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Abstract

Considering the abundance of recent work in the fields of network the-

ory and neuroscience, it is no surprise that there has been extreme interest

in reconstructing the topology of neural networks. Previous methods have

investigated this problem experimentally with a focus on determining the

topology of a single given network. In this paper we take a mathemati-

cal approach, extending the augmented sparse reconstruction method for

protein networks to a system of neurons in an attempt to find a more

general technique [8]. This technique employs L1 minimization to recon-

struct a network from a set of noisy trajectories under a variety of initial

conditions. Our investigation focuses on the method’s performance on

an experimentally documented network of neurons in the rat hippocam-

pus [3]. Each neuron is approximated by the FitzHugh-Nagumo model.

When observing the neurons’ behavior over very short time intervals im-

mediately after initialization, the method is quite successful in its attempt

to recover the structure of the given network. In light of this result, we

then discuss the research that must still be done before this method can

truly reconstruct general neural networks.
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1 Method

1.1 Motivation

Say that a group of N neurons are connected in some way so that any given

neuron in the network is influenced by the behavior of other neurons. That is to

say, when a connection is formed from neuron ni to neuron nj , the membrane

potential of ni affects the potential of nj . If we examine the membrane poten-

tials of all neurons in the network over time, can we gain some insight into how

the neurons have been connected? This process is known as the reconstruction

of neural networks.

There are many clear applications of this goal to the health sciences, including

the study of neural diseases such as epilepsy and the repair of damaged neural

networks. It is possible that the field of biologically inspired computing could

benefit from a more exact mapping of the interactions within the nervous sys-

tem. The list of possible applications is long, and there is little doubt that this

reconstruction is an important task.

It is important to note that this work is part of a long lineage of attempts to

understand the interactions within a biological network by observing the be-

havior of the nodes of the network [11, 6, 4]. The paper that directly inspired

this work is a particularly successful attempt at mathematically reconstructing

the epidermal growth factor receptor (EGFR) driven signaling cascade, an im-

portant protein signaling network [8]. Most recent reconstruction attempts of

neural networks, while quite effective, have been more concerned with a rigorous

formalization of available experimental data [10, 3]. Experimental techniques,

while very effective for the study of a specific network, are not immediately

extensible to all networks. The long-term goal of a mathematical method would

be to simply feed in some trajectories to a program and receive an accurate

estimate of the topology of the network.
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1.2 Augmented Sparse Reconstruction

The primary mathematical method being utilized in this study is the augmented

sparse reconstruction method [8]. This method is designed to successfully re-

construct sparse networks from noisy data sets. Many biological networks have

been shown to be sparse, meaning, quite roughly, that they have a low number

of connections per node [1]. The augmented sparse reconstruction method aims

to reproduce the sparsest possible network from the given data by minimizing

the L1 norm of the coefficients vectors. This means that, for each neuron, we

seek an N -element vector a, where the the ith entry represents the possible in-

fluence of the ith neuron on the our chosen neuron, that has two key properties.

First, it should cause the neuron to act in a manner similar to the behavior

observed in the neuron’s trajectory. Second, it should have the smallest possi-

ble L1 norm, defined as |a| =
∑N

i=1 |ai|. While there are many works linking

sparsity and the 1-norm, such as [7], perhaps the quickest way to understand

this relationship is to notice how L1 minimization limits cancellations. For ex-

ample, if we know that
∑N

i=1 ai = 0, the 1-norm will be minimized when ai = 0

∀i. When applied to the entire network, this behavior will lead to the desired

sparsity of connections.

Although L1 minimization is effective for insisting sparsity, it is not able to deal

with the large errors-in-variables that occur when working with a high level of

measurement error, also known as noise. To handle this measurement error we

append a large number of random terms with relatively small coefficients. The

purpose of these random terms is to obscure the noise during the optimization

phase.

Consider the following example, adapted from [8]. There is a measurement

X̃i = Xi +M , where Xi represents the true value and M the noise. If the noise

level is approximately 10%, then we can let M = 0.1Xi. Then the noise ac-
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counts for 0.1
1+0.1 ≈ 11% of the L1 norm. However, if these terms are augmented

with G random terms wgng, where wg is small and G very large, then neither

M nor any of the added noise terms will make a large contribution to the L1

norm. This makes the true value far easier to recover.

1.3 Adapting Augmented Sparse Reconstruction

The primary challenge of this project has been transplanting the augmented

sparse reconstruction method from protein networks onto neural networks. The

first step of this adaptation was choosing an appropriate model for neuron be-

havior. We chose to work with the FitzHugh-Nagumo model, first described in

[5] and detailed extensively in [9]. In one common form of this model, similar

to the one found in [12], the neuron is characterized by its membrane potential

x, its recovery variable y, and the experimental current I in the following way:

ẋ =
1
ε

(x− x3

3
− y + I) (1)

ẏ = B(x+ C) (2)

This model is desirable for our work because it is one of the simplest yet most

effective models for neuron behavior. (In the future once could certainly study

the performance of our method on trajectories generated by other, more complex

models.) Regardless of the model, it is important to note that only the neuron’s

membrane potential can be experimentally determined; other variables, like the

y term in this case, remain hidden. Since we aim to eventually work with real

data sets, we would like to reconstruct the neural network from experimental

data. This means that, in our method, only the x variable in the FitzHugh-
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Nagumo model is considered.

After choosing the FitzHugh-Nagumo model, we then included the influences

from other neurons in the network. This is a common practice, as seen in [12].

In this form the ith neuron is described by the equations

ẋi =
1
ε

(xi −
x3

i

3
− yi + I) +

∑
j

Ajixj (3)

ẏi = B(xi + C) (4)

where A is the connection matrix of the network. If there are N neurons

in the network, A is an N by N matrix where Aji describes the connection (or

lack thereof) from the jth neuron to the ith neuron. These connections will be

discussed in greater detail later in the paper.

A large part of the research was comprised of adjusting the parameters ε, B and

C in Equations 3 and 4 to increase the influence of the other terms as much as

possible - thus making reconstruction more accurate - while still ensuring that

the neurons displayed proper spiking behavior. However, since the long-term

goal is to work with real neurons when there are no parameters to adjust, we

will not spend any time discussing these adjustments.

Next we adapted the augmented sparse reconstruction method to fit the FitzHugh-

Nagumo model. This means that we took the many linear terms and one cubic

term from the model above and included the random terms from the original

augmented sparse reconstruction method. As in [8], we integrated all terms. In-

tegration has the advantage of making the method more accepting of the noisy

data sets we are likely to face. This yielded
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xi(t)− xi(t0) = a0 +
N∑

j=1

lji

∫ t

t0

xjdt+ ci

∫ t

t0

xi
3dt+

G∑
g=1

wgng (5)

where lji, representing the coefficients of the linear terms, are the values we

would like to find through L1 minimization. Notice that, as described before,

this dictionary ignores the inner variable y from Equation 3. With this approach

in hand, we may move on to the actual networks of study.

1.4 Networks

Now let us detail the networks we explored throughout the project, which de-

termine the connection matrix A mentioned above. Throughout the course of

our project we worked with three different networks. The first network was

an unweighted random network. An N by N matrix of random numbers was

created; then all entries greater than a certain threshold were replaced with 1,

while the rest were entered as 0. The purpose of this network was simply to

ensure that the method would run properly and, once this goal was reached, we

moved on to other networks.

Next we turned to a group of neurons from the rat hippocampus, as seen in

Figure 1. This network was the primary vehicle of exploration in our studies.

This decision was made on the basis that the best way to guarantee the behavior

of a neural network was to use a real neural network. We then created a con-

nection matrix A from this data by considering only the strongest connections

to be present; the rest of the connections were ignored. This allowed us to work

with a network that was both unweighted and very sparse. The lack of weighted

connections simplified the process of reconstruction while the sparseness ensured

that the sparsity requirement for the augmented sparse reconstruction method
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Figure 1: A depiction of a network of 23 neurons from the rat hippocampus
connected by the strongest documented edges from [3], amounting to 64 directed
connections. Graphic created using Graphviz.

would be met. Toward the end of the paper we also include some work done on

a rat matrix where fewer of the connections are ignored, but in these cases we

still consider all connections to be unweighted. Future versions of this method

would ideally allow weighted edges to be present.

Finally, as an attempt to move to more general networks, we worked with a net-

work created from the Barabási-Albert model [2]. The Barabási-Albert model

is a probabilistic model that produces scale-free networks through preferential

attachment. Briefly, this model begins with a set of N nodes and zero edges.

Edges are added one at a time. (Although the edges are usually undirected, we

used directed edges to simulate the directed connections of a neural network.)

The chance that any given node will be part of a new edge is directly propor-

tional to the number of edges it already has. This aspect of the model, which is

known as preferential attachment, probabilistically leads to a scale-free network

[2]. For our purposes, this is notable because neural networks are almost always

scale-free [1]. In short, this method simply allows us to create random networks

that share some key properties with neural networks. We will discuss only a
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few interesting results from the Barabási-Albert network.

2 Results

2.1 The Settling Interval

We began by creating a different random inital condition for each of the 46 vari-

ables in the rat hippocampus network (23 membrane potentials and 23 recovery

variables). We repeated this 25 times to create the variability necessary for an

accurate reconstruction. These inital conditions were fed into the FitzHugh-

Nagumo model to generate the neurons’ trajectories. These trajectories were

then supplemented with noise to simulate the error level of most experimental

results in neuroscience. Unless otherwise specified, the noise level was 10% of

the maximum membrane potential during the interval.

We then attempted to reconstruct the network by running the augmented sparse

reconstruction algorithm described above. Actual L1 minimization was done by

LIPSOL, a free interior-point solver created by Yin Zhang. The accuracy of

the reconstruction was scored by creating a threshold. Any coefficient greater

than the threshold was counted as a connection. For each attempt, a threshold

was found such that the false positive rate of the reconstruction remained at a

fixed value. Unless otherwise noted, this fixed value os 0.10. We then extracted

the true positive rate. Although this sort of threshold is not extensible to ex-

perimental work, as it requires knowledge of the original connection matrix to

evaluate the results, it allowed us to gain some insight into the performance of

the method in our simulation setting.

With arbitrary initial settings over an arbitrarily long time interval, the
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Figure 2: A sample of long trajectories and settling interval trajectories. Each
line represents a different randomly chosen initial condition.

Figure 3: Solid lines represent the true positive rate of the method on the settling
interval (a length of approximately 1

20 of the spiking period), while dotted lines
correspond to the long interval (roughly 50 times as long as the settling interval).
The circle, square, and triangle indicate that the false positive rate was held at
0.05, 0.10, and 0.20, respectively.
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method was not very successful. One can refer to Figure 3 to observe the results.

Our first effort to improve results was the utilization attenuation coefficients,

as in [8]. This process involves weighting the linear terms or the cubic term

through multiplication of some value between 0 and 1. However, unlike in [8],

attenuation coefficients did little to improve performance.

We then discovered that the optimal way of improving accuracy was to focus

on a small time interval immediately after the trajectories began, which will

be known throughout the rest of this paper as the “settling interval.” Some

trajectories on this interval are shown in Figure 2. When reconstructing based

only on data from this settling interval, the true positive rate rose, as seen

in Figure 3. This is likely because this interval allows us to observe how the

initial conditions settle into their long-term trajectories. After this interval, the

neurons lock into a synchronized spiking behavior. (Interestingly, he neurons

tend to settle into two groups which alternate spiking.) Since, in these intervals,

the unique behavior of each neurons is lost, it is not surprising that little data

about the neurons’ connectivity can be recovered.

2.2 Experimental Concerns

The importance of the settling interval raises some experimental questions.

Since the end goal of our project is to apply this method to real neural net-

works, these are questions we must consider. The first issue is the feasibility

of obtaining measurements during the settling interval in a laboratory setting,

given that the settling interval may be extremely brief. One reason to be en-

couraged about this first issue is the impressive performance of the algorithm in

the presence of increased noise, as displayed in Figure 3. This implies that even

quite noisy measurements taken during the settling interval could be enough to

allow accurate reconstruction. However, this is a question that can only truly
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Figure 4: This graph represents the true positive rate of the algorithm with
naturally created initial conditions. As before, the circle, square, and triangle
correspond to false positive rates of 0.05, 0.10, and 0.20, respectively.

be answered with laboratory research.

The second issue is the ability to recreate the random - or mostly random -

inital conditions organically. Since the algorithm requires a high level of variabil-

ity to succeed, it is important to work with a wide variety of initial conditions.

However, at any given moment there is almost no chance that the membrane

potentials of a network of neurons can be described by any sort of random

distribution. For this reason, we investigated methods for causing a network

of neurons to display somewhat random behavior. Since, in an experimental

setting, one only has control over the current being added to the neurons, we

restricted ourselves to working with the current term in the FitzHugh-Nagumo

model from Equation 3. We found that adding large blocks of current, whether

uniform or individualized for each neuron, did little to recreate randomness.

This is most likely because the neurons’ synchronous behavior is caused by a

low-level attractor. However, we had some success with a noisy block of cur-
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Figure 5: This figure displays the true positive rate with added variation, as
described in the text of the paper.

rent. In this procedure, each neuron received its own “white noise” current

that was quite large in amplitude. If this current was kept on for a length of

time - about one-tenth the length of the neurons’ spiking period - the neurons

began to exhibit random behavior. We then turned off the random input cur-

rent and allowed the neurons to settle into their usual behavior. Applying the

reconstruction method to this settling interval yielded the results in Figure 4.

Although this performance is clearly not ideal, we believe that it shows that the

recreation of random inital conditions is certainly not an impossible goal.

The third experimental concern was the identical modeling of each neuron and

each connection in the network. For most of our results, we held the constants

in the FitzHugh-Nagumo model - ε, B, and C - fixed for each neuron. We also

considered every connection to have value 1. That means that each neuron and

connection in the network was completely identical, an assumption which cer-

tainly does not extend to real neural networks. We hoped that this assumption

was not unfairly boosting the success of our method. To investigate this, we
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allowed the constants to vary with each neuron. Figure 5 shows the performance

of the algorithm with respect to allowed variation. A variation of a implies that,

if K is one of the constants in the model listed above, K is replaced with K̄,

where K̄ is a Gaussian random variable with a mean of K and a variance of

aK. We also allowed the connection value to vary around 1 in an analogous

manner. One can observe that, for variations up to 0.2, the method was still

quite accurate, meaning that the variability of real neurons should not cause a

significant drop in performance of the reconstruction method.

2.3 The Barabási-Albert Network

Finally, we worked briefly with a network created according to the Barabási-

Albert model. The main purpose of this work was to make sure that the aug-

mented sparse reconstruction method’s successes described above were not due

to some unique property of the rat hippocampus network. On both the set-

tling and long-term intervals, the Barabási-Albert network yielded performance

very similar to that observed with the rat hippocampus network. This would

imply that the importance of the settling interval stems not from the rat hip-

pocampus network but from the method itself. We also attempted to create

the random initial conditions with the Barabási-Albert network. However, with

this network we had success with an approach that had failed with the rat hip-

pocampus network. In this approach, we choose one neuron that is connected

to all other neurons in the network. In theoretical terms, there exists a path

from this neuron to each other neuron. We then held the membrane potential

of this neuron constant for a period of time. This process was quite successful

in de-synchronizing the other neurons and replicating the random initial condi-

tions. Although, as the rat hippocampus network showed, this approach is not

universally successful, it could possibly be modified to create the random initial
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conditions for other networks.

3 Future Work

The goal of this project is to modify the augmented sparse reconstruction

method so that it can successfully reconstruct real-world neural networks. How-

ever, real-world networks have two properties that the current method seems

unable to handle: weighted connections and a relative lack of sparsity. Working

with unweighted connections, as we have done here, is a fair assumption for

simulation work, but the strengths of real-world connections frequently have

a significant amount of variation [3]. It is possible that a modification made

for the EGFR protein network, such as attenuation coefficients, may help with

weighted edges, but it is also entirely possible that new work would need to be

done to deal with this issue. The algorithm also performed poorly when more

edges were added to the network. For example, when some of the medium-

strength connections from the original rat hippocampus data were included,

the true positive rate of reconstruction dropped below 0.30. Adding the weak-

strength connections hurt the performance even more. The model must be able

to deal with these new edges before it can be applied to real networks.

The best way to deal with these complications, and many others, might be

to find a way to automatically determine the appropriate settling interval. It

seems that the size of the network, the number of connections in the network,

and even the constants chosen in Equations 3 and 4 affect the length of the

settling interval. It is difficult to determine the settling interval at this point

without simply observing the trajectories. Ideally, there would be a mathemat-

ical method for determining the settling interval of a given network so that the

augmented sparse reconstruction method can be applied to this interval.

Although there is much work to be done, these early results are still quite en-
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couraging. We have seen that it is certainly possible to apply the augmented

sparse reconstruction method to neural networks with a high level of accuracy.

Continued work in this area may indeed lead to a general mathematical method

for the reconstruction of neural networks.
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