•  Manipulate to devise incremental formula: 



Action-Value Methods: Nonstationary problem	
•  Exponential/Recency-weighted average method. 



Action-Value Methods: Convergence Criterion	
•  Q will converge for                       and 

•  The first condition is required to guarantee that the 
steps are large enough to eventually overcome any 
initial conditions or random fluctuations. 

•  The second condition guarantees that eventually 
the steps become small enough to assure 
convergence. 

•  Q doesn’t converge for a constant step-size 
parameter. 



Reinforcement Learning	

•  Elements of a Reinforcement Learning problem 



Elements of a Reinforcement 
Learning problem	

•  Agent interacts with Environment. 
•  State is a specific configuration of the environment 

the agent is sensing (may not be the entire 
environment) 

•  Actions are what agents can do that affect its 
state. 

•  Actions result in next states along with possible 
rewards. 

•  Rewards tell how good the actions were. 



Reinforcement Learning: Examples	
•  Tic-Tac-Toe 



Reinforcement Learning: Examples	
•  Recycle Robot 

•  At each time step, the robot decides whether it should  
o  actively search for a can, 
o  remain stationary and wait for someone to bring it a can, or  
o  go back to home base to recharge its battery. 

•  The agent makes its decisions solely as a function of the 
energy level of the battery. 

•  The state space is the energy level of the battery = {high, low} 

•  A(high) = {search, wait} 
•  A(low) = {search, wait, recharge} 



Reinforcement Learning: Examples	
Transition Probabilities Transition Graph 



Reinforcement Learning: Examples	

•  Cart Pole 
•  Inverted Pendulum 
•  Unstable system 
•  Episode starts with pole 

vertical, falls soon. 
•  Agent: move to keep 

the pole within certain 
angle. 

•  Continuous state 
space. 



Markov Property	
•  A state signal that succeeds in retaining all relevant 

information is said to be Markov. 
•  Consider how a general environment might 

respond at time t+1 to the action taken at time t: 

•  If the state signal has Markov property, the response 
at t+1 depends only on the state and action 
representations at time t: 



Markov Property	
•  From the conditional joint distribution of the state 

and reward at time t+1, other dynamics of the 
system such as the expected rewards for state-
action pairs and the state transition probabilities 
can be calculated as: 



Markov Decision Process	
•  A Markov Decision Process is defined by: 

o  Set of all states 
o  Set of all actions 
o  Set of all rewards 
o  State transition probabilities 
o  Discount factor (gamma) 

•  The idea of a discount factor is to ‘discount’ the 
value of a reward that is obtained in the future. 

•  The goal is to maximize total future reward and the 
further in the future the reward is, the harder it is to 
predict. 



Policy	
•  Policy is a mapping from from each state and 

action to the probability of taking an action in a 
state. 

•  Policy is what defines what actions to do in what 
states. 

•  Technically, not part of the MDP itself, but along 
with the value function, forms the solution to the 
problem. 

•  Examples: 
o  Epsilon greedy 
o  UCB 

 



Value Functions	

•  Two possible states 
from A: B or C 

•  50% chance of ending 
up in either. 

•  Value of state A: 
o  V(A) = 0.5*1+0.5*0 = 0.5 

A: ?	

B: 
+1	 C: 0	

0.5	 0.5	



Value Functions	

•  Only one possible state 
from A: B 

•  Value of state A: 
o  V(A) = 1.0*1 = 1.0 

•  Values tells us the future 
goodness of a state. 

A:	

B: 
+1	

1.0	



Value Functions	
•  The value of a state under a policy is defined as: 

•  This is called the state-value function. 
•  Similarly, we define action-value function as the 

value of taking an action in a state under a policy. 



Bellman Equation	
•  A fundamental property of value functions is that 

they satisfy certain recursive relationships. 



Optimal policy; Optimal Value	
•  Value functions define a partial ordering over 

policies. 
•  There is always at least one policy that is better than 

or equal to all other policies. 

•  We can also write the optimal action-value function 
in terms of the optimal state-value function as: 



V(s) vs. Q(s, a)	

•  Finding values given a fixed policy is called 
prediction problem. 

•  Finding the optimal policy is called as a control 
problem. 

•  The action-value function is better suited for the 
control problem, since it tells us what the best 
action is given a state. 

•  The state-value function requires to perform all the 
actions to determine the best action. 



Solving the MDPs	

•  Solving the prediction problem 
o  Evaluating the values under a given policy 

•  Solving the control problem 
while not converged: 

evaluate values under current policy 
improve policy by taking argmax over the action-values 

•  Some methods: 
o  Dynamic Programming 
o  Monte Carlo methods 
o  Temporal Difference methods 
o  Approximation methods 



Dynamic Programming	

•  We need to loop through all the states on every 
iteration. 

•  Impractical for large and infinite state space 
problems. 

•  Calculating the joint distribution of future state and 
rewards could become infeasible. 

•  Doesn’t learn from experience. 



Monte Carlo Methods	

•  Unlike Dynamic Programming, Monte Carlo 
methods learn from experience. 

•  Expected values can be approximated by sample 
means. 

•  Requires many episodes of experience.  
•  MC methods can leave many states unexplored. 



Temporal Difference Methods	

•  Estimate returns based on the current value 
function. 

•  Instead of calculating the sample mean, TD uses 
the current reward and the next state value. 

•  Enables online learning. 



Approximation Methods	

•  DP, MC and TD methods are studied in the context 
of tabular methods. 

•  The value functions are stored as dictionaries. 
•  Can’t scale to large and infinite state spaces. 
•  Use function approximation methods to 

approximate the values functions instead. 



Summary	

•  Three most important distinguishing characteristics 
of Reinforcement Learning: 
o  Being closed-loop (system’s actions influence its later inputs) 
o  Not having direct instructions as to what action to take 
o  The consequences of actions play out over extended time periods. 

•  A very important challenge that arise in 
reinforcement learning and not in other kinds of 
learning is the trade off between exploration and 
exploitation. 
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