
Reinforcement Learning	
Introduction

- Vijay Chakilam

Multi-Armed Bandits	

•  A learning problem where one is faced repeatedly
with a choice among k different options or actions.

•  Each choice results in a random numerical reward
that depends on the option/action chosen.

•  The objective is to maximize the expected total
reward over some time period.

•  Examples:
o  Digital Advertising
o  Personalization - A/B Testing

Multi-Armed Bandits	
•  The original form of k-armed

bandit problem is named by
analogy to a slot machine.

•  Rewards are the payoffs for
hitting the jackpot.

•  Win rate of levers is unknown.

•  Discover best bandit by
playing and collecting data.

•  Balance explore (collecting
data) + exploit (playing best-
so-far lever)

Action-Value Methods	

•  Value of an action is the expected or mean reward
given that that action is selected.

•  Sample average method:
o  A natural way to estimate the true value of an action is the mean reward

when that action is selected.

Exploit vs. Explore: Action selection rules	

•  Exploiting:
o  At any time step, always select the action whose estimated value is

greatest.
o  Greedy actions.

•  Exploring:
o  Instead, select one of the other actions, to improve the estimates of the

non-greedy actions.

Exploit vs. Explore: Action selection rules	

•  Epsilon greedy rule:
o  Choose a small number as a probability of exploration
o  Pseudo code:

p = random()
if p < epsilon:

pull random arm
else:

pull current-best arm

•  Eventually, we’ll discover which arm is the true best,
since this allows us to update every arm’s estimate.

10-armed testbed	

Exploit vs. Explore: Action selection rules	

Exploit vs. Explore: Action selection rules	
•  Optimistic Initial Value:
•  Suppose we know the true mean of each bandit is

<< 10.
•  Pick a high ceiling as an estimate.
•  If a bandit isn’t explored enough, its sample mean

will remain high, causing the algorithm to explore it
more.

•  Even though the initial sample is very high, as the
bandit is explored, all collected data will cause the
estimate to go down.

•  All means will eventually settle into their true values.

Exploit vs. Explore: Action selection rules	

Exploit vs. Explore: Action selection rules	
•  Upper Confidence Bound:

•  Similar to the optimistic initial value, be greedy w.r.t
the UCB estimate.

•  If is small, the upper bound is high and if it is
large, the UCB is low.

•  Since log t grows more slowly than , enough
samples would have been collected by the time
the upper bounds eventually shrink.

•  Converges to purely greedy.

Exploit vs. Explore: Action selection rules	

Action-Value Methods: Incremental

Implementation	
•  Consider the estimate of an action’s value after its

ith selection

•  Manipulate to devise incremental formula:

Action-Value Methods: Nonstationary problem	
•  Exponential/Recency-weighted average method.

Action-Value Methods: Convergence Criterion	
•  Q will converge for and

•  The first condition is required to guarantee that the
steps are large enough to eventually overcome any
initial conditions or random fluctuations.

•  The second condition guarantees that eventually
the steps become small enough to assure
convergence.

•  Q doesn’t converge for a constant step-size
parameter.

Reinforcement Learning	

•  Elements of a Reinforcement Learning problem

Elements of a Reinforcement
Learning problem	

•  Agent interacts with Environment.
•  State is a specific configuration of the environment

the agent is sensing (may not be the entire
environment)

•  Actions are what agents can do that affect its
state.

•  Actions result in next states along with possible
rewards.

•  Rewards tell how good the actions were.

Reinforcement Learning: Examples	
•  Tic-Tac-Toe

Reinforcement Learning: Examples	
•  Recycle Robot

•  At each time step, the robot decides whether it should
o  actively search for a can,
o  remain stationary and wait for someone to bring it a can, or
o  go back to home base to recharge its battery.

•  The agent makes its decisions solely as a function of the
energy level of the battery.

•  The state space is the energy level of the battery = {high, low}

•  A(high) = {search, wait}
•  A(low) = {search, wait, recharge}

Reinforcement Learning: Examples	
Transition Probabilities Transition Graph

Reinforcement Learning: Examples	

•  Cart Pole
•  Inverted Pendulum
•  Unstable system
•  Episode starts with pole

vertical, falls soon.
•  Agent: move to keep

the pole within certain
angle.

•  Continuous state
space.

Markov Property	
•  A state signal that succeeds in retaining all relevant

information is said to be Markov.
•  Consider how a general environment might

respond at time t+1 to the action taken at time t:

•  If the state signal has Markov property, the response
at t+1 depends only on the state and action
representations at time t:

Markov Property	
•  From the conditional joint distribution of the state

and reward at time t+1, other dynamics of the
system such as the expected rewards for state-
action pairs and the state transition probabilities
can be calculated as:

Markov Decision Process	
•  A Markov Decision Process is defined by:

o  Set of all states
o  Set of all actions
o  Set of all rewards
o  State transition probabilities
o  Discount factor (gamma)

•  The idea of a discount factor is to ‘discount’ the
value of a reward that is obtained in the future.

•  The goal is to maximize total future reward and the
further in the future the reward is, the harder it is to
predict.

Policy	
•  Policy is a mapping from from each state and

action to the probability of taking an action in a
state.

•  Policy is what defines what actions to do in what
states.

•  Technically, not part of the MDP itself, but along
with the value function, forms the solution to the
problem.

•  Examples:
o  Epsilon greedy
o  UCB

Value Functions	

•  Two possible states
from A: B or C

•  50% chance of ending
up in either.

•  Value of state A:
o  V(A) = 0.5*1+0.5*0 = 0.5

A: ?	

B:
+1	 C: 0	

0.5	 0.5	

Value Functions	

•  Only one possible state
from A: B

•  Value of state A:
o  V(A) = 1.0*1 = 1.0

•  Values tells us the future
goodness of a state.

A:	

B:
+1	

1.0	

Value Functions	
•  The value of a state under a policy is defined as:

•  This is called the state-value function.
•  Similarly, we define action-value function as the

value of taking an action in a state under a policy.

Bellman Equation	
•  A fundamental property of value functions is that

they satisfy certain recursive relationships.

Optimal policy; Optimal Value	
•  Value functions define a partial ordering over

policies.
•  There is always at least one policy that is better than

or equal to all other policies.

•  We can also write the optimal action-value function
in terms of the optimal state-value function as:

V(s) vs. Q(s, a)	

•  Finding values given a fixed policy is called
prediction problem.

•  Finding the optimal policy is called as a control
problem.

•  The action-value function is better suited for the
control problem, since it tells us what the best
action is given a state.

•  The state-value function requires to perform all the
actions to determine the best action.

Solving the MDPs	

•  Solving the prediction problem
o  Evaluating the values under a given policy

•  Solving the control problem
while not converged:

evaluate values under current policy
improve policy by taking argmax over the action-values

•  Some methods:
o  Dynamic Programming
o  Monte Carlo methods
o  Temporal Difference methods
o  Approximation methods

Dynamic Programming	

•  We need to loop through all the states on every
iteration.

•  Impractical for large and infinite state space
problems.

•  Calculating the joint distribution of future state and
rewards could become infeasible.

•  Doesn’t learn from experience.

Monte Carlo Methods	

•  Unlike Dynamic Programming, Monte Carlo
methods learn from experience.

•  Expected values can be approximated by sample
means.

•  Requires many episodes of experience.
•  MC methods can leave many states unexplored.

Temporal Difference Methods	

•  Estimate returns based on the current value
function.

•  Instead of calculating the sample mean, TD uses
the current reward and the next state value.

•  Enables online learning.

Approximation Methods	

•  DP, MC and TD methods are studied in the context
of tabular methods.

•  The value functions are stored as dictionaries.
•  Can’t scale to large and infinite state spaces.
•  Use function approximation methods to

approximate the values functions instead.

Summary	

•  Three most important distinguishing characteristics
of Reinforcement Learning:
o  Being closed-loop (system’s actions influence its later inputs)
o  Not having direct instructions as to what action to take
o  The consequences of actions play out over extended time periods.

•  A very important challenge that arise in
reinforcement learning and not in other kinds of
learning is the trade off between exploration and
exploitation.

References	
•  Richard Sutton and Andrew Barto, Reinforcement

Learning: An Introduction
http://incompleteideas.net/sutton/book/the-book-2nd.html

•  Andrew Barto, Reinforcement Learning and its
relationship with Supervised Learning

http://www-anw.cs.umass.edu/pubs/2004/barto_d_04.pdf

•  Andrej Karpathy, Deep Reinforcement Learning
http://karpathy.github.io/2016/05/31/rl/

•  Deep Learning Courses
https://deeplearningcourses.com/

