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Abstract
This paper explores the numerical and analytical techniques that can be used
to solve a 3D system of nonlinear ordinary differential equations that describe
the oxidation of a Safranine dye. One goal of this project is to find the set of
reaction rate constants that fit experimental data for all initial conditions. A

least squares fitting, using ode23s from matlab, was used to obtain rate
constant values for the reaction rates k2 and k3. An exact solution to this 3D
nonlinear system could not be obtained from the equations as is. It was found
that this specific system can be transformed from a 3D system to a 2D system;
linearizing the 2D system led to a set of analytical equations that represented
the solution to the 2D system. The analytical solution for the concentration of

the dye was compared to the experimental data at the k2 and k3 values
obtained from the numerical fitting. For different initial conditions, it was

found that different pairs of k2 and k3 values were obtained.
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1 Introduction

Oxidation, a process in which oxygen is added to break pollutants or organic

wastes, is important in many industries. However, this process often uses chem-

icals that can result in the production of hazardous substances [1]. Because

oxidation is an important process, it is imperative that oxidation occurs in a

manner that is environmentally safe.

Researchers in the Chemistry Department at Carnegie Mellon University in

Pittsburgh, Pennsylvania have proposed that the use of hydrogen peroxide to aid

in oxidation is environmentally safe. They have developed catalysts, substances

which help chemical reactions occur, known as tetraamidomacrocyclic-ligand,

or TAML, activators; in particular, Fe-TAML activators have been developed.

These activators work in conjunction with hydrogen peroxide to activate chem-

ical reactions to occur. During this process, known as green chemistry, harmful

pollutants are converted to less toxic substances [1].

These Fe-TAML activators can be applied to many areas of research; one such

area of interest has been the pulp and paper industry. Researchers at Carnegie

Mellon University have speculated that toxic compounds and colored pollutants

resulting from paper and wood pulp processing can be destroyed using Fe-TAML

activators. Typically, to make paper white, the pulp and paper industry has

used chlorine dioxide to activate oxidation that leads to bleaching. However,

bleaches that contain chlorine compounds have been known to contaminate the

water supply. Thus, an alternate, environmentally safe method is to use the

TAML activators combined with the hydrogen peroxide solution. These cata-

lysts have been shown to improve pulp bleaching and do not contaminate the

water supply [1].
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In general, Fe-TAML activators can be used for the oxidation of many organic

targets, including environmental pollutants, drugs, and dyes by the use of hy-

drogen peroxide.

2 Project Description

2.1 Background

This project is a joint effort with Dr. Ryabov’s Chemistry group at Carnegie

Mellon University; it explores the Fe-containing catalysts for the oxidation of a

Safranine dye.

For this project, a new ligand system introduced is the D generation of TAMLs,

and it is an innovative step towards the development of man-made oxidizing cat-

alysts for various environmental tasks. As compared to the Fe-TAML catalysts

of the previous B generation, the D family should have significant advantages

including the following:

(i) synthetic affordability and accessibility of the D TAML ligand system,

(ii) the hydrolytic stability of FeIII-TAML complexes,

(iii) the operational stability of FeIII-TAML complexes,

(iv) higher catalytic activity in terms of the speed of activation of a primary

oxidant (k1) and the speed of oxidation of a target electron donor (k2), and

(v) the closest to neutral pH optimum of the highest catalytic activity [2].

This new catalyst has been predicted to help solve various problems facing hu-

manity; it can aid in water purification, destroying pesticides, and disinfection.
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2.2 Problem Statement

The following set of differential equations describe the chemical reactions for

the above ligand D system:

dx

dt
= −k∗1x+ k2yz (1)

dy

dt
= k∗1x− k2yz − k3y (2)

dz

dt
= −k2yz (3)

where k∗1 = k1 ∗ [H2O2].

In these differential equations, x represents the concentration of the resting cat-

alyst Fe-TAML, y represents the concentration of the active catalyst, and z

represents the concentration of the Safranine dye; k1, k2 and k3 are all positive

rate constants.

Equation (1), above, shows that the resting catalyst disappears when it reacts

with the hydrogen peroxide; it then reappears when the resting catalyst reacts

with the dye. Equation (2) depicts that the active catalyst is produced when

the resting catalyst reacts with hydrogen peroxide, and disappears when it re-

acts with the dye; furthermore, the active catalyst proceeds to kill itself, as

represented by the third term. Equation (3) conveys that bleaching of the dye

occurs when the dye reacts with the active catalyst.

The main goal of this project is to understand the system as thoroughly as

possible from both an analytical and numerical perspective. Specifically, it is of

interest to predict the optimal values for the rate constants k2 and k3 by using
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experimental data provided by Carnegie Mellon chemists; one goal is to see if

a set of k values, k1, k2, and k3 exists such that they fit all experimental data

for all initial conditions. To assist in this, the chemists have provided the value

of k1, the initial concentrations of x, y, and z, the concentration of [H2O2] and

the concentration profile of z at various instances in time.

3 Research Methods

To understand the system of equations, both an analytical approach and a

numerical approach were used.

3.1 Analytical Approach

3.1.1 Stability Analysis

Because this system is a 3-D nonlinear system, an exact solution cannot be

directly obtained. To better understand the system, I found the critical points

and respective eigenvalues to classify the stability. To find the critical points, I

set equations (1), (2), and (3) equal to zero and solved the resulting system. For

this system, I found that there were two critical points. These two points are

(0,0,0) and (0,0,
k3

k2
). Once each critical point was found, I set up the Jacobian

matrix at each critical point. At (0,0,0), the Jacobian matrix is shown below:


−k∗1 0 0

k∗1 −k3 0

0 0 0


From this matrix, eigenvalues were calculated to determine the stabililty of

the system at (0,0,0). The calculated eigenvalues are λ1 = 0, λ2 = −k∗1 , and
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λ3 = −k3. This information tells us that at (0,0,0) there is a degenerate stable

node, since one of the eigenvalues is zero and the other two are negative.

At (0,0,
k3

k2
), the Jacobian matrix is displayed below:


−k∗1 k3 0

k∗1 −2k3 0

0 −k3 0


From this matrix, the caculated eigenvalues are λ1 = 0,

λ2 =
k∗1 + 2k3

−2
+

√
(k∗1)2 − 8k∗1k3 + 4k2

3

−2
, and λ3 =

k∗1 + 2k3

−2
−

√
(k∗1)2 − 8k∗1k3 + 4k2

3

−2
.

This information tells us that at (0,0,
k3

k2
) there are two situations; if the discrim-

inent (k∗1)2− 8k∗1k3 + 4k2
3 is negative, then there are two complex roots, leading

to a degenerate spiral. If (k∗1)2 − 8k∗1k3 + 4k2
3 is positive, then a degenerate

stable node exists.

3.1.2 Transformation to a Lienard System

One possible path towards an analytical solution is to transform the 3D sys-

tem into a 2D system. Since t is the only independent variable in the system,
dx

dt
,
dy

dt
, and

dz

dt
will be denoted by x′, y′, and z′ respectively.

Adding equations (1) and (2) tells us that

x′ + y′ = −k3y (4)
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Furthermore equation (3) yields that

(log(z))′ = −k2y (5)

Together, equations (4) and (5) imply that

(log(z))′ =
k2

k3
(x+ y)′ (6)

Integrating equation (6) yields

log(z) =
k2

k3
(x+ y) + C∗ (7)

where C∗ is a constant of integration. Exponentiating (7) results in the following

equation for z:

z = Ce
k2
k3

(x+y) (8)

for some constant C. Also, equation (4) implies that

x = −k3

∫
y − y + C

′
(9)

Plugging x from (9) into (8) yields

z = Ce−k2(
R

y) (10)

Introducing a new variable v,

v ≡
∫
y,

6



we get that (1) turns into a second order non-linear homogeneous equation

described by the following:

v′′ = k1(−k3v − v′)− k2Cv
′e−k2v − k3v

′ (11)

Or,

v′′ + (k1 + k3 + Ck2e
−k2v)v′ + k1k3v = 0 (12)

This system is of the form v′′ + f(v)v′ + g(v) = 0, which belongs to the family

of Lienard systems [3] with f(v) = k1 + k3 + Ck2e
−k2v and g(v) = k1k3v.

This Lienard system can be written in an equivalent form as

v′ = u (13)

u′ = −g(v)− f(v)u (14)

Thus, the 3D system has now been transformed into a 2D system.

Doing a stability analysis of this 2D system yields one critical point at (0,0) with

eigenvalues λ1 =
−k∗1 − k3 − Ck2

2
+

√
(k∗1)2 + 2Ck∗1k2 + 2Ck2k3 + k2

3 + C2(k2)2 − 2k∗1k3

2

and λ2 =
−k∗1 − k3 − Ck2

2
−

√
(k∗1)2 + 2Ck∗1k2 + 2Ck2k3 + k2

3 + C2(k2)2 − 2k∗1k3

2
;

a closer look at these eigenvalues suggests that there is a stable node at this

critical point.

From numerical results, in each case k2 is large, on the order of 103. Our

numerical data shows that k∗1 is 5, and k3 is on the order of 10−3. When these

values are plugged into (14) for f(v), the exponential term approaches zero;

thus, the lienard system can be reduced to the following set of linear differential
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equations:

v′ = u (15)

u′ = −k∗1k3v − (k∗1 + k3)u (16)

This system can now be solved analytically by finding the eigenvalues and re-

sulting eigenvectors; the solution follows below:

v = C1e
−k∗1 t + C2e

−k3t (17)

u = −k∗1C1e
−k∗1 t − k3C2e

−k3t (18)

Using these transformed variables, an analytical solution for x, y, and z can be

rewritten as

x = −k3(C1e
−k∗1 t + C2e

−k3t) + k∗1C1e
−k∗1 t + k3C2e

−k3t (19)

y = −k∗1C1e
−k∗1 t − k3C2e

−k3t (20)

z = Ce−k2(C1e−k∗1 t+C2e−k3t) (21)

In each of these equations, it is imperative to find the values of C, C1, and C2.

Algebraic manipulation yields the following results for these constants.

C = z(0)ek2(C1+C2) (22)

C1 =
x(0)

(k∗1 − k3)
(23)

C2 =
y(0)

k∗1 − k3
− k∗1(x(0) + y(0))

k3(k∗1 − k3)
(24)

Using the k∗1 value provided,the initial values for x, y, and z, and the k2 and

k3 rate constants found by the numerical optimization, the constants C, C1,
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and C2 can be calculated. Using (21), concentrations for z were found. The

analytical solution for z was then graphed with the experimental data to see

how well the analytical solution fit the data.

One last analytical technique was to solve for k2. Using equations (10), (17),

and (22), the following equation for z is obtained

z = z(0)ek2(C1+C2−C1e−k∗1 t+C2e−k3t) (25)

Taking the logarithms of both sides and solving for k2 yields the following equa-

tion

k2 =
log(z)− log(z(0))

C1 + C2 − C1e−k∗1 t − C2e−k3t
(26)

Using the k∗1 value provided, the expressions for C1 and C2, the value obtained

for k3 from the numerical solution, and time and z concentrations from the data

set, k2 can be obtained from equation (26). These k2 values were then compared

with the k2 values from the numerical solution.

3.2 Numerical Approach

3.2.1 Least Squares Fitting

Numerical techniques can also be used to solve the differential equations as

depicted in (1), (2), and (3). In matlab, a least squares fitting was applied

to minimize the error between the experimental data and the numerical curve.

Ode 23s was used because we had a stiff system; by a stiff system, this means

that the values of the rate constants differed significantly. By setting the value

of k∗1 to 5, and by setting an initial range of k2 and k3 values to search at, k2

and k3 parameter values were obtained using ode23s and fminsearch; this oc-

curred when the difference between the experimental and numerical curves was
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minimized. An error value was outputted, and graphs were obtained to visually

see the fit between the numerical curve and experimental data at the k2 and k3

values.

Using the values obtained for the constants C, C1, and C2, as well as the initial

conditions and experimental data, a function call fmincon in matlab was used

to find the rate constants k2 and k3; fmincon was used to ensure that k2 and k3

were both nonnegative. These values were compared with the parameter values

obtained using fminsearch. Graphs were also produced to see how the analytical

solution for z at these reaction rate values fit the experimental data.

4 Results and Discussion

The chemists at Carnegie Mellon University provided data showing the bleach-

ing of the Safranine dye by hydrogen peroxide at various instances in time. For

each set of data, x(0) = 2.18× 10−7 and y(0) = 0, and the value for z(0) varies

between each set; the value of k∗1 was also provided and set at 5.

Using this information, a least squares fitting analysis was done using ode23s

and fminsearch to predict the optimal values of k2 and k3. The table below

shows these results at different initial values for z.

z(0) 4.63× 10−5 3.66× 10−5 2.72× 10−5 1.72× 10−5 6.53× 10−6

k2 3.3373× 103 5.0992× 103 5.0836× 103 6.3992× 103 1.1828× 104

k3 2.6001× 10−3 3.3212× 10−3 3.0784× 10−3 3.2515× 10−3 3.5192× 10−3

Table 1: Optimal values of k2 and k3 from least squares fitting with ode23s and
fminsearch

These optimal values were plugged back into equations (1), (2), and (3), and
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compared with the experimental data, which is displayed in the figure below.

Figure 1: Graph of numerical solution and experimental data with rate constant
values from least squares fitting

As shown in Table 1, the values for k2 and k3 vary with different initial values

for z. Figure 1 shows the fit between the experimental data and the numerical

solution at these optimal rate constant values. As can be seen by this graph,

these parameters fit the data well, thus conveying that different k values fit

different sets of data.

A graph was also produced using the rate constant values in Table 1 to see

how well the analytical solution in equation (21) fit the experimental data. The

graph is pictured in Figure 2, below.
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Figure 2: Analytical Solution with optimal rate constants obtained by least
squares fitting compared with experimental data

As depicted by this figure, the analytical solution gives a reasonably good fit at

the values for k2 and k3 from Table 1 above.

Another technique to test the validity of our analytical solution was to compute

the value of k2 using equation (26) by using the value of k3 obtained numerically,

the initial values for x, y, and z, and the data provided by Carnegie Mellon.

Results are shown in Table 2, below.

z(0) 4.63× 10−5 3.66× 10−5 2.72× 10−5 1.72× 10−5 6.53× 10−6

k2 3.3459× 103 5.5875× 103 5.6155× 103 6.8480× 103 1.1935× 104

Table 2: Values of k2 obtained through the analytical solution
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These values for k2 differ slightly from the values obtained doing the least

squares fitting, shown in Figure 1 above. However, because there is not a large

variation between the k2 values obtained analytically and the k2 values obtained

numerically, this conveys that our analytical solution for z fits the data fairly

well.

Lastly, another least squares fitting was done with a constraint minimization

to ensure that all the rate values are nonnegative. The following table displays

these results.

z(0) 4.63× 10−5 3.66× 10−5 2.72× 10−5 1.72× 10−5 6.53× 10−6

k2 3.5444× 103 5.3492× 103 5.8402× 103 7.2222× 103 1.1404× 104

k3 2.8620× 10−3 3.5023× 10−3 3.7374× 10−3 3.8239× 10−3 3.3971× 10−3

Table 3: Optimal values of k2 and k3 from least squares fitting with constraint
minimization that all k values are positive

These rate constant values do differ, some more than others, from the values

displayed in Table 1; plugging these values into the analytical solution show

that some fit the data well and some curves diverge from the experimental data

as time is increased. Figure 3, below, depicts these results.

For each of the k2 and k3 values that were found, there is a deviation between

the k2 values as well as a deviation between the k3 values. Because k2 and k3

are known as constant reaction rates, one goal was to find the set of rate con-

stants that fit all experimental data for all initial values of z. Our reaction rate

values varied in order to fit each set of experimental data; one reason for this

variation could be some error in experimentation. All experiments have some

random error, which occurs because no measurement can be made with infinite

precision. Another contributing factor could be the assumptions we made to
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Figure 3: Analytical solution with optimal rate constant values obtained from
least squares fitting with constraint minimization compared with experimental
data

get the analytical solution. Our lienard system was originally a 2D nonlinear

system, but we had reduced it to a linear system by assuming that k2 was large,

given some numerical results. It is possible that this nonlinearity in the lienard

system is important and can alter and stabilize the values of k2 and k3. Lastly,

the set of differential equations given by (1), (2), and (3) may not describe the

system fully, and might have to be modified to produce comparable values for

k2 and k3 at all initial conditions.
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5 Conclusions and Future Work

For this project, numerical and analytical techniques were used to investigate

the system of equations modeled by (1), (2), and (3). A least squares fitting

was used to find values for k2 and k3 that minimized the error between the

numerical curve and the experimental data. These rate constants were used to

investigate how the analytical solution that was found fit the experimental data.

For different data sets, different rate constants were found; for each set of rate

constant values, the analytical solution did a fairly good job of matching the

experimental data.

Because one set of rate constants should fit the experimental data for all initial

values, more work can be done with this system. The chemists at Carnegie

Mellon speculate that adding more terms to the system can yield more favorable

results. The following set of differential equations will be investigated next.

dx

dt
= −k∗1x+ k2yz − k5xy (27)

dy

dt
= k∗1x− k2yz − k3y − k4y

2 − k5xy (28)

dz

dt
= −k2yz (29)

For this system, the same numerical and analytical techniques will be used to

find values for k2 and k3 and see how these values match the experimental data;

an analytical solution will hopefully be obtained as well, and will also be used

with the proper k values to determine how well it fits the data. Our previous

analytical solution fit the data fairly well, but diverged in some places and could

be improved upon; implementing these changes to this system might provide a

better analytical solution that describes this system fully.
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The phase space behavior of this system can also be explored using AUTO. As

previously mentioned, the critical points and stability of the system were found.

AUTO can be used to generate graphs that visually depict the behavior of the

system at the critical points. Understanding the phase space behavior can also

help chemists to predict how the system behaves from a chemical perspective.
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