Harmonic Analysis techniques in Several Complex Variables

Loredana Lanzani
University of Arkansas

Abstract. This talk concerns recent joint work with E. M. Stein on the extension to higher dimension of Calderón’s and Coifman-McIntosh-Meyer’s seminal results about the Cauchy integral for a Lipschitz planar curve (interpreted as the boundary of a Lipschitz domain $D \subset \mathbb{C}$).

From the point of view of complex analysis, a fundamental feature of the 1-dimensional Cauchy kernel:

$$H(w, z) = \frac{1}{2\pi i} \frac{dw}{w - z}$$

is that it is holomorphic (that is, analytic) in D as a function of z. In great contrast with the one-dimensional theory, in higher dimension there is no obvious holomorphic analogue of $H(w, z)$. This is because of geometric obstructions (the Levi problem) that in dimension 1 are irrelevant.

A good candidate kernel for the higher dimensional setting was first identified by Jean Leray in the context of a C^∞-smooth, convex domain D; while these conditions on D can be relaxed a bit, if the domain is less than C^2-smooth (much less Lipschitz!) Leray’s construction becomes conceptually problematic.

In this talk I will present (a), the construction of the Cauchy-Leray kernel and (b), the $L^p(bD)$-boundedness of the induced singular integral operator under the weakest currently known assumptions on the domain’s regularity – in the case of a planar domain these are akin to Lipschitz boundary, but in our higher-dimensional context the assumptions we make are in fact optimal. The proofs rely in a fundamental way on a suitably adapted version of the so-called “$T(1)$-theorem technique” from real harmonic analysis.

Time permitting, I will describe applications of this work to complex function theory (specifically, to the Szegő and Bergman projections).

References
