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Abstract
This undergraduate research presents mathematical and numerical modeling of

intracranial saccular aneurysms. The blood pressure acting on the arterial wall is

modeled using a Fourier Series, the arterial wall by a spring mass system, and the

cerebral spinal fluid by a simplified Navier Stokes equation. The resulting partial

differential equation for this fluid structure interaction is solved numerically using the

implicit finite difference method. Computational studies are also presented, observing

the influence of various parameters on the overall behavior of the system.
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1 Introduction

The health industry has in recent years become one of the fastest growing and most stable

in America, fueled by an aging population and swell of scientific development. Some of

the greatest pressures are those for the advancement of faster, more accurate diagnosis,

the reduction of invasive procedures, and cost-effective treatment plans. Meeting these

goals requires a multidisciplinary approach, combining the expertise of science, mathe-

matics, and the humanities. The focus of this paper will be the modeling of fluid structure

interactions, specifically those of intracranial saccular aneurysms. A focal dilatation of an

arterial wall, aneurysms are surprisingly common with an estimated two to five percent of

Americans harboring intracranial, or cerebral, aneurysms. Bulging from the arterial wall,

aneurysms may interrupt blood flow, put pressure on nerve or brain tissue, or rupture,

causing hemorrhage.

Within the study of aneurysms, there are three general topics one can address: patho-

genesis, enlargement, and rupture. Pathogenesis concerns itself mainly with the cause

of aneurysm development. Little is known as to what causes these weaknesses in the

vessel wall, however, research has linked their development to genetic predispositions,

cardiovascular trauma, and medical conditions as common as high blood pressure and

atherosclerosis. Subjected to the force of the blood pressure, an aneurysm tends to en-

large over time. However, this enlargement varies with age, gender, blood chemistry and

can be unpredictable in its rate of growth. Perhaps the most crucial research to the im-

mediate improvement in aneurysm treatment is that pertaining to rupture. Unruptured,

even the largest of aneurysms can be benign. Upon rupture, however, forty percent of

patients will die within the first twenty four hours and twenty five percent within the sub-

sequent six months [1,5]. Of the surviving patients, many will experience extensive neural

damage. The only treatments currently available for intracranial saccular aneurysms tend

to be either highly invasive or must be repeated every few years. While the vast majority
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of aneurysms will never rupture, the combined risk of surgery and the fatal consequences

of rupture leave many health care providers uncertain as to what may be the best care

they can give their patients.

One possible reason for the enlargement and eventual rupture of an intracranial aneurysm

is that the dynamic behavior of the arterial wall is unstable in response to the pulsatile

blood flow and surrounding cerebral spinal fluid. The construction of a mathematical

model and the derivation of an exact solution exists in previous research[7], but a numer-

ical solution to the problem has not been investigated. In this paper, numerical methods

in the form of implicit finite differences have been applied to the problem, allowing for the

future modification of its individual components. Ultimately, we attempt to contribute to

a mathematical model which would assist physicians in the care and choice of treatment

in aneurysm patients.

2 Background and Research Methods

The studied model contains three components of intracranial saccular aneurysms: the

blood pressure acting on the inner arterial wall, the structure of the arterial wall itself,

and the surrounding cerebral spinal fluid (CSF). To begin, we consider the simplest case

of a perfectly spherical aneurysm. Due to radial symmetry [6], the model is immediately

brought from three dimensions to one, as determining the motion of the wall in one direc-

tion will determine its behavior in all directions. We can visualize this as a line running

from inside the aneurysm, through the arterial wall and into the CSF, with the point

x = 0 set where the outer arterial wall and CSF meet. x > 0 will be considered to be

moving away from the wall and into the CSF and x < 0 moving through the wall and

into the bloodstream.

While there are many ways to represent each of the three components in this model,

we chose the following to mimic preexisting research for which an exact solution has been
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determined.

2.1 Model of the blood pressure

Blood pressure, being pulsatile, will be modeled by the Fourier series[2,3].

Pblood = Pm +
N∑
n=1

(An cos(nωt) +Bn sin(nωt)) (1)

where Pm is the mean blood pressure, An and Bn are the Fourier coefficients for N har-

monics, and ω is the fundamental circular frequency.

2.2 Model of the arterial wall

The arterial wall will be modeled using the familiar spring and mass system as illustrated

in Figure 1. This will mimic the elasticity of the arterial wall and the coupled motion of

its inner and outer components while maintaining simplicity. k is defined as the spring

constant and m as the mass. Ultimately, it is the motion of the outer wall and its

interaction with the CSF with which we will be most concerned.

Figure 1: Diagram of Spring Mass System
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2.3 Model of cerebral spinal fluid

The cerebral spinal fluid will be represented by the following equation:

ρvt + ρvvx + Px − µvxx = F (2)

This, the one dimensional Navier -Stokes equation, is a standard in modeling fluid inter-

actions and has been extensively studied by mathematicians. Here, ρ is the fluid density,

v(x, t) is the velocity of the fluid, P (x, t) is the pressure of the fluid, µ is the viscosity and

F is the body force on the fluid. To incorporate the CSF’s interaction with the arterial

wall, a new variable, u(x, t), representing the displacement of the cerebral spinal fluid is

introduced. This variable can be related to the fluid velocity term, v(x, t) by the following:

u =

∫
vdt (3)

To make further simplifications to this model we assume that the CSF is inviscid, or

an ideal fluid (µ = 0). That is, that the fluid has no internal resistance to flow. We

will also assume that the nonlinear effects are negligible, dropping the ρvvx term. Two

unknowns remain: pressure (P ) and displacement (u). By taking the CSF to be slightly

compressible, we obtain the relationship

P = −ρc2ux (4)

Applying the aforementioned assumptions to the Navier-Stokes equation simplifies it to

the wave equation.

utt = c2uxx (5)

For initial conditions, we assume the system starts at rest with no initial velocity,

u(x, 0) = ut(x, 0) = 0 (6)
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To solve the coupled partial differential equation we will need two boundary conditions.

At x = 0, the edge of the outer arterial wall, we will utilize a force balance equation

which takes into account the force of the blood pressure and its effects on the spring mass

system describing the arterial wall.

mutt(0, t) = aPblood − ku(0, t) + ρc2aux(0, t) (7)

For the second boundary condition, we will fabricate a point x = L, some long distance

away from the outer wall at which the waves created by the motion of the artery die down.

We have chosen to use the plane wave approximation given by

ut(L, t) = −cux(L, t) (8)

2.4 The PDE

The mathematical models previously defined can be summarized as the following coupled

fluid-structure interaction problem and PDE:

utt = c2uxx (9)

u(x, 0) = 0 ut(x, 0) = 0 (10)

mutt(0, t) = aPblood − ku(0, t) + ρc2aux(0, t) (11)

ut(L, t) = −cux(L, t) (12)

2.5 Solving using implicit finite differences

We have chosen to use finite differences to solve the above PDE. When the system is

discritized explicitly, using finite differences, we see

(
un+1
i − 2uni + un−1

i

δt2

)
= c2

(
uni+1 − 2uni + uni−1

δx2

)
(13)
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Moving all n+1 terms to the left hand side,

2(1− r)uni + r(uni+1 + uni−1)− un−1
i = un+1

i (14)

where r=
(
c2δt2

δx2

)
, δt is the step size in time and δx is the step size in space. Certain values

of r will cause this matrix to become either nilpotent or contain a complete set of negative

eigenvalues, leading to stability problems during vector multiplication. Thus restrictions

must be placed on the time step. As we will see, implicit discritization eliminates this

issue. Implicit methods, however, correspond to the form Aun+1 = b which requires an

eventual linear system solve at each time step (e.g. a blackslash command in Matlab).

This uses significantly more processing power and time than explicit methods, especially

for significantly small δt and δx.

To solve this PDE, we chose to use finite differences, discritizing implicitly as outlined by

(
un+1
i − 2uni + un−1

i

δt2

)
= c2

(
un+1
i+1 − 2un+1

i + un+1
i−1

δx2

)
(15)

where i=0,1,2...M denotes space and n=01,2,...finaltime denotes time on a grid such that

uni = u(xi, tn) Note that the uxx term is discritized at the n+1 time level, which gives our

implicit formulation.

To simplify, we move all future time step terms, or n+1 terms, to the left hand side:

(1 + 2r)un+1
i − r(un+1

i+1 + un+1
i−1 ) = 2uni − un−1

i (16)

with r = c2δt2

δx2 . Here we note that the far left and right steps in space, i=0 and i=M, will

be controlled by the left and right boundary conditions.

At x=0 (i=0) for all time steps we take the right boundary condition (11) and discritize,

using a backward difference method which is derived from a Taylor expansion [4]for the

ux term and center differences for second derivatives in time and space
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mutt(0, t) = aPblood −ku(0, t) + ρc2aux(0, t)

m

(
un+1
i − 2uni + un−1

i

δt2

)
= ρc2a

(
−3un+1

i + 4un+1
i+1 − un+1

i+2

2δx2

)
− kun+1

i + F (t)(
m

δt2
+

3ρc2a

2δx
+ s

)
un+1

0 +

(
−2ρc2a

δx

)
un+1

1 +

(
ρc2a

2δx

)
un+1

2 =
2m

δt2
un0 −

m

δt2
un−1

0 + F (t)

At x=L (i=M) for all time steps, we similarly take the left boundary condition (12) and

discritize

ut(L, t) = −cux(L, t)
un+1
i − un−1

i

2δt
= −c

(
3un+1

i − 4un+1
i−1 + un+1

i−2

2δx

)
(

1

2δt
+

3c

2δx

)
un+1
M −

(
2c
δx

)
un+1
M−1 +

( c

2δx

)
un+1
M−2 =

1

2δt
un−1
M

To solve for interior points, we iterate the implicit discritization of the wave equation from

i=1 to M-1. From this, a distinct pattern emerges which can be translated into a linear

system of equations and can be solved using matrix functions. Iterating i, we produce

i = 1 (1 + 2r)un+1
1 − r(un+1

2 + un+1
0 ) = 2un1 − un−1

1

i = 2 (1 + 2r)un+1
2 − r(un+1

3 + un+1
1 ) = 2un2 − un−1

2

i = 3 (1 + 2r)un+1
3 − r(un+1

4 + un+1
2 ) = 2un3 − un−1

2

....

i = M − 2 (1 + 2r)un+1
M−2 − r(un+1

M−1 + un+1
M−3) = 2uM−2 − un−1

M−2

i = M − 1 (1 + 2r)un+1
M−1 − r(un+1

M + un+1
M−2) = 2unM−1 − un−1

M−1

Here we notice that for n=0, terms such as un−1
i arise, which as of yet have no real value
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nor physical significance. To solve these equations we make an assumption that the initial

velocity of the fluid is 0. This makes physical sense in the context of our initial conditions

of having the entire system at rest. Thus,

ut(x, 0) = 0

u1
i − u−1

i

2δt
= 0

u1
i = u−1

i

Applying both this equation and u0
i = 0 (derived from the initial condition), we are able

to construct the following linear system of equations for n=0 which solve for the first time

step.

i = 0

(
2m

δt2
+

3ρc2a

2δx
+ k

)
u1

0 +

(
−2ρc2a

δx

)
u1

1 +

(
ρc2a

2δx

)
u1

2 = F (t)

i = 1 (2 + 2r)u1
1 − r(u1

2 + u1
0) = 0

i = 2 (2 + 2r)u1
2 − r(u1

3 + u1
1) = 0

i = 3 (2 + 2r)u1
3 − r(u1

4 + u1
2) = 0

....

i = m− 2 (2 + 2r)u1
m−2 − r(u1

m−1 + u1
m−3) = 0

i = m− 1 (2 + 2r)u1
m−1 − r(u1

m + u1
m−2) = 0

i = m

(
3c

2δx

)
u1
m −

2c

δx
u1
m−1 +

c

2δx
u1
m−2 = 0
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This can be transformed to the corresponding sparse matrix system



A0 B C

2 + 2r −r

−r 2 + 2r −r
. . . . . . . . .

−r 2 + 2r −r

D E F0


~u1
i =



F (t)

0

...

0


For all other time steps no non-physical terms are created. Therefore we employ

i = 0

(
m

δt2
+

3ρc2a

2δx
+ k

)
un+1

0 −
(

2ρc2a

δx

)
un+1

1 +

(
ρc2a

2δx

)
un+1

2 =
2m

δt2
un0 −

m

δt2
un−1

0 + F (t)

i = 1 (1 + 2r)un+1
1 − r(un+1

2 + un+1
0 ) = 2un1 − un−1

1

i = 2 (1 + 2r)un+1
2 − r(un+1

3 + un+1
1 ) = 2un2 − un−1

2

i = 3 (1 + 2r)un+1
3 − r(un+1

4 + un+1
2 ) = 2un3 − un−1

2

....

i = m− 2 (1 + 2r)un+1
m−2 − r(un+1

m−1 + un+1
m−3) = 2um−2 − un−1

m−2

i = m− 1 (1 + 2r)un+1
m−1 − r(un+1

m + un+1
m−2) = 2unm−1 − un−1

m−1

i = m

(
1

2δt
+

3c

2δx

)
un+1
m − 2c

δx
un+1
m−1 +

c

2δx
un+1
m−2 =

1

2δt
un−1
m
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Which in turn is transformed to the corresponding sparse matrix.



A B C

1 + 2r −r

−r 1 + 2r −r
. . . . . . . . .

−r 1 + 2r −r

D E F


~un+1
i =



2
δt2

2

...

2

0


~uni +



1
δt2

−1

...

−1

0


~un−1
i +



F (t)

0

...

0

0



Where

A0 =
2m

δt2
+

3ρc2a

δx
+ k

A =
m

δt2
+

3ρc2a

δx
+ k

B =
−2ρc2a

δx

C =
ρc2a

2δx

D =
c

2δx

E =
−2c

δx

F0 =
3c

2δx

F =
1

2δt
+

3c

2δx

When this method is implemented in Matlab, we can produce a numerical solution to the

PDE. To test the accuracy of this solution, we compared it to an exact solution derived

using Laplace transforms. [7]

u(0, t) = G+Her1t + Ier2t +
N∑
n=1

(
Jn cos(nωt) +

Kn

nω
sin(nωt) + Lne

r1t +Mne
r2t

)
(17)
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Where

r1,2 = −
ρca±

√
(ρca)2 − 4mk

2m

G =
aPm
mr1r2

H = − aPm
r1(r2 − r1)m

H =
aPm

r2(r2 − r1)m

Jn = −Fn −Gn

Kn = −r1Fn − r2Gn

Ln =
aAn −mGn(r2

2 + n2ω2)

m(r2
1 + n2ω2)

Mn =
a(r2An + nωBn

m(r2 − r1)(r2
2 + n2ω2)

3 Results and Discussion

In this section we will analyze the accuracy of the numerical solution to its analytical

counterpart. By plotting the two against one another in Figure 2, we see that the nu-

merical solution follows the curve of the exact solution with little to no visible error. We

then perform computational studies, observing the influence of individual parameters on

the overall behavior of the system.

3.1 Comparison of Numerical and Exact Solution

Here we have chosen the following realistic values to initialize our study: for the CSF,

the density has been set to ρ = 1000 kg/m3 and c = 1500 m/s. For the artery wall,

we have chosen mass m = 0.001 kg, area a = 0.01 m2 and spring constant k = 8000

N/m. For the blood pressure, we used Pm =65.7 mmHg, frequency ω = 1 rad/s and

harmonics A1 = −7.13, B1 = 4.64, A2 = −3.08, B2 = −1.18, A3 = −0.130, B3 = −0.564,

A4 = −0.205, B4 = −0.346, A5 = 0.0662, B5 = −0.120, all in mmHg.
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Figure 2: Comparing the Analytical and Numerical Solutions

The data points generated by the numerical solution lie on top of the analytical curve.

This suggests that the implicit finite difference methodology was successfully implemented

to the orriginal PDE (9-12).

3.2 Influence of arterial wall stiffness

The spring constant k models the relative stiffness of the arterial wall and is initially set

to 8000 N/m. As this value is decreased, the wall becomes more flexible and will yield

more to the force exerted by the blood pressure, moving further into the CSF. Seen in

Figure 3, as k is taken from 7000 N/m to 1000 N/m, the outer wall still displays oscillatory

behavior, but with greater displacement. The system is also slower to stabilize.

3.3 Influence of CSF density

The density of the CSF, ρ, has also been taken into account. As the fluid becomes more

dense, it will resist the motion of the wall, which should be mathematically observed in a
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Figure 3: Influence of Wall Stiffness

decreased amplitude in the displacement curve. Initially, we have set the density to 1000

kg/m3. In our computational study, we take the value of ρ from 0 kg/m3 to 2000 kg/m3

and, as expected, see a decreased amplitude. The behavior at ρ = 0, is noteworthy in

that the smoothness of the curve changes, producing a visible bend. With the numerical

Figure 4: Influence of CSF density

scheme validated, we next attempted to modify the assumptions made in constructing

the PDE, specifically the simplification of the Navier-Stokes equation. By making the
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model more complex we bring it closer to physical reality. The cerebral spinal fliud was

originally assumed to be invicid (µ = 0), giving no resistance to the motion of the outer

arterial wall. Allowing µ to be a constant, we alter (8), giving

ρutt = ρc2uxx + µvxx (18)

Using the implicit finite difference method implemented previously, we discritize and move

all n+1 terms to the right hand side as follows.

ρ

(
un+1
i − 2uni + un−1

i

δt

)
= ρc2

(
un+1
i+1 − 2un+1

i + un+1
i−1

δx

)
−µ
(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

δx

)
(19)

(1 + 2r)un+1
i − r(un+1

i+1 + un+1
i−1 ) +

µr

ρc2
(vn+1
i+1 − 2vn+1

i + vn+1
i−1 ) = 2uni − un−1

i (20)

Similar to the previous numerical computation, we applied the boundary and initial con-

ditions to achieve a new system of linear equations and matrices for the first time step

and all subsequent time steps. Solving in Matlab with µ = 0 produced the same graph

depicted in Figure 2. We would expect that an increase in viscosity would cause the am-

plitude of the periodic displacement of the wall to decrease. However, as µ was increased

to values up to 10,000 cP, roughly the consistancy of honey, little change was seen in

the displacement of the outer arterial wall. This suggests that there is some error in the

methodology used. One plausible explaination as to why this scheme fails is that µ is not

constant, changing how we must distritize (15). It is also possible that the discritization

of v uses such small steps in space that vn+1
i+1 − 2vn+1

i + vn+1
i−1 = 0, causing the µvxx term

to drop from the equation.

4 Conclusion and Future Work

This research has constructed a fluid structure interaction model tailored to explore in-

tracranial aneurysms by incorporating its most basic elements— the blood pressure, arte-
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rial wall, and CSF — and obtain a numerical solution to the resulting partial differential

equation. By using implicit finite differences, we were able to match the numerical and

exact solutions, thereby validating the numerical scheme. Future goals will be to mod-

ify the assumptions made in the construction of the wave equation and the spring mass

system, making the model more complex and physically realistic. Putting aside attempts

to include viscosity, the nonlinear terms will be added back into the reduced Navier-

Stokes equation. For the spring mass system, a number of alternative models have been

suggested, all giving more complex structure and motion to the arterial walls.
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