Mean Minkowski Measures for Convex Sets and

Grünbaum's Conjecture for Affine Diameters

Gabor Toth Department of Mathematics Rutgers University, Camden, NJ 08102

For a convex body \mathcal{C} in \mathbf{R}^n , we let $\mathfrak{m}_{\mathcal{C}}^*$ denote its Minkowski measure. It can be defined as $\mathfrak{m}_{\mathcal{C}}^* = \inf_{\mathcal{O} \in \operatorname{int} \mathcal{C}} \mathfrak{m}_{\mathcal{C}}(\mathcal{O})$, where $\mathfrak{m}_{\mathcal{C}}(\mathcal{O})$ is the maximum chord ratio of \mathcal{C} for all chords passing through the interior point \mathcal{O} ; or dually, the maximum distance ratio of \mathcal{O} within all pairs of parallel supporting hyperplanes of \mathcal{C} . We have $\mathfrak{m}_{\mathcal{C}}(\mathcal{O}) = \mathfrak{m}_{\mathcal{C}^{\mathcal{O}}}(\mathcal{O})$, where $\mathcal{C}^{\mathcal{O}}$ is the (polar) dual of \mathcal{C} with respect to \mathcal{O} . The Minkowski measure is a measure of symmetry in the sense that

$$1 \le \mathfrak{m}_{\mathcal{C}}^* \le n,$$

where the lower bound is attained iff C is symmetric, and the upper bound is attained iff C is a simplex.

In this talk we define two sequences $\{\sigma_{\mathcal{C},k}(\mathcal{O})\}_{k\geq 1}$ and $\{\sigma_{\mathcal{C},k}^o(\mathcal{O})\}_{k\geq 1}$, $\mathcal{O}\in \mathrm{int}\,\mathcal{C}$. The kth members are "mean Minkowski measures in dimension k" which are dual in the sense that $\sigma_{\mathcal{C},k}^o(\mathcal{O}) = \sigma_{\mathcal{C}^{\mathcal{O}},k}(\mathcal{O})$. We also have

$$1 \le \sigma_{\mathcal{C},k}(\mathcal{O}), \sigma_{\mathcal{C},k}^o(\mathcal{O}) \le \frac{k+1}{2}.$$

The lower bound for $\sigma_{\mathcal{C},k}$ is attained iff \mathcal{C} has a k-dimensional simplicial slice; and, for $\sigma_{\mathcal{C},k}^o$, iff \mathcal{C} has a simplicial projection to a k-dimensional affine subspace. For $k \geq 2$, the upper bound is attained (in either case) iff \mathcal{C} is symmetric with respect to \mathcal{O} .

An affine diameter of \mathcal{C} is a chord with parallel supporting hyperplanes at the endpoints. In 1953 Klee showed that the condition $\mathfrak{m}_{\mathcal{C}}^* > n-1$ implies that there are n+1 affinely independent affine diameters meeting at a(ny) critical point $\mathcal{O}^* \in \mathcal{C}$, where the infimum defining $\mathfrak{m}_{\mathcal{C}}^*$ is attained. In 1963 Grünbaum conjectured the existence of

such point in any convex body. While this conjecture remains open (and difficult), as a byproduct of the properties of the dual mean Minkowski measures, we show that

$$\frac{n}{\mathfrak{m}_{\mathcal{C}}^* + 1} \le \sigma_{\mathcal{C}, n-1}^o(\mathcal{O}^*)$$

for any critical point \mathcal{O}^* of \mathcal{C} , and if sharp inequality holds then the Grünbaum conjecture holds. This assumption is much weaker than Klee's.